17.12.2012 Views

elements in mushrooms-24415-en 2011.pdf - JRC Publications ...

elements in mushrooms-24415-en 2011.pdf - JRC Publications ...

elements in mushrooms-24415-en 2011.pdf - JRC Publications ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> Ascomycetes and Basidiomycetes<br />

The refer<strong>en</strong>ce <strong>mushrooms</strong> as <strong>in</strong>strum<strong>en</strong>ts for <strong>in</strong>vestigat<strong>in</strong>g<br />

bio<strong>in</strong>dication and biodiversity<br />

Roberto C<strong>en</strong>ci, Luigi Cocchi, Orlando Petr<strong>in</strong>i,<br />

Fabrizio S<strong>en</strong>a, Carm<strong>in</strong>e S<strong>in</strong>iscalco, Luciano Vescovi<br />

Editors: R. M. C<strong>en</strong>ci and F. S<strong>en</strong>a<br />

EUR <strong>24415</strong> EN 2011<br />

1


The mission of the <strong>JRC</strong>-IES is to provide sci<strong>en</strong>tific-technical support to the European Union’s policies<br />

for the protection and susta<strong>in</strong>able developm<strong>en</strong>t of the European and global <strong>en</strong>vironm<strong>en</strong>t.<br />

European Commission<br />

Jo<strong>in</strong>t Research C<strong>en</strong>tre<br />

Institute for Environm<strong>en</strong>t and Susta<strong>in</strong>ability<br />

Via E.Fermi, 2749 I-21027 Ispra (VA) Italy<br />

Legal Notice<br />

Neither the European Commission nor any person act<strong>in</strong>g on behalf of the<br />

Commission is responsible for the use which might be made of this publication.<br />

2<br />

Europe Direct is a service to help you f<strong>in</strong>d answers<br />

to your questions about the European Union<br />

Freephone number (*):<br />

00 800 6 7 8 9 10 11<br />

(*) Certa<strong>in</strong> mobile telephone operators do not allow access to 00 800 numbers or these<br />

calls may be billed.<br />

A great deal of additional <strong>in</strong>formation on the European Union is available on the Internet.<br />

It can be accessed through the Europa server http://europa.eu/<br />

<strong>JRC</strong> Catalogue number: LB-NA-<strong>24415</strong>-EN-C<br />

Editors: R. M. C<strong>en</strong>ci and F. S<strong>en</strong>a<br />

<strong>JRC</strong>65050<br />

EUR <strong>24415</strong> EN<br />

ISBN 978-92-79-20395-4<br />

ISSN 1018-5593<br />

doi:10.2788/22228<br />

Luxembourg: <strong>Publications</strong> Office of the European Union<br />

Translation: Dr. Luca Umidi<br />

© European Union, 2011<br />

Reproduction is authorised provided the source is acknowledged<br />

Pr<strong>in</strong>ted <strong>in</strong> Italy


Attached to this docum<strong>en</strong>t is a CD conta<strong>in</strong><strong>in</strong>g:<br />

• A PDF copy of this docum<strong>en</strong>t<br />

• Information regard<strong>in</strong>g the soil and mushroom sampl<strong>in</strong>g site<br />

locations<br />

• Analytical data (ca, 300,000) on total samples of soils and<br />

<strong>mushrooms</strong> analysed (ca, 10,000)<br />

• The descriptive statistics for all g<strong>en</strong>era and species analysed<br />

• Maps show<strong>in</strong>g the distribution of conc<strong>en</strong>trations of <strong>in</strong>organic<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> <strong>mushrooms</strong><br />

• Maps show<strong>in</strong>g the distribution of conc<strong>en</strong>trations of <strong>in</strong>organic<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> soils<br />

3


4<br />

Contact <strong>in</strong>formation:<br />

Address: Roberto M. C<strong>en</strong>ci - European Commission - DG <strong>JRC</strong> Institute for Environm<strong>en</strong>t and<br />

Susta<strong>in</strong>ability, Land Managem<strong>en</strong>t and Natural Hazards Unit, T.P. 280, I-21027 Ispra (VA),<br />

Italy<br />

E-mail: roberto.c<strong>en</strong>ci@jrc.ec.europa.eu<br />

Tel: +39 0332 789771<br />

Fax: +39 0332 786394<br />

http://eusoils.jrc.it/<strong>in</strong>dex.html<br />

Address: Luigi Cocchi – Member of the National Steer<strong>in</strong>g Group, the Organisational Office of the<br />

National Sci<strong>en</strong>tific Committee and of the Commission of Mycotoxicology belong<strong>in</strong>g to the<br />

Bresadola mycological Association. Vice Presid<strong>en</strong>t of the “R<strong>en</strong>zo Franchi” mycologicalnaturalist<br />

group <strong>in</strong> Reggio Emilia, Italy.<br />

E-mail: luigi.cocchi@libero.it<br />

Address: Orlando Petr<strong>in</strong>i – Istituto Cantonale di Microbiologia, via Mirasole, 22A, CH-6500<br />

Bell<strong>in</strong>zona, Republic and Canton of Tic<strong>in</strong>o, Switzerland<br />

E-mail: orlando.petr<strong>in</strong>i@ti.ch<br />

Tel: +41 91 814 6031<br />

Fax: +41 91 814 6019<br />

http://www.ti.ch/dss/DSP/ISTCM/<br />

Address: Fabrizio S<strong>en</strong>a - European Commission - DG <strong>JRC</strong> Institute for Environm<strong>en</strong>t and<br />

Susta<strong>in</strong>ability, Rural, Water and Ecosystem Resources Unit, T.P. 270, I-21027 Ispra (VA),<br />

Italy<br />

E-mail: fabrizio.s<strong>en</strong>a@jrc.ec.europa.eu<br />

Tel: +39 0332 785399<br />

Fax: +39 0332 786645<br />

http://ies.jrc.ec.europa.eu/rural-water-and-ecosystem-resources-unit<br />

http://www.jrc.ec.europa.eu/<br />

http://ies.jrc.ec.europa.eu/<br />

Address: Carm<strong>in</strong>e S<strong>in</strong>iscalco - Istituto Superiore per la Protezione e la Ricerca Ambi<strong>en</strong>tale (ISPRA),<br />

Dipartim<strong>en</strong>to Difesa della Natura, “Progetto Speciale Funghi”, via Curtatone, 3, I-00185<br />

Roma, Italy<br />

E-mail: carm<strong>in</strong>e.s<strong>in</strong>iscalco@isprambi<strong>en</strong>te.it<br />

Tel: +39 06 5007 4302<br />

Fax: +39 06 5007 4013<br />

http://www.isprambi<strong>en</strong>te.it<br />

Address: Luciano Vescovi – Technician at Enia S.p.A. Laboratories, Reggio Emilia, Italy<br />

E-mail: luciano.vescovi@<strong>en</strong>iaspa.it


Chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> Ascomycetes and Basidiomycetes<br />

The refer<strong>en</strong>ce <strong>mushrooms</strong> as an <strong>in</strong>strum<strong>en</strong>t<br />

for <strong>in</strong>vestigat<strong>in</strong>g bio<strong>in</strong>dication and biodiversity<br />

Fungi <strong>in</strong> the wild are among the pr<strong>in</strong>cipal<br />

ag<strong>en</strong>ts <strong>in</strong> biogeochemical cycles; those<br />

cycles of matter and <strong>en</strong>ergy that <strong>en</strong>able<br />

ecosystems to work.<br />

By <strong>in</strong>vestigat<strong>in</strong>g the biodiversity of Italian<br />

fungal species and conc<strong>en</strong>tration levels of<br />

chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> them, it may be<br />

possible to use these fungi as biological<br />

<strong>in</strong>dicators for the quality of forest, woodland<br />

and semi-natural <strong>en</strong>vironm<strong>en</strong>ts.<br />

The database of this EUR Report record the<br />

dry-material conc<strong>en</strong>trations of 35 chemical<br />

<strong>elem<strong>en</strong>ts</strong>, <strong>in</strong>clud<strong>in</strong>g heavy metals, <strong>in</strong> over<br />

9,000 samples of higher <strong>mushrooms</strong><br />

(Ascomycetes and Basidiomycetes). These<br />

samples repres<strong>en</strong>t approximately 200<br />

g<strong>en</strong>era and a thousand species. As the<br />

database has atta<strong>in</strong>ed statistical stability it<br />

has be<strong>en</strong> possible to def<strong>in</strong>e the concept of a<br />

“refer<strong>en</strong>ce mushroom”. The use of a<br />

“refer<strong>en</strong>ce mushroom” may b<strong>en</strong>efit –<br />

perhaps only as a methodological approach<br />

– various fields of mycological and<br />

R. M. C<strong>en</strong>ci, L. Cocchi, O. Petr<strong>in</strong>i,<br />

F. S<strong>en</strong>a, C. S<strong>in</strong>iscalco e L. Vescovi<br />

<strong>en</strong>vironm<strong>en</strong>tal research; from biodiversity<br />

and bio<strong>in</strong>dication, through taxonomy right up<br />

to health and sanitation issues.<br />

The sheer volume of the collected data may<br />

prove to be useful as a comparison for data<br />

collected <strong>in</strong> the future; such results would<br />

also allow a better and more exhaustive<br />

<strong>in</strong>terpretation of the effects of <strong>en</strong>vironm<strong>en</strong>tal<br />

protection laws that have be<strong>en</strong> <strong>in</strong> place over<br />

the years to reduce or remedy curr<strong>en</strong>t<br />

climate change ph<strong>en</strong>om<strong>en</strong>a and the<br />

<strong>en</strong>vironm<strong>en</strong>tal damage caused by human<br />

activity.<br />

Studies perta<strong>in</strong><strong>in</strong>g to the frequ<strong>en</strong>cy of<br />

occurr<strong>en</strong>ce and the ecology of the various<br />

fungal species found on Italian soil have<br />

t<strong>en</strong>ded to l<strong>in</strong>k the refer<strong>en</strong>ce habitats used to<br />

European classification guidel<strong>in</strong>es (Natura<br />

2000, CORINE Land Cover, CORINE<br />

Biotopes and EUNIS). Thereby the<br />

foundations have be<strong>en</strong> laid for the use of<br />

<strong>mushrooms</strong> as biological <strong>in</strong>dicators for the<br />

measurem<strong>en</strong>t of soil and ecosystem quality.<br />

5


6<br />

Thanks<br />

The follow<strong>in</strong>g people contributed to the creation of this docum<strong>en</strong>t:<br />

DR. ANNA BENEDETTI (Paragraph 2.4)<br />

Consiglio per la Ricerca e la sperim<strong>en</strong>tazione <strong>in</strong> Agricoltura - C<strong>en</strong>tro per lo Studio delle<br />

Relazioni tra Pianta e Suolo [Advisory board for Research and Experim<strong>en</strong>tation <strong>in</strong> Agriculture –<br />

C<strong>en</strong>tre for the study of plant-soil relationships]<br />

(anna.b<strong>en</strong>edetti@<strong>en</strong>tecra.it)<br />

DR. PIETRO MASSIMILIANO BIANCO (Paragraph 2.3)<br />

Istituto Superiore per la Protezione e la Ricerca Ambi<strong>en</strong>tale - Dipartim<strong>en</strong>to Difesa della Natura<br />

[Superior Institute for Environm<strong>en</strong>tal Protection and Research – Nature Protection Departm<strong>en</strong>t]<br />

(pietro.bianco@isprambi<strong>en</strong>te.it)<br />

PROF. MANUELA GIOVANNETTI (Paragraph 2.2)<br />

Dipartim<strong>en</strong>to di Biologia delle Piante Agrarie - Università di Pisa<br />

[Departm<strong>en</strong>t of Agrarian Plant Biology – University of Pisa]<br />

(mgiova@agr.unipi.it)<br />

DR. CARLO JACOMINI (Paragraphs 2.3 and 2.4)<br />

Istituto Superiore per la Protezione e la Ricerca Ambi<strong>en</strong>tale - Dipartim<strong>en</strong>to Difesa della Natura<br />

[Superior Institute for Environm<strong>en</strong>tal Protection and Research – Nature Protection Departm<strong>en</strong>t]<br />

(carlo.jacom<strong>in</strong>i@isprambi<strong>en</strong>te.it)<br />

DR. STEFANO MOCALI (Paragraph 2.4)<br />

Consiglio per la Ricerca e la sperim<strong>en</strong>tazione <strong>in</strong> Agricoltura - C<strong>en</strong>tro per lo Studio delle<br />

Relazioni tra Pianta e Suolo [Advisory board for Research and Experim<strong>en</strong>tation <strong>in</strong> Agriculture –<br />

C<strong>en</strong>tre for the study of plant-soil relationships]<br />

(stefano.mocali@<strong>en</strong>tecra.it)<br />

DR. LILIANE PETRINI (Paragraphs 2.1, 2.5 and 3.1)<br />

Lugano (CH)<br />

The creation of such broad and complex books always requires specific, detailed and thorough<br />

<strong>in</strong>formation that can only come from experts. We would like to thank everyone who helped us with<br />

their valuable contributions, without which this work would not have be<strong>en</strong> possible, and <strong>in</strong> particular:<br />

DR. FAYÇAL BOURAOUI<br />

Comunità Europea - C<strong>en</strong>tro Comune di Ricerca di Ispra - Istituto dell’Ambi<strong>en</strong>te e Sost<strong>en</strong>ibilità<br />

[European Community – Ispra Communal Research C<strong>en</strong>tre – Environm<strong>en</strong>t and Susta<strong>in</strong>ability<br />

Institute]<br />

(faycal.bouraoui@jrc.ec.europa.eu)


DR. NAZARIA MACCHI<br />

Servizio Geologico, Sismico e dei Suoli della Regione Emilia Romagna<br />

[Geological, seismic and soil-<strong>in</strong>formation service of the Emilia Romagna region]<br />

(nmarchi@regione.emila-romagna.it)<br />

PROF. GIUSEPPE RASPA<br />

Dipartim<strong>en</strong>to di Ingegneria Chimica e dei Materiali e Ambi<strong>en</strong>te - Università “Sapi<strong>en</strong>za” di Roma<br />

[Departm<strong>en</strong>t of Chemical Eng<strong>in</strong>eer<strong>in</strong>g and Materials and Environm<strong>en</strong>ts – Sapi<strong>en</strong>za University,<br />

Rome]<br />

(giuseppe.raspa @ uniroma1.it).<br />

We also wish to thank:<br />

Franco BERSAN, Enrico BIZIO, Giorgio BUIZZA, Luca CAMPANA, Emanuele CAMPO, Maurella<br />

CASTOLDI, Maurizio CHIARI, Paolo FRANCHI, Luca GORRERI, Pier Giovanni JAMONI, Angela<br />

LANTIERI, Giorgio MARASCA, Mauro MARCHETTI, Giovanni MONTI, Carlo PAPETTI, Giovanni<br />

ROBICH, Mauro SARNARI, Cesare TUGLIOZZI, Gianfranco VISENTIN, the Gruppo Micologico<br />

dell’Etruria meridionale – AMB, the AMB Archives – CSM, the Società V<strong>en</strong>eziana di Micologia –<br />

AMB, all the mycologists and mycological group participants at the AMB who have submitted their<br />

f<strong>in</strong>d<strong>in</strong>gs to the herbarium at the Natural History Museum of V<strong>en</strong>ice.<br />

A heartfelt thank you goes to members and fri<strong>en</strong>ds who have worked for more than tw<strong>en</strong>ty years, <strong>in</strong><br />

various ways and with differ<strong>en</strong>t skills, on the work pres<strong>en</strong>ted here.. It is therefore fitt<strong>in</strong>g and correct to<br />

offer collective thanks to the Associazione Micologica Bresadola and special thanks also to all<br />

members of the Comitato Sci<strong>en</strong>tifico Nazionale and the Gruppo Micologico e Naturalistico “R.<br />

Franchi” <strong>in</strong> Reggio Emilia.<br />

We thank the Prov<strong>in</strong>ce of Reggio Emilia for the sponsorship and support bestowed <strong>in</strong> 2004 to<br />

research<strong>in</strong>g the “Pres<strong>en</strong>ce of Chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> higher <strong>mushrooms</strong>”.<br />

We also wish to thank the follow<strong>in</strong>g people for their help <strong>in</strong> collect<strong>in</strong>g mushroom samples:<br />

Maria Luisa BORRETTINI, Presid<strong>en</strong>t of the GGEV group <strong>in</strong> the Prov<strong>in</strong>ce of Reggio Emilia; Gioacch<strong>in</strong>o<br />

PEDRAZZOLI, ex-Presid<strong>en</strong>t of the Emilia-Romagna WWF and member of the Consiglio Direttivo del<br />

Parco nazionale dell’App<strong>en</strong>n<strong>in</strong>o Tosco-Emiliano; Fabio SIMONAZZI, from the C<strong>en</strong>tro di Informazione<br />

ed Educazione Ambi<strong>en</strong>tale dei Territori Canossani della Val d'Enza; Roberto BARBANTINI, Davide<br />

BOTTAZZI, Tito FABBIANI, Willy REGGIONI and Stefania ZANNINI, ward<strong>en</strong>s of the Regional Park of<br />

Alto App<strong>en</strong>n<strong>in</strong>o Reggiano - Parco del Gigante (the Giants’ Park), an <strong>en</strong>tity closed down <strong>in</strong> 2005<br />

follow<strong>in</strong>g the creation of the Parco nazionale dell'App<strong>en</strong>n<strong>in</strong>o Tosco-Emiliano. We also thank Dr.<br />

Bruno CAVALCHI, ex-Chairman of ARPA (ex PMP) <strong>in</strong> Reggio Emilia and Dr. Roberto SOGNI of<br />

ARPA (ex PMP) <strong>in</strong> Piac<strong>en</strong>za.<br />

A special thank you goes to Tjakko STIJVE (St. Légier La Chiesàz, CH) for critical and constructive<br />

discussions, evaluations and data supplied.<br />

We also wish to thank Mr. Pietro SPAGNI.<br />

7


Index<br />

INDEX ............................................................................................................................................. 9<br />

1 PRESENTATIONS............................................................................................................. 11<br />

1.1 ICM ............................................................................................................................. 11<br />

1.2 AMB............................................................................................................................ 12<br />

1.3 ISPRA.......................................................................................................................... 13<br />

1.4 EU - CCR - IES............................................................................................................ 14<br />

1.5 ENIA ........................................................................................................................... 15<br />

2 INTRODUCTION............................................................................................................... 17<br />

2.1 MUSHROOM TAXONOMY .............................................................................................. 17<br />

2.2 BIOLOGICAL NOTES ON MUSHROOMS ........................................................................... 21<br />

2.3 MUSHROOMS AND ENVIRONMENTS FOR GROWTH......................................................... 25<br />

2.4 MUSHROOMS AS A SOIL-QUALITY BIOINDICATOR......................................................... 35<br />

2.5 THE REFERENCE MUSHROOM........................................................................................ 46<br />

2.6 BIODIVERSITY AND BIOINDICATION: EC AND INTERNATIONAL LEGISLATION............... 53<br />

3 DATA SYNTHESIS............................................................................................................ 55<br />

3.1 CONSIDERATION OF STATISTICS AND THE STATISTICAL METHODS EMPLOYED.............. 55<br />

3.2 APPLIED GEOSTATISTICAL ANALYSIS ........................................................................... 59<br />

4 MATERIALS AND METHODS........................................................................................ 63<br />

4.1 METHODS FOR CHEMICAL ANALYSIS OF SOIL AND MACROMYCETES ............................. 63<br />

4.2 DISTRIBUTION MAP OF ELEMENTS IN SOIL .................................................................... 64<br />

4.3 DISTRIBUTION MAP OF ELEMENTS IN THE MUSHROOMS................................................ 70<br />

4.4 SAMPLING: A DATA SHEET EXAMPLE .......................................................................... 107<br />

5 CONCLUSIONS ............................................................................................................... 111<br />

6 BIBLIOGRAPHY ............................................................................................................. 113<br />

7 APPENDIX........................................................................................................................ 121<br />

9


1.1 ICM<br />

Ev<strong>en</strong> if it is not always appar<strong>en</strong>t, <strong>mushrooms</strong> affect<br />

our daily lives <strong>in</strong> many important ways. They are<br />

<strong>in</strong>disp<strong>en</strong>sible <strong>elem<strong>en</strong>ts</strong> for food production, and yet<br />

many of them, as plant pathog<strong>en</strong>s, cause great<br />

agricultural damage. Others, fortunately only a few<br />

– although their numbers are grow<strong>in</strong>g – are<br />

pathog<strong>en</strong>ic ag<strong>en</strong>ts for animals; <strong>in</strong>clud<strong>in</strong>g man.<br />

Mycorrhizae are symbiotic associations betwe<strong>en</strong><br />

fungi and plants that are important <strong>in</strong> agriculture<br />

and, last but not least, several species of<br />

basidiomycetes are valuable edible <strong>mushrooms</strong>.<br />

Therefore, it is important to know and understand<br />

<strong>mushrooms</strong>, and ev<strong>en</strong> more important to classify<br />

them accurately.<br />

For years the taxonomy of basidiomycetes and<br />

ascomycetes was based almost <strong>en</strong>tirely on<br />

morphological characters; we can see this today <strong>in</strong><br />

the id<strong>en</strong>tification keys still used by amateur and<br />

professional mycologists alike. However,<br />

mycologists were quick to realise that morphology<br />

was not <strong>en</strong>ough to build exhaustive and trustworthy<br />

classifications, especially wh<strong>en</strong> the organisms to be<br />

classified were of simple shape or wh<strong>en</strong> the<br />

morphological features were limited or varied little.<br />

Therefore attempts were made to classify these<br />

organisms not only by their morphology, but also<br />

by their physiological and biochemical<br />

characteristics. Ev<strong>en</strong> at the beg<strong>in</strong>n<strong>in</strong>g of the 20 th<br />

C<strong>en</strong>tury, for example, sta<strong>in</strong><strong>in</strong>g and biochemical<br />

reactions were be<strong>in</strong>g studied <strong>in</strong> bacteriology: these<br />

same properties are now used <strong>in</strong> mycology.<br />

Orlando Petr<strong>in</strong>i<br />

Chapter I<br />

Pres<strong>en</strong>tations<br />

Director of the Istituto Cantonale di Microbiologia, Bell<strong>in</strong>zona, Switzerland<br />

Thus arose the problem of reconcil<strong>in</strong>g<br />

morphological classification with the type of<br />

classification established by g<strong>en</strong>etic and<br />

biochemical methods. In fact, g<strong>en</strong>etic analysis oft<strong>en</strong><br />

leads us <strong>in</strong>to creat<strong>in</strong>g taxonomic schemata which<br />

are not, certa<strong>in</strong>ly at first glance, <strong>en</strong>tirely compatible<br />

with exist<strong>in</strong>g classifications. A trustworthy<br />

classification must take <strong>in</strong>to consideration not just<br />

phylog<strong>en</strong>etic properties (be<strong>in</strong>g connected to the<br />

evolution of organisms over time) and ph<strong>en</strong>otype<br />

(the observable morphology and physiology of an<br />

organism), but also ecological peculiarities. Such<br />

an approach is commonly referred to as “polyphase<br />

taxonomy”.<br />

The work conta<strong>in</strong>ed <strong>in</strong> this book provides a new<br />

and important piece of the puzzle which is the<br />

taxonomy of <strong>mushrooms</strong>. I hope that these data<br />

will be of help to taxonomists <strong>in</strong> complet<strong>in</strong>g their<br />

research and that they might become part of a<br />

taxonomic scheme which will go towards resolv<strong>in</strong>g<br />

the difficult issue of the def<strong>in</strong>ition of taxa. By their<br />

very nature, these data are also relevant from<br />

physiological and ecological viewpo<strong>in</strong>ts. I hope<br />

therefore that this book will also be of service to<br />

physiologists who aim to better understand the<br />

biochemical aspects connected to absorption and<br />

ret<strong>en</strong>tion of chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> <strong>mushrooms</strong>, and<br />

that it will serve the ecologists who are try<strong>in</strong>g to<br />

achieve a complete picture of the biodiversity of<br />

these fasc<strong>in</strong>at<strong>in</strong>g organisms.<br />

11


1.2 AMB<br />

Research <strong>in</strong>to the pres<strong>en</strong>ce of chemical <strong>elem<strong>en</strong>ts</strong>,<br />

<strong>in</strong>clud<strong>in</strong>g heavy metals and radioactive isotopes, <strong>in</strong><br />

higher <strong>mushrooms</strong> began <strong>in</strong> 1986 at the “R<strong>en</strong>zo<br />

Franchi” mycological-naturalist group <strong>in</strong> Reggio<br />

Emilia, Italy and was th<strong>en</strong> tak<strong>en</strong> up by the National<br />

Sci<strong>en</strong>tific Committees of the Bresadola<br />

Mycological Association (AMB). This is not a<br />

mere “historical fact”, but <strong>in</strong>stead attests to an<br />

ess<strong>en</strong>tial aspect of the sc<strong>en</strong>ario: giv<strong>en</strong> the size of<br />

the project and the level of skills it <strong>in</strong>volved, this<br />

research could not have be<strong>en</strong> achieved outside of<br />

the AMB and of its network of associated groups.<br />

One of the most delicate issues here, as <strong>in</strong> all<br />

analogous studies <strong>in</strong>to higher <strong>mushrooms</strong>, is that of<br />

hav<strong>in</strong>g a positive id<strong>en</strong>tification of the fungal<br />

exemplars be<strong>in</strong>g studied and analysed: here<strong>in</strong> lies<br />

the skill and know-how that the AMB provides at a<br />

level which is widely recognised as the gold<br />

standard. We believe this characteristic is<br />

someth<strong>in</strong>g over which we should be highly<br />

protective, <strong>in</strong> a spirit of militant volunteerism,<br />

fuelled by passion, respect and love for nature and<br />

its equilibrium.<br />

Such equilibrium is <strong>in</strong>creas<strong>in</strong>gly necessary for the<br />

future of humank<strong>in</strong>d; understand<strong>in</strong>g it and its<br />

mosaic of differ<strong>en</strong>t pieces, possibly thanks to<br />

collaboration and communication betwe<strong>en</strong> various<br />

sci<strong>en</strong>tific discipl<strong>in</strong>es, is becom<strong>in</strong>g an ess<strong>en</strong>tial task<br />

for all those who hold the future of the planet to<br />

heart.<br />

The piece that we br<strong>in</strong>g to this mosaic is our<br />

knowledge of mycological classification and<br />

taxonomy, a sci<strong>en</strong>ce created by the great naturalists<br />

such as L<strong>in</strong>naeus, and which, <strong>in</strong> Italy, culm<strong>in</strong>ated<br />

with the lofty heights of Giacomo Bresadola.<br />

This knowledge is born of the <strong>in</strong>t<strong>en</strong>se work carried<br />

Luigi Villa<br />

Presid<strong>en</strong>t of the Associazione Micologica Bresadola<br />

12<br />

out by our association, which consists of 130<br />

groups from around the country and over 12,000<br />

members. Our members are <strong>in</strong>volved <strong>in</strong> capillary<br />

networks of activities, which <strong>in</strong>clude research,<br />

<strong>in</strong>formation and education programmes regard<strong>in</strong>g<br />

mycology and the <strong>en</strong>vironm<strong>en</strong>t through hundreds<br />

of local <strong>in</strong>itiatives, rang<strong>in</strong>g from mycology courses<br />

and mycological exhibitions to mycological studies<br />

and <strong>in</strong>vestigations.<br />

The AMB is also an important national and<br />

<strong>in</strong>ternational mycological publisher, with two<br />

magaz<strong>in</strong>es to its name Rivista di Micologia<br />

(Mycology Magaz<strong>in</strong>e) and Pag<strong>in</strong>e di Micologia<br />

(Mycology Pages) and various books that deal with<br />

basic mycology all the way up to highly-specialised<br />

tomes.<br />

Two National Sci<strong>en</strong>tific Committee meet<strong>in</strong>gs are<br />

held each year: one <strong>in</strong> spr<strong>in</strong>g, the other <strong>in</strong> autumn,<br />

and these <strong>in</strong>volve hundreds of mycologists.<br />

The work of the National Sci<strong>en</strong>tific Committee<br />

meet<strong>in</strong>gs is the ma<strong>in</strong> driver of the National<br />

Herbarium, which has now surpassed 10,000 dry<br />

specim<strong>en</strong>s and has rec<strong>en</strong>tly be<strong>en</strong> admitted to the<br />

Index Herbariorum.<br />

The recognition that the publication of this EU<br />

report constitutes for a research project that has<br />

lasted over 20 years is not only thanks to the<br />

authors and their pati<strong>en</strong>ce and dedication, but<br />

should be ext<strong>en</strong>ded to the whole AMB.<br />

The fact that this research has led to fruitful<br />

collaboration with European Community<br />

<strong>in</strong>stitutions, the Italian state, with private<br />

companies and non-EC research <strong>in</strong>stitutes, such as<br />

the Istituto cantonale di Microbiologia, <strong>in</strong><br />

Bell<strong>in</strong>zona, Switzerland has brought the statutory<br />

purposes of the AMB to the highest levels.


1.3 ISPRA<br />

The “Special Mushrooms Project” by the ISPRA’s<br />

“Natural Protection” Departm<strong>en</strong>t promotes and<br />

carries out studies on fungal species and is thereby<br />

well placed <strong>in</strong> the project us<strong>in</strong>g them as <strong>in</strong>dicators<br />

of <strong>en</strong>vironm<strong>en</strong>tal quality.<br />

Mushrooms are important diversity <strong>in</strong>dicators <strong>in</strong><br />

terms of population richness and abundance at a<br />

g<strong>en</strong>etic level and can therefore be used <strong>in</strong> the study<br />

and monitor<strong>in</strong>g of biodiversity <strong>in</strong> a particular<br />

<strong>en</strong>vironm<strong>en</strong>t or ecosystem.<br />

One of the 16 research themes <strong>in</strong> the “Special<br />

Mushrooms Project” was aimed at develop<strong>in</strong>g an<br />

IT system for micotoxicological aspects, <strong>in</strong>clud<strong>in</strong>g<br />

ph<strong>en</strong>om<strong>en</strong>a of bioaccumulation and<br />

bioconc<strong>en</strong>tration of heavy metals and x<strong>en</strong>obiotic<br />

substances <strong>in</strong> the <strong>mushrooms</strong>. The idea beh<strong>in</strong>d this<br />

was to facilitate bioremediation plans for degraded<br />

<strong>en</strong>vironm<strong>en</strong>ts and also to promote studies regard<strong>in</strong>g<br />

the health and hygi<strong>en</strong>e aspects related to the human<br />

consumption of <strong>mushrooms</strong>.<br />

The work described <strong>in</strong> this volume, edited by <strong>JRC</strong>-<br />

IES, is the fruit of collaborations betwe<strong>en</strong> five<br />

differ<strong>en</strong>t <strong>in</strong>stitutions that have together be<strong>en</strong> able to<br />

create one of the first ever applications for<br />

bio<strong>in</strong>dication us<strong>in</strong>g <strong>mushrooms</strong>.<br />

The work spr<strong>in</strong>gs from the results of an <strong>in</strong>t<strong>en</strong>se<br />

sampl<strong>in</strong>g campaign carried out <strong>in</strong> Italy by the<br />

Andrea Todisco<br />

Direttore Dipartim<strong>en</strong>to Difesa della Natura di ISPRA, Roma, Italia<br />

Associazione Micologica Bresadola which was<br />

started over 20 years ago and has conducted<br />

chemical analysis on over 9,000 mushroom<br />

samples and which has led through statistical<br />

<strong>in</strong>fer<strong>en</strong>ce to the def<strong>in</strong>ition of a “refer<strong>en</strong>ce<br />

mushroom”. These last two aspects will go on to<br />

play a fundam<strong>en</strong>tal role wh<strong>en</strong> the fungal diversity<br />

<strong>in</strong>dicators for richness and abundance at the g<strong>en</strong>etic<br />

level are def<strong>in</strong>ed. By l<strong>in</strong>k<strong>in</strong>g fungal species to<br />

habitats it will, <strong>in</strong> fact, be possible to use<br />

<strong>mushrooms</strong> to study and monitor the biodiversity<br />

of an ecosystem or <strong>en</strong>vironm<strong>en</strong>t with numerous<br />

<strong>elem<strong>en</strong>ts</strong> of evaluation. Those species occurr<strong>in</strong>g<br />

more frequ<strong>en</strong>tly will act as the first sample of<br />

ecological value and as <strong>en</strong>vironm<strong>en</strong>tal quality<br />

<strong>in</strong>dicators.<br />

In the near future th<strong>en</strong>, we will have a deeper<br />

understand<strong>in</strong>g of both those mechanisms which<br />

ma<strong>in</strong>ta<strong>in</strong> and regulate the evolution of ecosystems<br />

and a new knowledge of those mycotoxicological<br />

aspects which will be used to <strong>in</strong>form protective<br />

legislation regard<strong>in</strong>g human mushroom<br />

consumption.<br />

13


1.4 CCR - IES<br />

It was a great pleasure to be asked to write a small<br />

preface to the volume edited by Roberto C<strong>en</strong>ci,<br />

Fabrizio S<strong>en</strong>a and colleagues. Through this work<br />

there flows a clear love for the <strong>en</strong>vironm<strong>en</strong>t and a<br />

strongly-motivated sci<strong>en</strong>tific <strong>in</strong>terest <strong>in</strong> a littleunderstood<br />

or studied field: <strong>mushrooms</strong>.<br />

The study of soil ecology and, more specifically,<br />

the use of <strong>mushrooms</strong> to evaluate the health of the<br />

soils <strong>in</strong> which they grow would, on the face of it,<br />

be a complex affair; both due to the limited<br />

knowledge we have about the field today and also<br />

to the objective difficulties pres<strong>en</strong>ted by the<br />

formulation of a model by which we might “read”<br />

the soil. The book is a complete and exhaustive<br />

illustration of the characteristics of <strong>mushrooms</strong> and<br />

their role <strong>in</strong> the soil compartm<strong>en</strong>t. At the same time<br />

it lays out a solid base for the use of biodiversity<br />

and bio<strong>in</strong>dication as diagnostic measures to better<br />

understand the health and quality of soil.<br />

The impressive amount of detail giv<strong>en</strong> to trace<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> over 9,000 analyzed mushroom<br />

samples makes this book as a guide that covers<br />

many other fields, such as food and nutrition. We<br />

should bear <strong>in</strong> m<strong>in</strong>d that fungi are used <strong>in</strong> many<br />

differ<strong>en</strong>t foodstuffs, and so knowledge of heavy-<br />

Le<strong>en</strong> Hordijk<br />

Direttore dell’Istituto dell’Ambi<strong>en</strong>te e della Sost<strong>en</strong>ibilità, Ispra, Italia<br />

14<br />

metal pres<strong>en</strong>ce <strong>in</strong> certa<strong>in</strong> types would allow the<br />

creation of healthier products for the consumer.<br />

The data collected here may aid the future<br />

formulation of EC food guidel<strong>in</strong>es. The database<br />

has already be<strong>en</strong> bought by the Italian Health<br />

M<strong>in</strong>istry (its acquisition tak<strong>in</strong>g place <strong>in</strong> 2008) for<br />

use <strong>in</strong> debat<strong>in</strong>g and def<strong>in</strong><strong>in</strong>g Community<br />

Regulation n. 628/2008. Another important aspect<br />

of this work is the vast sampl<strong>in</strong>g area covered and<br />

the high number of fungal species id<strong>en</strong>tified. These<br />

today are of fundam<strong>en</strong>tal importance but will be<br />

ev<strong>en</strong> more important <strong>in</strong> the future wh<strong>en</strong> further<br />

sampl<strong>in</strong>g campaigns will be carried out: at that<br />

stage we shall have a clear view of whether, and to<br />

what ext<strong>en</strong>t, the activities of man and climatic<br />

change <strong>in</strong>flu<strong>en</strong>ce the biodiversity of <strong>mushrooms</strong>.<br />

One f<strong>in</strong>al, but by no means unimportant effect of<br />

this book relates to the use of the <strong>in</strong>formation it<br />

conta<strong>in</strong>s as a database for the numerous experts <strong>in</strong><br />

the field who will now be able to better describe,<br />

and so improve, their <strong>in</strong>vestigations.<br />

I am sure that this book will be recognised for its<br />

merits and that it will be a great aid and step<br />

forward to both <strong>in</strong>ternational and national experts<br />

and researchers <strong>in</strong> the field of mycology.


1.5 ENIA<br />

We are honoured to be among the list of authors of<br />

this report, which stemmed from the historical<br />

connection betwe<strong>en</strong> the “R<strong>en</strong>zo Franchi”<br />

mycological-naturalist group <strong>in</strong> Reggio Emilia,<br />

Italy and the Bresadola Mycological Association –<br />

Mycological Study C<strong>en</strong>tre, which has previously<br />

se<strong>en</strong> so many fruitful collaborations.<br />

It may, on the face of it, seem rather odd that a<br />

multi-utility company such as ours should be<br />

work<strong>in</strong>g with groups so far away from our daily<br />

activity. In reality, however, the logic that moved<br />

and cont<strong>in</strong>ues to move us is the goal of wid<strong>en</strong><strong>in</strong>g<br />

our vision and forg<strong>in</strong>g bonds with the most<br />

<strong>in</strong>terest<strong>in</strong>g partners <strong>in</strong> the territory so as to favour<br />

an exchange of knowledge to our mutual<br />

advantage. These choices have <strong>en</strong>abled Enia to<br />

establish a new concept of "territorial proximity”<br />

by go<strong>in</strong>g beyond the usual partners one would<br />

expect an <strong>en</strong>ergy and <strong>en</strong>vironm<strong>en</strong>tal services<br />

company to have and <strong>in</strong>stead seek<strong>in</strong>g out differ<strong>en</strong>t,<br />

but like-m<strong>in</strong>ded companions to explore and travel<br />

the road ahead.<br />

As always, <strong>in</strong> this relationship we have giv<strong>en</strong> our<br />

best; above all we have made our professionality<br />

and know-how available, <strong>in</strong> this case those<br />

belong<strong>in</strong>g to our Reggio Emilia Laboratories. This<br />

project repres<strong>en</strong>ts a very positive exchange of<br />

knowledge and also a serious means of support<strong>in</strong>g<br />

Andrea Allodi<br />

Chairman of Enìa Spa, Parma, Italia<br />

research <strong>in</strong>itiatives <strong>in</strong> Italy and it placed Enia<br />

among the authors of an <strong>in</strong>strum<strong>en</strong>t which ext<strong>en</strong>ds<br />

far beyond Italy <strong>in</strong> its uniqu<strong>en</strong>ess.<br />

Allow me th<strong>en</strong> one last thought, not just as<br />

Chairman of a company, but also as a Mycologist –<br />

a passion which allows me to appreciate the<br />

f<strong>in</strong>d<strong>in</strong>gs of this book ev<strong>en</strong> more. Oft<strong>en</strong>, wh<strong>en</strong> one<br />

th<strong>in</strong>ks of the <strong>in</strong>strum<strong>en</strong>ts of <strong>in</strong>novation and<br />

research, habit leads us to th<strong>in</strong>k of modernized<br />

gadgets and sharp, complicated mach<strong>in</strong>es, as cold<br />

as only mach<strong>in</strong>ery can be. However, sometimes we<br />

only have to look around us and nature comes to<br />

the rescue. In this case it is <strong>mushrooms</strong> that we<br />

have to thank; “simple” <strong>mushrooms</strong> – and I ask<br />

mycologists to forgive me this def<strong>in</strong>ition.<br />

These <strong>mushrooms</strong> l<strong>en</strong>d us a help that should make<br />

us reflect upon and reth<strong>in</strong>k our relationship with the<br />

world that surrounds us and of which we are part. It<br />

is a world which we ever more frequ<strong>en</strong>tly know<br />

little about and oft<strong>en</strong> mistreat. We waste, dirty and<br />

ev<strong>en</strong> ru<strong>in</strong> a bounty which should be there for<br />

everybody.<br />

If the research <strong>in</strong> this book sets us to th<strong>in</strong>k<strong>in</strong>g about<br />

this, we will have reached another goal and<br />

provided another significant result which can be<br />

added to the extraord<strong>in</strong>ary value of this Report.<br />

15


2.1 Mushroom taxonomy<br />

2.1.1 Introduction<br />

Mushrooms, as all liv<strong>in</strong>g be<strong>in</strong>gs, are sci<strong>en</strong>tifically<br />

named accord<strong>in</strong>g to their “b<strong>in</strong>omial nom<strong>en</strong>clature”,<br />

which <strong>in</strong>dicates their “g<strong>en</strong>us” (capitalised) and their<br />

“species” (not capitalised); both names are usually<br />

italicised. The b<strong>in</strong>omial d<strong>en</strong>om<strong>in</strong>ation of liv<strong>in</strong>g<br />

creatures, which had previously be<strong>en</strong> partially used<br />

by Theophrastus and Pl<strong>in</strong>y, was giv<strong>en</strong> a sci<strong>en</strong>tific<br />

basis by L<strong>in</strong>naeus, who established “taxonomy”<br />

(based on a b<strong>in</strong>omial d<strong>en</strong>om<strong>in</strong>ation us<strong>in</strong>g Lat<strong>in</strong> or<br />

Lat<strong>in</strong>ised names) as a real and proper sci<strong>en</strong>tific<br />

discipl<strong>in</strong>e. L<strong>in</strong>naeus (L<strong>in</strong>naeus, 1753) described<br />

fungi for the first time, group<strong>in</strong>g them <strong>in</strong>to just t<strong>en</strong><br />

g<strong>en</strong>era. S<strong>in</strong>ce th<strong>en</strong> the taxonomy of <strong>mushrooms</strong> and<br />

fungi has made great leaps forward.<br />

Later on, (1816 - 1817) Nees broad<strong>en</strong>ed and<br />

ref<strong>in</strong>ed L<strong>in</strong>naeus’s work by <strong>en</strong>hanc<strong>in</strong>g taxonomy.<br />

First considered as vegetables and th<strong>en</strong> be<strong>in</strong>g<br />

assigned to the realm of plants, <strong>mushrooms</strong> were<br />

regarded from early on as "abnormal" bodies, the<br />

taxonomic position of which rema<strong>in</strong>ed very<br />

unclear. These organisms attracted the att<strong>en</strong>tion of<br />

biologists, and, after some <strong>in</strong>itial important work <strong>in</strong><br />

Italy, Saccardo’s monum<strong>en</strong>tal efforts (1882-1931)<br />

culm<strong>in</strong>ated <strong>in</strong> a veritable <strong>en</strong>cyclopaedia of<br />

mycology.<br />

Initially, fungi were classified <strong>in</strong>to four divisions.<br />

The Basidiomycetes were dist<strong>in</strong>guished from the<br />

Ascomycetes and from the Deuteromycetes largely<br />

based on morphological characters such as the way<br />

their spores formed, the colour and shape of those<br />

spores and the appearance of their bodies. Clearly,<br />

the most studied fungi were Basidiomycetes;<br />

visible to the naked eye and of <strong>in</strong>terest for their<br />

gastronomic properties and economic value.<br />

Chapter II<br />

Introduction<br />

2.1.2 Classification of fungi <strong>in</strong>to<br />

k<strong>in</strong>gdoms and phyla<br />

Fungi are eukaryotes (therefore hav<strong>in</strong>g a nucleus<br />

delimited by a nuclear membrane). Their cell walls<br />

conta<strong>in</strong> chit<strong>in</strong> and glucans (and rarely cellulose)<br />

and their nucleus may be haploid or diploid,<br />

dikaryon, homokaryon or heterokaryon. The<br />

fructifications can be microscopic or macroscopic,<br />

differ<strong>en</strong>tiated or undiffer<strong>en</strong>tiated. Their ecological<br />

role is very varied and among themselves they may<br />

be symbionts, saprobes, parasites, comm<strong>en</strong>sals or<br />

hyperparasites.<br />

Fungi are fairly cosmopolitan: around 70,000<br />

species have be<strong>en</strong> described, but Hawksworth<br />

(1991) estimates that there may be as many as 1.5<br />

million. Only around 300 are known pathog<strong>en</strong>s for<br />

humans, while many cause plant diseases and a<br />

considerable number play a fundam<strong>en</strong>tal role <strong>in</strong> the<br />

ecosystem, both as destroyers of vegetable detritus<br />

and as symbionts (Mycorrhizae and lich<strong>en</strong>s).<br />

Until 1980, taxonomists considered fungi a<br />

compact, though not necessarily homog<strong>en</strong>ous,<br />

group. Müller and Löffler (1976), <strong>in</strong> their book on<br />

mycology (still considered a classic refer<strong>en</strong>ce for<br />

mycologists) <strong>in</strong>cluded not only the Ascomycetes,<br />

the Basidiomycetes, the Deuteromycetes and<br />

Zygomycetes, but also some groups of organisms<br />

that have s<strong>in</strong>ce be<strong>en</strong> transferred <strong>in</strong>to the k<strong>in</strong>gdoms<br />

of Protista and Chromista. In 1981, Cavalier-Smith<br />

(1981) proposed a separate k<strong>in</strong>gdom for the “higher<br />

<strong>mushrooms</strong>” (the Ascomycetes, Basidiomycetes,<br />

Zygomycetes and their asexual forms, grouped<br />

together as Deuteromycetes) and transferred most<br />

of the “lower fungi” (s<strong>in</strong>gle-celled organisms or<br />

hyphae, oft<strong>en</strong> with flagella spores) <strong>in</strong>to the Protista<br />

and Chromista. Cavalier-Smith’s work, which<br />

showed how <strong>mushrooms</strong> are more similar to<br />

animals than to plants (fig. 1) op<strong>en</strong>ed the door to a<br />

more detailed re-elaboration of the taxonomy and<br />

phylog<strong>en</strong>y of fungi.<br />

K<strong>en</strong>drick (1992) described the ideas of Cavalier-<br />

Smith very well <strong>in</strong> his book, “The Fifth K<strong>in</strong>gdom”.<br />

17


18<br />

Fig. 1. The “Tree of Life”, the position of fungi <strong>in</strong> the phylog<strong>en</strong>ic tree . Source: “Tree of Life Project” (Maddison and Schulz, 2007)<br />

It was the same Cavalier-Smith who, over the<br />

follow<strong>in</strong>g years, proposed ever more complex and<br />

detailed models (Cavalier-Smith, 1993; 1998;<br />

2004; 2006), which were th<strong>en</strong> tak<strong>en</strong> and<br />

formalised, at least as regards the k<strong>in</strong>gdom of<br />

fungi, by Hibbett and B<strong>in</strong>der (2007) (fig. 2).<br />

Curr<strong>en</strong>tly, liv<strong>in</strong>g organisms are divided <strong>in</strong>to sev<strong>en</strong><br />

k<strong>in</strong>gdoms (Eubacteria, Archaebacteria, Archaezoa,<br />

Protozoa, Plantae, Animalia, Fungi). To this list<br />

should be added the k<strong>in</strong>gdom of Chromista, itself<br />

an area of considerable controversy.<br />

Fig. 2. The phylog<strong>en</strong>y and classification of fungi. Source: Hibbett (Hibbett and B<strong>in</strong>der, 2007), am<strong>en</strong>ded. The l<strong>en</strong>gth of the branches of the<br />

cladogram is not proportional to the g<strong>en</strong>etic distance betwe<strong>en</strong> taxa.<br />

Based on the work by Cavalier-Smith (1993) and<br />

Hibbett and B<strong>in</strong>der (2007) fungi, that until 1980<br />

were grouped together <strong>in</strong> one k<strong>in</strong>gdom, are now<br />

subdivided as follows:<br />

• the k<strong>in</strong>gdom of fungi <strong>in</strong>cludes the<br />

Ascomycota and Basidiomycota<br />

(Dikarya), the Glomeromycota (which<br />

<strong>in</strong>cludes the <strong>en</strong>dotrophic mycorrhizae),<br />

the Chytridiomycota, the Neocallimastigomycota,<br />

the "Mucormycot<strong>in</strong>a"


(traditionally Zygomycota), the<br />

Blastocladiomycota, the Entomophthoromycot<strong>in</strong>a,<br />

the Zoopagomycot<strong>in</strong>a, the<br />

Kickxellomycot<strong>in</strong>a and a group of<br />

unicellular human parasites Microsporidia;<br />

• the myxomycetes have be<strong>en</strong> transferred<br />

<strong>in</strong>to the k<strong>in</strong>gdom of Protozoa<br />

(Amoebozoa, Eumycetozoa);<br />

• the Oomycetidae and Thraustochytridae<br />

are now assigned to the k<strong>in</strong>gdom of<br />

Chromista.<br />

This new classification is the result of <strong>in</strong>t<strong>en</strong>sive<br />

phylog<strong>en</strong>ic work, based <strong>in</strong> particular on g<strong>en</strong>etic<br />

analysis, but it is <strong>in</strong>terest<strong>in</strong>g to note that the results<br />

are <strong>in</strong> perfect concordance with previously stated<br />

hypothesis based on observations of morphology<br />

and physiology (Müller et al., 1976).<br />

2.1.3 Problems with taxonomy <strong>in</strong><br />

mycology: fungal variability<br />

With<strong>in</strong> any wide taxon, not only molecular<br />

g<strong>en</strong>etics, but also morphology and physiology are<br />

useful for reach<strong>in</strong>g taxonomic conclusions.<br />

Morphologically speak<strong>in</strong>g, fungi are <strong>in</strong>credibly<br />

variable. Beyond the morphological variations<br />

pres<strong>en</strong>t both at a macroscopic (just th<strong>in</strong>k of the<br />

differ<strong>en</strong>ce betwe<strong>en</strong> porc<strong>in</strong>i <strong>mushrooms</strong> and an<br />

amanita muscaria, for example) and at a<br />

microscopic level, fungi create further difficulties<br />

by their ability to express two dist<strong>in</strong>ct ph<strong>en</strong>otypes<br />

<strong>in</strong> their reproductive and vegetative forms.<br />

Furthermore, oft<strong>en</strong> a fungus will produce just one<br />

form (sexual or vegetative) through hav<strong>in</strong>g reduced<br />

or lost the capacity to reproduce either sexually or<br />

vegetatively (asexually).<br />

Fig 3. Example of a holomorph: Eurotium and its anamorph, Aspergillus.<br />

From a phylog<strong>en</strong>etic po<strong>in</strong>t of view, morphological<br />

analysis can lead to organisms be<strong>in</strong>g erroneously<br />

id<strong>en</strong>tified as belong<strong>in</strong>g to two dist<strong>in</strong>ct taxa wh<strong>en</strong>, <strong>in</strong><br />

reality, there exists only one, either <strong>in</strong> its sexual or<br />

asexual form. Only <strong>in</strong> cases where both forms are<br />

found together can a morphological analysis give a<br />

trustworthy classification; <strong>in</strong> other cases g<strong>en</strong>etic<br />

analysis becomes <strong>in</strong>disp<strong>en</strong>sible.<br />

Mushrooms are pleomorphic and therefore assume<br />

a differ<strong>en</strong>t shape dep<strong>en</strong>d<strong>in</strong>g not only on the type of<br />

reproductive organ they develop, but also on the<br />

<strong>en</strong>vironm<strong>en</strong>tal and physiological conditions<br />

<strong>in</strong>flu<strong>en</strong>c<strong>in</strong>g their growth.<br />

Regard<strong>in</strong>g pleomorphic growth <strong>in</strong> differ<strong>en</strong>t<br />

physiological and ecological conditions, see the<br />

dimorphism of certa<strong>in</strong> bodies (especially animal<br />

pathog<strong>en</strong>s) <strong>in</strong> the form of yeast that grow <strong>in</strong><br />

particular conditions (e.g. Paracoccidioides<br />

brasili<strong>en</strong>sis: yeast at temperatures above 37°C,<br />

hyphae at temperatures below 37°C).<br />

Also important is the pleomorphism of the sexual<br />

and vegetative forms. Over the last years this led<br />

to a reconsideration of nom<strong>en</strong>clature <strong>in</strong> fungi. The<br />

fungus considered as a complete <strong>en</strong>tity, or “the<br />

whole fungus” was named the “holomorph”: this is<br />

the sum of the “anamorph” (from “anatomic<br />

morphology”: the asexual form), and the<br />

“teleomorph”. A holomorph is thus normally<br />

composed of a teleomorph and its anamorphic<br />

form. However, <strong>in</strong> some cases one of the forms will<br />

be unknown and so the holomorph will correspond<br />

either to the teleomorph or the anamorph. Not<br />

<strong>in</strong>frequ<strong>en</strong>tly, a s<strong>in</strong>gle holomorph may have several<br />

diverse anamorphic forms. One typical example of<br />

this is Aspergillus (an anamorphic form) and its<br />

teleomorphic form Eurotium (fig. 3).<br />

19


2.1.4 The phyla of fungi relevant to this<br />

work: Basidiomycota and Ascomycota<br />

Dur<strong>in</strong>g our work we were able to exam<strong>in</strong>e a large<br />

number of samples belong<strong>in</strong>g to the Phylum<br />

Basidiomycota and also many specim<strong>en</strong>s belong<strong>in</strong>g<br />

to the Ascomycota although fewer than those<br />

belong<strong>in</strong>g to the former group.<br />

We have followed the classification proposed by<br />

Hibbett and B<strong>in</strong>der (2007) for higher-level<br />

taxonomy, while <strong>in</strong>side each family we have kept<br />

to the classification used by CAB International<br />

(www.<strong>in</strong>dexfungorum.org). This was not an<br />

“ideological choice” (<strong>in</strong> this period of cont<strong>in</strong>uous<br />

systematic and taxonomic upheaval that is only<br />

partly mitigated by the International Code of<br />

Botanical Nom<strong>en</strong>clature, "marry<strong>in</strong>g" systematics to<br />

taxonomy is, <strong>in</strong>deed, oft<strong>en</strong> arbitrary), but rather an<br />

operative choice – made simply to r<strong>en</strong>der the work<br />

more easily accessible to all.<br />

In any case, the systematics and taxonomy are<br />

proposed while fully tak<strong>in</strong>g <strong>in</strong>to account the results<br />

that cont<strong>in</strong>uously arise from phylog<strong>en</strong>etic analysis.<br />

A greater difficulty from our po<strong>in</strong>t of view was the<br />

lack of a universally-accepted def<strong>in</strong>ition of<br />

“species” <strong>in</strong> mycology. This not only creates<br />

problems wh<strong>en</strong> one is attempt<strong>in</strong>g to attribute a<br />

name to a species, but also means that it is not<br />

20<br />

always easy to be sure that carpophores id<strong>en</strong>tified<br />

by differ<strong>en</strong>t mycologists (or ev<strong>en</strong> by the same<br />

mycologist, but dur<strong>in</strong>g a differ<strong>en</strong>t period) belong to<br />

the same species.<br />

The problem also arises, obviously, wh<strong>en</strong> we want<br />

to compare our data with those of other researchers,<br />

although fortunately for us this was only an issue <strong>in</strong><br />

very few cases and has no bear<strong>in</strong>g on data after the<br />

level of g<strong>en</strong>us. More chall<strong>en</strong>g<strong>in</strong>g (and surely<br />

requir<strong>in</strong>g further study) is the attempt to def<strong>in</strong>e a<br />

species. For consolidated species the difficulties are<br />

only quantitative <strong>in</strong> nature (hav<strong>in</strong>g data on a great<br />

number of samples) but species which are still<br />

be<strong>in</strong>g debated are far more complex and, beyond<br />

quantitative issues, pres<strong>en</strong>t systematic and<br />

taxonomical questions to the resolution of wich our<br />

research may perhaps be able to contribute.<br />

2.1.5 Glossary<br />

Many terms used <strong>in</strong> mycology are <strong>in</strong>terpreted<br />

differ<strong>en</strong>tly by differ<strong>en</strong>t researchers. For def<strong>in</strong>itions<br />

of some of these and <strong>in</strong> particular those concepts<br />

such as classification, phylog<strong>en</strong>y, systematics and<br />

taxonomy, where there are several schools of<br />

thought we list here their simplified def<strong>in</strong>itions.<br />

Haploid Cells that conta<strong>in</strong> just one set of chromosomes (one Ascomycetes Fungi that exog<strong>en</strong>ously produce sexual spores (i.e. those<br />

chromosome of each type)<br />

formed after meiosis) <strong>in</strong> conta<strong>in</strong>ers called asci.<br />

Basidiomycetes Fungi that produce sexual spores (i.e. those formed after Chromista The k<strong>in</strong>gdom that <strong>in</strong>cludes unicellular or multicellular liv<strong>in</strong>g<br />

meiosis) exog<strong>en</strong>ously on their basidia.<br />

organisms called eukaryotes. These are mostly photosynthetic,<br />

but Chromista also <strong>en</strong>compasses organisms previously<br />

classified among the "lower fungi".<br />

Classification Very broad term that d<strong>en</strong>otes an organisational scheme. Comm<strong>en</strong>sal Organisms that live on or <strong>in</strong> other organisms, usually<br />

It is oft<strong>en</strong> the result of a taxonomic scheme,<br />

receiv<strong>in</strong>g some advantage from the relationship (food or<br />

notwithstand<strong>in</strong>g that classification does not necessarily<br />

give names to the organisms classified.<br />

protection) but without damag<strong>in</strong>g the host organism.<br />

Deuteromycetes (a non-taxonomic term) fungi that develop asexual<br />

spores (i.e. formed after mitosis).<br />

Dikaryon A hypha or cell with two nuclei.<br />

Diploid Cells that conta<strong>in</strong> two copies of each chromosome. Heterokaryons A cell conta<strong>in</strong><strong>in</strong>g several g<strong>en</strong>etically differ<strong>en</strong>t nuclei. They are<br />

artificially g<strong>en</strong>erated by the fusion of two or more cells and <strong>in</strong><br />

nature are only found <strong>in</strong> fungi.<br />

Phylog<strong>en</strong>y The hierarchical structure that orders liv<strong>in</strong>g organisms<br />

accord<strong>in</strong>g to their reciprocal evolution.<br />

Hyperparasites A parasite that lives on another parasite.<br />

Lich<strong>en</strong>s Forms of life result<strong>in</strong>g from a comb<strong>in</strong>ation of Mycorrhiza A symbiotic association betwe<strong>en</strong> a fungus and a higher plant,<br />

autotrophic organisms (algae or cyanobacteria, mostly<br />

chlorophyta) and a fungus, usually an ascomycete or<br />

basidiomycete mushroom. They are classified accord<strong>in</strong>g<br />

to the taxonomic position of the fungus.<br />

found <strong>in</strong> the root wall of the vegetable symbiont.<br />

Homokaryon Cells that conta<strong>in</strong> two or more id<strong>en</strong>tical nuclei, usually Parasite An organism that obta<strong>in</strong>s nutrition and/or shelter from another<br />

produced by the fusion of one or more cells of the same<br />

species.<br />

organism without giv<strong>in</strong>g anyth<strong>in</strong>g <strong>in</strong> return.<br />

Pleomorphism A characteristic of <strong>mushrooms</strong> that develop differ<strong>en</strong>t Protist The k<strong>in</strong>gdom <strong>in</strong>clud<strong>in</strong>g unicellular eukaryote organisms,<br />

forms at differ<strong>en</strong>t stages of their lifecycles.<br />

<strong>in</strong>clud<strong>in</strong>g protozoa, algae and fungi.<br />

Saprobic An organism reeceiv<strong>in</strong>g nutrition from non-liv<strong>in</strong>g Symbiosis A close relationship betwe<strong>en</strong> diverse organisms whereby each<br />

organic material.<br />

organism receives a reciprocal b<strong>en</strong>efit. Lich<strong>en</strong>s and<br />

Systematics The process of classify<strong>in</strong>g liv<strong>in</strong>g creatures based on their Taxonomy<br />

Mycorrhizae are examples.<br />

The assegnation of names to organisms. A term frequ<strong>en</strong>tly<br />

phylog<strong>en</strong>etic position.<br />

considered a synonym of systematics.


2.2 Biological notes on<br />

<strong>mushrooms</strong><br />

The word mushroom immediately gives one the<br />

idea of edible <strong>mushrooms</strong>, those we gather from<br />

the woods or we buy straight from the market,<br />

however, <strong>mushrooms</strong> are just one type of fungi<br />

along with many others. Other fungi <strong>in</strong>clude the<br />

moulds that sometimes attack cultivated plants or<br />

the walls of our houses, those that contam<strong>in</strong>ate our<br />

food, produce damag<strong>in</strong>g tox<strong>in</strong>s; or those that are<br />

used <strong>in</strong>dustrially <strong>in</strong> the production of food, dr<strong>in</strong>ks<br />

and pharmaceuticals. Fungi are employed<br />

commercially <strong>in</strong> the production of antibiotics,<br />

steroids, cyclospor<strong>in</strong> and <strong>en</strong>zymes for use <strong>in</strong><br />

cook<strong>in</strong>g and <strong>in</strong> the production of food and dr<strong>in</strong>k.<br />

Just try to imag<strong>in</strong>e a world without fungi: we<br />

would have to say goodbye to w<strong>in</strong>e, beer, bread,<br />

several types of f<strong>in</strong>e cheese, antibiotics and other<br />

therapeutic chemical compounds.<br />

Fungi, as all eukaryotic organisms, possess cells<br />

that conta<strong>in</strong> a nucleus wrapped up <strong>in</strong> a membrane,<br />

more than one chromosome and organelles such as<br />

mitochondria.<br />

They have many unique features <strong>in</strong> terms of their<br />

structure, cellular compon<strong>en</strong>ts and organisation.<br />

They are <strong>in</strong> fact filam<strong>en</strong>tous, multicellular<br />

organisms made up of long, branch<strong>in</strong>g tubular cells<br />

called hyphae which are of vary<strong>in</strong>g l<strong>en</strong>gths, but<br />

uniform diameter, of 2-30 μm, and are together<br />

known as mycelium.<br />

The hyphal walls are composed of polysaccharides<br />

(80-90%), prote<strong>in</strong>s, lipids, polyphosphates and<br />

organic ions, but their ma<strong>in</strong> constitu<strong>en</strong>t is chit<strong>in</strong>, a<br />

polymer of N-acetylglucosam<strong>in</strong>e, which is derived<br />

from glucose (Carlile et al., 2001).<br />

The hyphae grow from the tip; the ext<strong>en</strong>sion zone<br />

may be betwe<strong>en</strong> 30 to 400 micrometres and the<br />

hyphal walls stiff<strong>en</strong> rapidly. The part of the hypha<br />

immediately below the ext<strong>en</strong>sion zone ages<br />

progressively and its oldest parts can either be<br />

lysed by the organism’s own <strong>en</strong>zymes (autolysis)<br />

or by other organisms (heterolysis). Protoplasm<br />

moves cont<strong>in</strong>uously from the old parts of the hypha<br />

towards the tip and so the hyphae cont<strong>in</strong>uously<br />

grow from one <strong>en</strong>d and cont<strong>in</strong>uously age from the<br />

other; all the while the protoplasm shifts along<br />

from the ag<strong>in</strong>g part to the new. The hyphae of most<br />

fungi are divided at regular <strong>in</strong>tervals by transversal<br />

septa, but these are not pres<strong>en</strong>t, for example, <strong>in</strong> the<br />

hyphae of the Glomeromycota, except where they<br />

are used to isolate the hyphae’s own dead or<br />

decay<strong>in</strong>g regions. In any case, the functional<br />

subdivision of fungi <strong>in</strong>to those with septa and those<br />

without is not so clear s<strong>in</strong>ce fungal septa conta<strong>in</strong><br />

pores through which cytoplasm, and <strong>in</strong> some cases<br />

ev<strong>en</strong> nuclei, may pass. Therefore septate hyphae<br />

are composed of <strong>in</strong>terconnect<strong>in</strong>g compartm<strong>en</strong>ts and<br />

function as <strong>in</strong>tegrated units. Inside the hyphae the<br />

cytoplasm and nuclei move and there may be<br />

vary<strong>in</strong>g numbers of them <strong>in</strong> each compartm<strong>en</strong>t<br />

separated by septa, from one to doz<strong>en</strong>s of them,<br />

right up to t<strong>en</strong>s of thousands of them <strong>in</strong> co<strong>en</strong>ocytic<br />

fungi (without septa) (Gregory, 1984) (fig. 4).<br />

Fig. 4. Epifluoresc<strong>en</strong>t photo of the many nuclei pres<strong>en</strong>t <strong>in</strong> the fungal hyphae of a co<strong>en</strong>ocytic fungus, detected by sta<strong>in</strong><strong>in</strong>g with DAPI.<br />

A dist<strong>in</strong>ctive aspect of fungi is the ability of their<br />

hyphae to fuse to form a closely <strong>in</strong>ter-connected<br />

mycelium where the id<strong>en</strong>tities of the <strong>in</strong>dividual<br />

hyphae are lost <strong>in</strong> favour of the shar<strong>in</strong>g of nutri<strong>en</strong>ts<br />

and g<strong>en</strong>etic heritage: a fundam<strong>en</strong>tal characteristic<br />

allow<strong>in</strong>g fungal colonies to resist <strong>en</strong>vironm<strong>en</strong>tal<br />

stresses (Brasier, 1992; Glass et al., 2004) (fig. 5).<br />

21


22<br />

Fig. 5. View of hyphal fusions that give rise to a closely <strong>in</strong>terconnected fungal mycelium.<br />

Fungi can reproduce both sexually and asexually.<br />

Asexual reproduction takes place by mitosis, with<br />

the production of spores that are dispersed <strong>in</strong> the air<br />

and th<strong>en</strong> fall on an appropriate substrate where they<br />

germ<strong>in</strong>ate and the cycle may repeat. Sexual<br />

reproduction <strong>in</strong>stead occurs after the fusion of two<br />

haploid cells, with the creation of one diploid cell.<br />

After meiosis and subsequ<strong>en</strong>t mitosis this cell<br />

develops s<strong>in</strong>gle spores. In the Ascomycetes, these<br />

are formed <strong>in</strong>side closed receptacles called asci and<br />

are known as ascospores. In the Basidiomycetes<br />

they are found externally on structures called<br />

basidia and are called basidiospores (Carlile et al.,<br />

2001).<br />

Fungi are chemoheterotrophic organisms and<br />

therefore need a source of organic nutri<strong>en</strong>ts from<br />

which to draw <strong>en</strong>ergy for their cellular metabolism.<br />

Giv<strong>en</strong> a simple <strong>en</strong>ergy source, such as glucose,<br />

many fungi can th<strong>en</strong> absorb all the other cellular<br />

compon<strong>en</strong>ts they need from <strong>in</strong>organic sources<br />

(ammonia or nitrate, phosphate and other m<strong>in</strong>erals<br />

such as calcium, potassium, magnesium and iron).<br />

Their cell walls are composed of complex<br />

polysaccharides, such as chit<strong>in</strong>, and fungi can<br />

absorb simple soluble nutri<strong>en</strong>ts through their cell<br />

walls and membranes.<br />

Thanks to their ability to produce extracellular<br />

<strong>en</strong>zymes, they can break down complex polymers<br />

such as cellulose and lign<strong>in</strong> so as to th<strong>en</strong> reabsorb<br />

the simple sugars rema<strong>in</strong><strong>in</strong>g. Fungi produce a wide<br />

range of <strong>en</strong>zymes that can degrade the most varied<br />

and recalcitrant polymers such as lign<strong>in</strong> (Carlile et<br />

al., 2001).<br />

Yeasts also belong to the k<strong>in</strong>gdom of fungi; these<br />

are; mostly-unicellular organisms with globose or<br />

oval cells that measure 6-12 micrometres <strong>in</strong><br />

diameter.<br />

Yeasts may reproduce through budd<strong>in</strong>g, division or<br />

sexually by formation of asci or basidia and live <strong>in</strong><br />

sugar-rich <strong>en</strong>vironm<strong>en</strong>ts. The species most<br />

commonly used <strong>in</strong> the <strong>in</strong>dustrial ferm<strong>en</strong>tation<br />

process is Saccharomyces cerevisiae, the “brewer’s<br />

yeast”. Each <strong>in</strong>dustry will have its own selected<br />

stra<strong>in</strong>s, which are treated as g<strong>en</strong>u<strong>in</strong>e <strong>in</strong>dustrial<br />

secrets <strong>in</strong> the production of w<strong>in</strong>e, beer, cider and<br />

bread.<br />

Wh<strong>en</strong> yeasts reproduce asexually through the<br />

production of buds on the cell surface, each bud<br />

will grow until it reaches the same dim<strong>en</strong>sions as<br />

the mother cell. At this stage the new cell will<br />

detach itself, leav<strong>in</strong>g a scar that will be covered<br />

with chit<strong>in</strong>. S<strong>in</strong>ce chit<strong>in</strong> (the pr<strong>in</strong>cipal constitu<strong>en</strong>t<br />

of <strong>in</strong>sects’ and crustaceans’ exoskeletons) is a<br />

polysaccharide with a rigid consist<strong>en</strong>cy. new buds<br />

cannot form at these chit<strong>in</strong>-covered scars and as a<br />

consequ<strong>en</strong>ce, the mother cell, upon hav<strong>in</strong>g<br />

produced as many budsto cover her whole surface<br />

with chit<strong>in</strong>, dies.<br />

Yeasts have a special metabolism that allows them<br />

to exist <strong>in</strong> the pres<strong>en</strong>ce of oxyg<strong>en</strong>, by breath<strong>in</strong>g,<br />

and also <strong>in</strong> oxyg<strong>en</strong>’s abs<strong>en</strong>ce, by ferm<strong>en</strong>t<strong>in</strong>g<br />

(Carlile et al., 2001).


Fungi are an important compon<strong>en</strong>t of the<br />

ecosystem, <strong>in</strong>strum<strong>en</strong>tal <strong>in</strong> the cont<strong>in</strong>uation of<br />

biogeochemical cycles and repres<strong>en</strong>t the ma<strong>in</strong><br />

ag<strong>en</strong>ts <strong>in</strong> the decomposition of organic matter<br />

conta<strong>in</strong><strong>in</strong>g carbon, nitrog<strong>en</strong>, sulphur and<br />

phosphorus <strong>in</strong>to m<strong>in</strong>eral compounds that can be<br />

used aga<strong>in</strong> by plants.<br />

In terms of the carbon cycle, the ma<strong>in</strong> compon<strong>en</strong>ts<br />

of organic matter to be decomposed are cellulose,<br />

hemicellulose and lign<strong>in</strong>, which make up around<br />

70% of all material <strong>in</strong> plant cell walls. Fungi can<br />

completely break down cellulose by produc<strong>in</strong>g<br />

three pr<strong>in</strong>cipal <strong>en</strong>zymes: Endocellulase, which acts<br />

randomly <strong>in</strong>side the cha<strong>in</strong> of cellulose, break<strong>in</strong>g up<br />

the molecules <strong>in</strong>to smaller fragm<strong>en</strong>ts; Exocellulase,<br />

which only acts at the <strong>en</strong>ds of the cellulose cha<strong>in</strong>s,<br />

releas<strong>in</strong>g cellobiose units; and the third <strong>en</strong>zyme;<br />

cellobiase, which breaks the disaccharide<br />

cellobiose <strong>in</strong>to two molecules of glucose that can<br />

be absorbed by the fungus.<br />

The three <strong>en</strong>zymes act synergistically and are<br />

carefully regulated to <strong>en</strong>sure that a fungus that<br />

degrades cellulose does not release sugars at higher<br />

rates than it can absorb them.<br />

The regulation of cellulose degradation is achieved<br />

through a feedback system called catabolyte<br />

repression, <strong>in</strong> which g<strong>en</strong>es that <strong>en</strong>code <strong>en</strong>zymes are<br />

repressed wh<strong>en</strong> readily usable substrates (<strong>in</strong>clud<strong>in</strong>g<br />

glucose) are available <strong>in</strong> the <strong>en</strong>vironm<strong>en</strong>t.<br />

The most notable species of cellulolytic fungi are<br />

Chaetomium cellulolyticum, Humicola grisea and<br />

Trichoderma reesei. Fungi are also the only<br />

organisms capable of completely degrad<strong>in</strong>g lign<strong>in</strong>,<br />

a recalcitrant compound consist<strong>in</strong>g of units of<br />

ph<strong>en</strong>ylpropane l<strong>in</strong>ked together by chemical bonds<br />

of differ<strong>en</strong>t types. Among these, the most studied is<br />

the basidiomycete Phanerochaete chrysosporium,<br />

which is also capable of degrad<strong>in</strong>g other molecules<br />

which have a nature similar to lign<strong>in</strong> (Bosco et al.,<br />

2008a).<br />

The <strong>mushrooms</strong> and truffles that we gather <strong>in</strong> the<br />

woods are none other than the sexual fructification<br />

of filam<strong>en</strong>tous fungi that grow <strong>in</strong> soil, most of<br />

which live <strong>in</strong> close symbiosis with the roots of<br />

various forest plants such as chestnut, oak, beech,<br />

fir, larch, p<strong>in</strong>e, hazel and l<strong>in</strong>d<strong>en</strong>.<br />

To date we are unable to cultivate boletus, amanita,<br />

chantrelle, milkcap or russula <strong>mushrooms</strong>, or<br />

Caesar’s <strong>mushrooms</strong> or white or black truffles: for<br />

these we must await until completion of their<br />

lifecycles <strong>in</strong>side the plant roots, which term<strong>in</strong>ates<br />

with the production of their fruit<strong>in</strong>g bodies and<br />

frequ<strong>en</strong>tly dep<strong>en</strong>ds on the season and<br />

<strong>en</strong>vironm<strong>en</strong>tal conditions.<br />

A series of studies have be<strong>en</strong> us<strong>in</strong>g techniques to<br />

<strong>in</strong>oculate sterile plants with truffle spores, create<br />

symbiosis <strong>in</strong> the laboratory and th<strong>en</strong> transplant the<br />

mycorrhizal plants <strong>in</strong>to the field (Bosco et al.,<br />

2008b).<br />

There are, of course, other <strong>mushrooms</strong> that do not<br />

live <strong>in</strong> symbiosis with plants and as such can be<br />

cultivated on an <strong>in</strong>dustrial scale and are available<br />

all year round, such as Agaricus bisporus (J. E.<br />

Lange) Imbach. These <strong>mushrooms</strong> are usually<br />

grown on <strong>in</strong>exp<strong>en</strong>sive material such as straw and<br />

wood residues to which manure is added, and<br />

under well-controlled light conditions, temperature<br />

and humidity. After <strong>in</strong>oculation of the mycelium of<br />

the fungus obta<strong>in</strong>ed <strong>in</strong> pure culture <strong>in</strong>vad<strong>in</strong>g<br />

hyphae start grow<strong>in</strong>g all over the substrate and after<br />

3 weeks from sow<strong>in</strong>g beg<strong>in</strong> to produce fruit<strong>in</strong>g<br />

bodies that can be collected, packaged and<br />

distributed to retailers. A mushroom mycelium<br />

obta<strong>in</strong>ed from an ax<strong>en</strong>ic culture is used to <strong>in</strong>oculate<br />

the substrate and the hyphae beg<strong>in</strong> to grow. Three<br />

weeks after seed<strong>in</strong>g, the fruit<strong>in</strong>g bodies beg<strong>in</strong> to<br />

grow and can be gathered, packaged and s<strong>en</strong>t to<br />

resellers.<br />

Another mushroom produced on a large scale and<br />

particularly favoured <strong>in</strong> Japan and the Far East is<br />

L<strong>en</strong>t<strong>in</strong>ula edodes (Berk.) Pegler (“Shetake”), which<br />

is able to degrade the cellulose cont<strong>en</strong>t <strong>in</strong> trees.<br />

Small logs are hydrated by soak<strong>in</strong>g <strong>in</strong> water and the<br />

fungal mycelium is put <strong>in</strong>to pre-drilled holes <strong>in</strong><br />

each log. After about a year the first batch of<br />

fruit<strong>in</strong>g bodies appear (Carlile et al., 2001).<br />

Fungi liv<strong>in</strong>g <strong>in</strong> symbiosis with the roots of plants<br />

form associations called mycorrhizae (table 1),<br />

which can be found <strong>in</strong> around 90% of terrestrial<br />

plants: these symbioses <strong>in</strong>volve over 6,000 species<br />

of fungi and 240,000 vegetable species. The two<br />

symbiotic organisms, the fungus and the plant,<br />

<strong>in</strong>itiate a very close physiological, ecological and<br />

reproductive relationship that works to their mutual<br />

advantage. Fungi colonise the root without caus<strong>in</strong>g<br />

damage and get sugars, which they are unable to<br />

synthesise, and the plants receive m<strong>in</strong>eral nutri<strong>en</strong>ts<br />

and water absorbed and translocated through the<br />

large hyphal network (known as the Wood Wide<br />

Web) that ext<strong>en</strong>ds from the mycorrhizal roots to the<br />

surround<strong>in</strong>g ground and acts as a true auxiliary<br />

absorption system. Many types of mycorrhizae<br />

exist, with diverse morphological and physiological<br />

features, and they have colonised very diverse<br />

<strong>en</strong>vironm<strong>en</strong>ts (Bosco et al., 2008b).<br />

23


In our woodlands a large number of ectomycorrhiza<br />

can be found <strong>in</strong> forest plants such as the fir,<br />

larch, p<strong>in</strong>e, birch, chestnut, beech, hazel and oak,<br />

and oft<strong>en</strong> their fruit<strong>in</strong>g bodies (e.g. the well-known<br />

amanita, p<strong>in</strong>aroli, russula <strong>mushrooms</strong> and truffles)<br />

are visible to the naked eye.<br />

In total ectomycorrhizal symbionts <strong>in</strong>clude over<br />

500 species of <strong>mushrooms</strong>, among which we f<strong>in</strong>d<br />

members of the g<strong>en</strong>era Boletus, Lactarius, Russula,<br />

Suillus, Amanita, Paxillus, Morchella and Tuber.<br />

24<br />

Table 1. Types of mycorrhiza, host plants and symbiont fungi.<br />

Previously, the number of fruit<strong>in</strong>g bodies found <strong>in</strong><br />

association with various plant species was<br />

considered <strong>in</strong>dicative of the total number of fungal<br />

species <strong>in</strong> an ecosystem: <strong>in</strong> fact, molecular studies<br />

have shown that some species found <strong>in</strong> the roots<br />

produce few fruit<strong>in</strong>g bodies, while other species<br />

produc<strong>in</strong>g many carpophores <strong>in</strong> the forest were<br />

rarely found among the roots of plants.<br />

Type of mycorrhiza Host plant Symbiont fungi<br />

ectomycorrhiza Evergre<strong>en</strong> forest plants and trees such as fir<br />

and p<strong>in</strong>e and other forest trees such as beech,<br />

chestnut and oak<br />

Ecto- <strong>en</strong>domycorrhiza Ectomycorrhizal plants (p<strong>in</strong>e and larch),<br />

Ericales (Arbutus, Arctostaphylos), and<br />

Monotropa and Pyrola<br />

Ericoid mycorrhiza Some Ericales species such myrtle, heather,<br />

Calluna, Rhodod<strong>en</strong>dron<br />

About 5,000 species of fungi belong<strong>in</strong>g to<br />

Basidiomycota (Amanita, Boletus, Laccaria,<br />

Ascomycetes (Tuber) and Glomeromycota<br />

(Endogone)<br />

Ascomycota, Basidiomycota, some<br />

ectomycorrhizae (Boletus, Laccaria)<br />

Two species of Ascomycota, Hym<strong>en</strong>oscyphus<br />

ericae and Oiod<strong>en</strong>dron maius<br />

Orchid mycorrhiza All species of orchids Eight g<strong>en</strong>era of Basidiomycota, belong<strong>in</strong>g to the<br />

g<strong>en</strong>us Rhizoctonia<br />

Arbuscular mycorrhiza Bryophytes, Pteridophytes, Gymnosperms Around 150 species of the phylum<br />

and Angiosperms (around 80% of plant<br />

species)<br />

Glomeromycota<br />

It seems th<strong>en</strong> that just a few fungal species (fivet<strong>en</strong>)<br />

are alone able of coloniz<strong>in</strong>g around 50-70% of<br />

the roots of the plants on this Earth. Furthermore,<br />

some species form symbiosis with many species of<br />

forest plants (e.g. C<strong>en</strong>ococcum geophylum<br />

colonises approximately 150 host plant species),<br />

while others t<strong>en</strong>d to associate with very few or only<br />

one type of host (for example, Suillus luteus is<br />

found only <strong>in</strong> black p<strong>in</strong>e and Suillus grevillei <strong>in</strong> the<br />

larch tree) (Bosco et al., 2008b).<br />

In the same forests and woodlands ericoid<br />

mycorrhizae associate with such plants as myrtle,<br />

heather, Calluna and Rhodod<strong>en</strong>dron. Arbuscular<br />

mycorrhizae are the most commonly found<br />

mycorrhizal symbiosis <strong>in</strong> nature, associat<strong>in</strong>g with<br />

around 80% of plant species and most cultivated<br />

foodstuffs such as wheat, corn, barley, potatoes,<br />

tomatoes, vegetables, citrus fruits, grapes, olives,<br />

fruit trees, cotton, sugarcane, rubber tree and<br />

meadow flowers.<br />

In this type of mutual relationship, the symbiont<br />

fungus forms characteristic branch-like structures<br />

called “arbuscules” <strong>in</strong>side the root cells of the host<br />

plant and it is through these structures that the<br />

exchange of nutri<strong>en</strong>ts betwe<strong>en</strong> fungus and plant<br />

occurs.<br />

Irrespective of the type of mycorrhiza, the plants<br />

that host the fungal symbionts <strong>in</strong> their roots<br />

demonstrate not only better growth, due to the<br />

improved absorption of m<strong>in</strong>erals effected through<br />

the fungal hyphae that stretch betwe<strong>en</strong> the root and<br />

surround<strong>in</strong>g ground, but also a higher tolerance of<br />

biotic and abiotic stresses, and therefore a g<strong>en</strong>eral<br />

fitness far larger than plants devoid of these fungal<br />

symbionts (Giovannetti and Avio, 2002).<br />

Rec<strong>en</strong>tly, sci<strong>en</strong>tists have demonstrated that the<br />

sugars synthesised by a plant can be transported to<br />

other plants, ev<strong>en</strong> belong<strong>in</strong>g to other species, if<br />

both plants share the same type of symbiotic fungus<br />

and if the two symbionts are jo<strong>in</strong>ed by the same<br />

network of mycorrhizal fungal hyphae.<br />

This demonstrates that mycorrhizal fungal<br />

symbionts, beyond absorb<strong>in</strong>g and carry<strong>in</strong>g m<strong>in</strong>eral<br />

nutri<strong>en</strong>ts to the host plant, also have an important<br />

role to play <strong>in</strong> the redistribution of <strong>en</strong>ergy resources<br />

with<strong>in</strong> plant communities: <strong>in</strong> fact, adult plants can<br />

transmit nutri<strong>en</strong>ts via the fungal network to<br />

younger plants, thus <strong>in</strong>creas<strong>in</strong>g their chances of<br />

survival (Simard et al., 1997).<br />

The exist<strong>en</strong>ce of networks of hyphae that explore<br />

the <strong>en</strong>vironm<strong>en</strong>t and act as a vehicle for nutri<strong>en</strong>ts<br />

seems to be of fundam<strong>en</strong>tal importance for plants,


that must grow, develop and reproduce while<br />

anchored to the same spot. The importance of these<br />

subterranean fungal networks which l<strong>in</strong>k several<br />

plants together can be fully appreciated if we<br />

consider fungi’s characteristic capacity for<br />

<strong>in</strong>def<strong>in</strong>ite growth. Fungi can ext<strong>en</strong>d for hundreds of<br />

metres <strong>in</strong> every direction and <strong>in</strong> the most<br />

extraord<strong>in</strong>ary case, reported by several North<br />

American researchers <strong>in</strong> 1992, one unique fungal<br />

<strong>in</strong>dividual was shown to colonise 15 hectares <strong>in</strong> a<br />

forest (Smith et al., 1992).<br />

The mechanisms underly<strong>in</strong>g the formation of these<br />

fungal networks are still little understood, despite<br />

rec<strong>en</strong>t data show<strong>in</strong>g that hyphae orig<strong>in</strong>at<strong>in</strong>g from<br />

one <strong>in</strong>dividual are able to recognise and form<br />

anastomoses with the hyphae from another<br />

compatible <strong>in</strong>dividual and thus create networks of<br />

<strong>in</strong>def<strong>in</strong>ite l<strong>en</strong>gth (Giovannetti et al. 1999; 2001;<br />

2004; 2006) (fig. 6).<br />

In conclusion, studies on fungi have helped us to<br />

understand their importance <strong>in</strong> natural ecosystems<br />

and <strong>in</strong> agroecosystems: they are able to modify the<br />

availability, capture and use of soil resources, such<br />

as water and m<strong>in</strong>eral nutri<strong>en</strong>ts, and to directly<br />

<strong>in</strong>terv<strong>en</strong>e <strong>in</strong> the trophic relationships of plant<br />

communities and <strong>in</strong> the reg<strong>en</strong>eration of soil<br />

fertility.<br />

Fig 6. Graphic repres<strong>en</strong>tation of the networks of fungal mycorrhizae connect<strong>in</strong>g diverse plants.<br />

2.3 Mushrooms and <strong>en</strong>vironm<strong>en</strong>ts<br />

for growth<br />

2.3.1 Introduction<br />

The Italian Istituto Superiore per la Protezione e la<br />

Ricerca Ambi<strong>en</strong>tale (ISPRA) (Superior Institute for<br />

Environm<strong>en</strong>tal Protection and Research) <strong>in</strong>herited<br />

the role and responsibilities of the APAT (Ag<strong>en</strong>zia<br />

per la Protezione dell’Ambi<strong>en</strong>te e per i Servizi<br />

Tecnici) (Environm<strong>en</strong>tal Protection and Technical<br />

Services Ag<strong>en</strong>cy), the ’ICRAM (Istituto C<strong>en</strong>trale<br />

per la Ricerca Applicata al Mare) (C<strong>en</strong>tral Institute<br />

for Applied Maritimes Studies) and the INFS<br />

(Istituto Nazionale per la Fauna Selvatica)<br />

(National Wild Fauna Institute).<br />

As part of the <strong>in</strong>stitutional activities of ISPRA’s<br />

Dipartim<strong>en</strong>to Difesa della Natura (Nature Def<strong>en</strong>ce<br />

Dept.) the “Special Mushrooms Project” was<br />

established to develop understand<strong>in</strong>g and<br />

awar<strong>en</strong>ess of these ecosystem compon<strong>en</strong>ts,<br />

regard<strong>in</strong>g which very few national-level studies had<br />

be<strong>en</strong> previously carried out.<br />

To date, one of the ma<strong>in</strong> studies carried out by<br />

ISPRA, <strong>in</strong> collaboration with, above all, the<br />

25


Associazione Micologica Bresadola – C<strong>en</strong>tro Studi<br />

Micologici (AMB-CSM) and other partners,<br />

constituted a c<strong>en</strong>sus of Italian myxomycetes and<br />

macromycetes so as to compile a checklist of the<br />

national mycological flora which could th<strong>en</strong> be<br />

used <strong>in</strong> develop<strong>in</strong>g mycological cartography.<br />

A critical step <strong>in</strong> the acquisition of field data on<br />

comparable and acceptable national mycoflora is<br />

the classification of the habitats where fungi are<br />

found accord<strong>in</strong>g to standardised systems<br />

recognised at a European level.<br />

Thanks to their diffusion, differ<strong>en</strong>t trophic forms<br />

and specific ecological characteristics, fungi can be<br />

used as <strong>in</strong>dicators of biodiversity and<br />

<strong>en</strong>vironm<strong>en</strong>tal quality (a series of monthly<br />

sem<strong>in</strong>ars on this subject has be<strong>en</strong> tak<strong>in</strong>g place at<br />

ISPRA s<strong>in</strong>ce 2007). Therefore it would be<br />

advantageous for fungi to be m<strong>en</strong>tioned <strong>in</strong><br />

<strong>en</strong>vironm<strong>en</strong>tal protection laws as soon as possible.<br />

As th<strong>in</strong>gs curr<strong>en</strong>tly stand, no fungal species are<br />

conta<strong>in</strong>ed <strong>in</strong> the attachm<strong>en</strong>ts to the Bern<br />

Conv<strong>en</strong>tion (European Commission, 1982) or the<br />

Habitats Directive (European Commission, 1992)<br />

which detail the ma<strong>in</strong> acts of European legislation<br />

aimed at protect<strong>in</strong>g wild species and their habitats.<br />

Furthermore, <strong>in</strong> Italy, unlike <strong>in</strong> the case of vascular<br />

flora, <strong>in</strong>formation regard<strong>in</strong>g the l<strong>in</strong>ks betwe<strong>en</strong><br />

fungal species and their habitat is sporadic and<br />

localised. Other difficulties have also aris<strong>en</strong> from<br />

attempts to l<strong>in</strong>k mycoflora to their Italian habitats:<br />

• Great numbers of species<br />

• Difficulties <strong>in</strong> understand<strong>in</strong>g the<br />

taxonomy of many taxa.<br />

• Carpophore ph<strong>en</strong>ology, the emerg<strong>en</strong>ce<br />

cycles of which (from seasonal to<br />

multiannual) display an appar<strong>en</strong>t abs<strong>en</strong>ce<br />

of the species for years.<br />

Such problems, giv<strong>en</strong> the overall importance this<br />

k<strong>in</strong>gdom has with<strong>in</strong> ecosystems can easily be<br />

overcome by <strong>in</strong>creas<strong>in</strong>g understand<strong>in</strong>g of the role<br />

that mycoflora play <strong>in</strong> these same ecosystems. The<br />

acquisition of such understand<strong>in</strong>g, especially <strong>in</strong> the<br />

light of the dearth of <strong>in</strong>stitutional studies on the<br />

matter, should be considered a national priority<br />

and, consequ<strong>en</strong>tly, supported by adequate f<strong>in</strong>ancial<br />

resources to allow further research <strong>in</strong> this field.<br />

In rec<strong>en</strong>t years the role that fungi play as natural<br />

ecosystem regulators has be<strong>en</strong> recognised at a<br />

European level and as such ever more att<strong>en</strong>tion is<br />

be<strong>in</strong>g paid to mycoflora. We have, <strong>in</strong> fact, se<strong>en</strong> Red<br />

Lists of <strong>mushrooms</strong> ga<strong>in</strong><strong>in</strong>g greater diffusion <strong>in</strong> at<br />

least 35 EU member states. In August 2003, for<br />

26<br />

example, a report was pres<strong>en</strong>ted by the Swedish<br />

Environm<strong>en</strong>tal Protection Ag<strong>en</strong>cy (Naturvårdsverket)<br />

and by the European Council for the<br />

Conservation of Fungi (ECCF) to the Environm<strong>en</strong>t<br />

Directorate-G<strong>en</strong>eral of the European Commission<br />

(Dahlberg et al., 2003). That docum<strong>en</strong>t proposes<br />

the <strong>in</strong>clusion of 33 European fungal species <strong>in</strong>to<br />

App<strong>en</strong>dix 1 of the Bern Conv<strong>en</strong>tion and <strong>in</strong>to the<br />

Habitats Directive. The species recomm<strong>en</strong>ded for<br />

<strong>in</strong>clusion are rare <strong>in</strong> Europe and are already<br />

conta<strong>in</strong>ed <strong>in</strong> some countries’ Red Lists. These 33<br />

species are only a fraction of the threat<strong>en</strong>ed<br />

varieties throughout Europe, but the docum<strong>en</strong>t<br />

repres<strong>en</strong>ts a first step towards official recognition<br />

of the importance of mycoflora and of its<br />

conservation by the European Commission.<br />

In countries where research <strong>in</strong> this field is more<br />

developed it has be<strong>en</strong> recognised that<br />

macromycetes are threat<strong>en</strong>ed to a far greater degree<br />

than vascular flora. In Switzerland, 32% of the<br />

macromycete species recorded <strong>in</strong> the country have<br />

be<strong>en</strong> placed on the Red List (S<strong>en</strong>n-Irlet et al.,<br />

2007). The <strong>en</strong>dangered species are conc<strong>en</strong>trated<br />

ma<strong>in</strong>ly <strong>in</strong> dry grasslands and swamps.<br />

These data, extrapolated to cover the Italian<br />

ecological situation, underl<strong>in</strong>e the necessity of<br />

tak<strong>in</strong>g rapid action to build awar<strong>en</strong>ess of mycoflora<br />

and to make focused <strong>in</strong>terv<strong>en</strong>tions to protect it.<br />

With the aim of ext<strong>en</strong>d<strong>in</strong>g awar<strong>en</strong>ess and<br />

establish<strong>in</strong>g monitor<strong>in</strong>g systems across the national<br />

territory as part of an <strong>in</strong>ternational network, the<br />

Special Mushrooms Project <strong>in</strong>volved a systematic<br />

data-collection drive which specifically sought to<br />

associate the <strong>en</strong>vironm<strong>en</strong>ts where mycoflora was<br />

found <strong>in</strong> Italy with European classification systems<br />

govern<strong>in</strong>g soil use [CORINE Land Cover (APAT,<br />

2005)] and biotopes [CORINE Biotopes (AAVV,<br />

1991), EUNIS (Davies et al., 2004), NATURA<br />

2000 (European Commission, 2007)]. Beyond<br />

<strong>en</strong>abl<strong>in</strong>g us to learn more about the ecology of<br />

various <strong>en</strong>vironm<strong>en</strong>ts of national and European<br />

Community <strong>in</strong>terest, this laid the foundations for<br />

the use of fungal species as possible ecological<br />

<strong>in</strong>dicators <strong>in</strong> vary<strong>in</strong>g thematic cartography projects.<br />

These <strong>in</strong> turn make possible global biodiversityevaluation<br />

and other nature conservation <strong>in</strong>itiatives.<br />

2.3.2 Materials and methods<br />

Based on the mycological lists curr<strong>en</strong>tly available<br />

from the Special Mushrooms Project and from<br />

those records which were comparable to our<br />

classification systems, it has be<strong>en</strong> possible to


construct a database which correlates fungal<br />

species to their habitats.<br />

The lists used at this juncture were:<br />

• Database of heavy metals <strong>in</strong><br />

macromycete, edited by L. Cocchi and L.<br />

Vescovi, from the Gruppo Micologico e<br />

Naturalistico “R. Franchi” di Reggio<br />

Emilia - AMB (4.956 records).<br />

• Database of species deposited <strong>in</strong> the<br />

Herbarium mycologicum at the Natural<br />

History Civic Museum of V<strong>en</strong>ice, edited<br />

by G. Robich and M. Castoldi, Società<br />

V<strong>en</strong>eziana di Micologia - AMB,<br />

21.823 records).<br />

• ISPRA Database (edited by C.<br />

S<strong>in</strong>iscalco, ISPRA - Gruppo Micologico<br />

dell’Etruria Meridionale - AMB,<br />

5.334 records).<br />

• For the g<strong>en</strong>us Russula, Sarnari’s<br />

monograph (2000).<br />

• For alp<strong>in</strong>e fungi, works by Bizio, Campo,<br />

(1999) and Jamoni (2008) regard<strong>in</strong>g<br />

alp<strong>in</strong>e and sub-alp<strong>in</strong>e flora.<br />

• For dune <strong>en</strong>vironm<strong>en</strong>ts, works by Monti<br />

et al. (2000) (Tuscany) and Lantieri<br />

(2003) (Sicily).<br />

The fields curr<strong>en</strong>tly <strong>in</strong> the database, always<br />

expandible, are:<br />

• Nom<strong>en</strong>clature: G<strong>en</strong>us, Species, Variety.<br />

• Ecology: trophic features, host plants,<br />

habitats.<br />

• Geography: area, municipality, prov<strong>in</strong>ce,<br />

altitude, latitude, longitude.<br />

• Habitat: CORINE Land Cover third and<br />

fourth level, CORINE Biotopes third<br />

level, fourth level and fifth level, Natura<br />

2000.<br />

• Sample data: collector, id<strong>en</strong>tifier, date.<br />

Statistical analyses regard<strong>in</strong>g the perc<strong>en</strong>tage of<br />

occurr<strong>en</strong>ce for each type of habitat were carried<br />

out.<br />

First, data regard<strong>in</strong>g the occurr<strong>en</strong>ce of each species<br />

<strong>in</strong> differ<strong>en</strong>t habitats of the same area were analysed<br />

while exclud<strong>in</strong>g those data perta<strong>in</strong><strong>in</strong>g to record<strong>in</strong>gs<br />

of the same species <strong>in</strong> the same type of habitats <strong>in</strong><br />

that area.<br />

Cluster analysis was used to group the CORINE<br />

Biotopes – fourth level data – with regards to the<br />

distribution and frequ<strong>en</strong>cy of mycological species’<br />

occurr<strong>en</strong>ce. To this <strong>en</strong>d, the M<strong>in</strong>itab software was<br />

used. We applied s<strong>in</strong>gle-l<strong>in</strong>kage, complete-l<strong>in</strong>kage<br />

and Ward methods to the Manhattan and Euclidean<br />

distances calculated on standardised values. Bonds<br />

that cont<strong>in</strong>ued to repeat themselves dur<strong>in</strong>g analysis<br />

were id<strong>en</strong>tified. F<strong>in</strong>ally, based on the ordered<br />

tables, “characteristic species” and “differ<strong>en</strong>tial<br />

species” were derived for each category of habitat.<br />

2.3.3 Results<br />

We employed a process of upscal<strong>in</strong>g that better<br />

<strong>en</strong>ables mycological compon<strong>en</strong>ts to be classified at<br />

the various levels <strong>in</strong>to which the Italian ecological<br />

<strong>en</strong>vironm<strong>en</strong>t may be separated. We pres<strong>en</strong>t here the<br />

comparative and statistical analyses, follow<strong>in</strong>g their<br />

hierarchical classification. The species have be<strong>en</strong><br />

ordered accord<strong>in</strong>g to the frequ<strong>en</strong>cy they occurred <strong>in</strong><br />

the records regard<strong>in</strong>g the diverse habitats analysed.<br />

2.3.3.1 CORINE Land Cover, Third level<br />

Us<strong>in</strong>g the CORINE Land Cover (Third level)<br />

categories, the species-habitat association provides<br />

macro-level <strong>in</strong>formation.<br />

This type of classification made it possible to<br />

obta<strong>in</strong> useful <strong>in</strong>formation on the distribution of<br />

macromycetes ev<strong>en</strong> across d<strong>en</strong>sely anthropic areas,<br />

and has furthermore <strong>en</strong>abled a broad spectrum<br />

analysis of species common to the coniferous and<br />

deciduous forests. The species were ranked<br />

accord<strong>in</strong>g to the frequ<strong>en</strong>cy they occurred <strong>in</strong> the<br />

records regard<strong>in</strong>g the diverse habitats analysed.<br />

Land Cover code, third level: 1.4.1. Gre<strong>en</strong><br />

urban areas<br />

(508 records, 158 species)<br />

Agaricus bitorquis (Quél.) Sacc.; Agaricus<br />

campestris L.; Agaricus bresadolanus Bohus;<br />

Agaricus xanthodermus G<strong>en</strong>ev.; Copr<strong>in</strong>us comatus<br />

(O.F. Müll.) Pers.; Inocybe rimosa (Bull.) P.<br />

Kumm.; Lepista sordida (Schumach.) S<strong>in</strong>ger;<br />

Lepiota sub<strong>in</strong>carnata J. E. Lange; Leucoagaricus<br />

leucothites (Vittad.) Wasser; Lyophyllum decastes<br />

(Fr.) S<strong>in</strong>ger; Mitrophora semilibera (DC.) Lév.;<br />

Morchella hort<strong>en</strong>sis Boud.; Psathyrella<br />

candolleana (Fr.) Maire; Russula ochrospora<br />

(Nicolaj ex Quadr. & W. Rossi) Quadr.; Boletus<br />

rubellus Kromb.<br />

27


Lignicolous species:<br />

Agrocybe cyl<strong>in</strong>dracea (DC.) Gillet; Armillaria<br />

mellea (Vahl) P. Kumm.; Flammul<strong>in</strong>a velutipes<br />

(Curtis) S<strong>in</strong>ger; Pleurotus ostreatus (Jacq.) P.<br />

Kumm.; Polyporus squamosus (Huds.) Fr.<br />

Land Cover code, third level: 3.2.1. Natural<br />

grasslands<br />

(907 records, 281 species)<br />

Marasmius oreades (Bolton) Fr.; Lycoperdon<br />

utriforme Bull.; Agaricus macrocarpus (F. H.<br />

Møller) F. H. Møller; Agaricus campestris L.;<br />

Amanita vittad<strong>in</strong>i (Moretti) Sacc.; Leucoagaricus<br />

leucothites (Vittad.) Wasser; Volvariella<br />

gloiocephala (DC.) Boekhout & Enderle; Agaricus<br />

arv<strong>en</strong>sis Schaeff.; Helvella crispa (Scop.) Fr.;<br />

Agaricus xanthodermus G<strong>en</strong>ev.; Hygrocybe <strong>in</strong>grata<br />

J. P. J<strong>en</strong>s<strong>en</strong> & F. H. Møller; Hygrocybe conica<br />

(Schaeff.) P. Kumm.; Hygrocybe quieta (Kühner)<br />

S<strong>in</strong>ger; Hygrocybe calyptriformis (Berk.) Fayod;<br />

Hygrocybe prat<strong>en</strong>sis (Fr.) Murrill; Macrolepiota<br />

procera (Scop.) S<strong>in</strong>ger; Hygrocybe nitrata (Pers.)<br />

Wünsche; Hygrocybe psittac<strong>in</strong>a (Schaeff.) P.<br />

Kumm.; Panaeol<strong>in</strong>a fo<strong>en</strong>isecii (Pers.) Maire;<br />

Hygrocybe ceracea (Wulf<strong>en</strong>) P. Kumm.;<br />

Hygrocybe punicea (Fr.) P. Kumm.; Hygrocybe<br />

irrigata (Pers.) Bon; Inocybe fraudans (Britzelm.)<br />

Sacc.; Calvatia gigantea (Batsch) Lloyd; Laccaria<br />

laccata (Scop.) Cooke; Copr<strong>in</strong>us comatus (O. F.<br />

Müll.) Pers.; Entoloma mougeotii (Fr.) Hesler;<br />

Hygrocybe citr<strong>in</strong>ovir<strong>en</strong>s (J. E. Lange) Jul. Schäff.;<br />

Hygrocybe cocc<strong>in</strong>ea (Schaeff.) P. Kumm.;<br />

Chlorophyllum rhacodes (Vittad.) Vell<strong>in</strong>ga;<br />

Lycoperdon prat<strong>en</strong>se Pers.<br />

Land Cover code, third level: 3.1.1. Broadleaved<br />

forest<br />

(2,653 records, 590 species)<br />

Boletus subtom<strong>en</strong>tosus L.; Cantharellus cibarius<br />

Fr.; Russula vesca Fr.; Russula cyanoxantha<br />

(Schaeff.) Fr.; Boletus rhodopurpureus Smotl.;<br />

Amanita caesarea (Scop.) Pers.; Boletus reticulatus<br />

Schaeff.; Boletus calopus Pers.; Boletus luridus<br />

Schaeff.; Boletus edulis Bull.; Boletus p<strong>in</strong>ophilus<br />

Pilát & Dermek; Amanita rubesc<strong>en</strong>s Pers.;<br />

Cort<strong>in</strong>arius caperatus (Pers.) Fr.; Amanita<br />

muscaria (L.) Lam; Mitrophora semilibera (DC.)<br />

Lév.; Verpa bohemica (Krombh.) J. Schröt.;<br />

Russula nigricans (Bull.) Fr.; Amanita phalloides<br />

(Vaill. ex Fr.) L<strong>in</strong>k; Infundibulicybe geotropa<br />

(Bull.) Harmaja; Clitocybe nebularis (Batsch) P.<br />

Kumm.; Lactarius piperatus (L.) Pers.; Boletus<br />

28<br />

app<strong>en</strong>diculatus Schaeff.; Russula delica Fr.;<br />

Morchella escul<strong>en</strong>ta (L.) Pers.; Russula acrifolia<br />

Romagn.; Amanita vag<strong>in</strong>ata (Bull.) Lam.;<br />

Calocybe gambosa (Fr.) Donk; Russula chloroides<br />

(Krombh.) Bres.; Amanita panther<strong>in</strong>a (DC.)<br />

Krombh.; Boletus aereus Bull.; Boletus<br />

pulchrot<strong>in</strong>ctus Alessio; Fistul<strong>in</strong>a hepatica<br />

(Schaeff.) With.; Russula albonigra (Krombh.) Fr.;<br />

Agaricus silvicola var. silvicola (Vittad.) Peck;<br />

Armillaria tabesc<strong>en</strong>s (Scop.) Emel; Boletus queletii<br />

Schulzer; Boletus satanas L<strong>en</strong>z; Gymnopus fusipes<br />

(Bull.) Gray; Entoloma s<strong>in</strong>uatum (Bull.) P. Kumm.;<br />

Boletus rubellus Krombh.<br />

Land Cover code, third level: 3.1.2. Coniferous<br />

forest (<strong>in</strong>clud<strong>in</strong>g aforestation)<br />

(1,040 records, 417 species)<br />

Agaricus silvicola var. silvicola (Vittad.) Peck;<br />

Amanita muscaria (L.) Lam; Amanita rubesc<strong>en</strong>s<br />

Pers.; Boletus calopus Pers.; Boletus edulis Bull.;<br />

Boletus erythropus Pers.; Boletus p<strong>in</strong>ophilus Pilát<br />

& Dermek; Craterellus lutesc<strong>en</strong>s (Fr.) Fr.;<br />

Chalciporus piperatus (Bull.) Bataille;<br />

Chroogomphus rutilus (Schaeff.) O. K. Mill.;<br />

Clitocybe gibba (Pers.) P. Kumm.; Clitocybe<br />

nebularis (Batsch) P. Kumm.; Clitopilus prunulus<br />

(Scop.) P. Kumm.; Rhodocollybia butyracea (Bull.)<br />

L<strong>en</strong>nox; Entoloma hirtipes (Schumach.) M. M.<br />

Moser; Geopora ar<strong>en</strong>osa (Fuckel) S. Ahmad;<br />

Hebeloma later<strong>in</strong>um (Batsch) Vesterh.;<br />

Hygrophorus agathosmus (Fr.) Fr.; Hygrophorus<br />

latitabundus Britzelm.; Hygrophorus marzuolus<br />

(Fr.) Bres.; Inocybe ar<strong>en</strong>icola (R. Heim) Bon;<br />

Inocybe bongardii (We<strong>in</strong>m.) Quél.; Inocybe<br />

dun<strong>en</strong>sis P. D. Orton; Catathelasma imperiale (Fr.)<br />

S<strong>in</strong>ger; Inocybe geophylla (Fr.) P. Kumm.; Inocybe<br />

mixtilis (Britzelm.) Sacc.; Inocybe nitidiuscula<br />

(Britzelm.) Lapl.; Inocybe c<strong>in</strong>c<strong>in</strong>nata var. major (S.<br />

Peters<strong>en</strong>) Kuyper; Inocybe piceae Stangl &<br />

Schwöbel; Inocybe fraudans (Britzelm.) Sacc.;<br />

Inocybe rimosa (Bull.) P. Kumm.; Inocybe<br />

spl<strong>en</strong>d<strong>en</strong>s R. Heim; Lactarius chrysorrheus Fr.;<br />

Lactarius deliciosus (L.) Gray; Lactarius<br />

deterrimus Gröger; Lactarius salmonicolor R.<br />

Heim & Leclair; Lactarius sanguifluus (Paulet) Fr.;<br />

Lactarius scrobiculatus (Scop.) Fr.; Lycoperdon<br />

perlatum Pers.; Myc<strong>en</strong>a pura (Pers.) P. Kumm.;<br />

Rhizopogon roseolus (Corda) Th. Fr.; Cort<strong>in</strong>arius<br />

caperatus (Pers.) Fr.; Russula torulosa Bres.;<br />

Sarcosphaera coronaria (Jacq.) J. Schröt.; Suillus<br />

bell<strong>in</strong>ii (Inz<strong>en</strong>ga) Watl<strong>in</strong>g; Suillus coll<strong>in</strong>itus (Fr.)<br />

Kuntze; Suillus granulatus (L.) Roussel; Suillus


luteus (L.) Roussel; Suillus mediterrane<strong>en</strong>sis<br />

(Jacquet. & J. Blum) Redeuilh; Suillus variegatus<br />

(Sw.) Kuntze; Tricholoma myomyces (Pers.) J. E.<br />

Lange; Tricholoma scalpturatum (Fr.) Quél.;<br />

Tricholomopsis rutilans (Schaeff.) S<strong>in</strong>ger; Boletus<br />

badius (Fr.) Fr.<br />

The comparison betwe<strong>en</strong> the lists at this level has<br />

allowed us to extrapolate a great deal of ubiquitous<br />

species listed below. Knowledge of these species<br />

has facilitated the <strong>in</strong>terpretation of lists derived<br />

from the application of the Nature 2000, EUNIS<br />

and CORINE Biotopes classification systems,<br />

allow<strong>in</strong>g a "clean<strong>in</strong>g up" of the species<br />

characteristics and differ<strong>en</strong>tials id<strong>en</strong>tification<br />

tables.<br />

Strongly ubiquitous species (found both <strong>in</strong><br />

forests and meadows)<br />

(3,693 records, 950 species)<br />

Lycoperdon utriforme Bull.; Inocybe fraudans<br />

(Britzelm.) Sacc.; Agaricus arv<strong>en</strong>sis Schaeff.;<br />

Helvella crispa (Scop.) Fr.; Cantharellus cibarius<br />

Fr.; Macrolepiota procera (Scop.) S<strong>in</strong>ger; Russula<br />

cyanoxantha (Schaeff.) Fr.; Hygrocybe conica<br />

(Schaeff.) P. Kumm.; Calocybe gambosa (Fr.)<br />

Donk; Hygrocybe quieta (Kühner) S<strong>in</strong>ger;<br />

Clitocybe nebularis (Batsch) P. Kumm.; Boletus<br />

luridus Schaeff.; Lactarius deliciosus (L.) Gray;<br />

Infundibulicybe geotropa (Bull.) Harmaja; Boletus<br />

reticulatus Schaeff.; Agaricus silvicola var.<br />

silvicola (Vittad.) Peck; Lepista nuda (Bull.)<br />

Cooke; Laccaria laccata (Scop.) Cooke; Myc<strong>en</strong>a<br />

pura (Pers.) P. Kumm.; Clitocybe gibba (Pers.) P.<br />

Kumm.; Lycoperdon perlatum Pers.; Amanita<br />

vag<strong>in</strong>ata (Bull.) Lam.; Lepista flaccida (Sowerby)<br />

Pat.; Lepista sordida (Schumach.) S<strong>in</strong>ger; Boletus<br />

ferrug<strong>in</strong>eus Schaeff.; Inocybe spl<strong>en</strong>d<strong>en</strong>s R. Heim;<br />

Phallus impudicus L.; Russula viresc<strong>en</strong>s (Schaeff.)<br />

Fr.; Bovista aestivalis (Bonord.) Demoul<strong>in</strong>;<br />

Paxillus <strong>in</strong>volutus (Batsch) Fr.; Lyophyllum<br />

decastes (Fr.) S<strong>in</strong>ger; Amanita crocea (Quél.)<br />

S<strong>in</strong>ge; Morchella elata Fr.; Clitocybe phyllophila<br />

(Pers.) P. Kumm.; Clavul<strong>in</strong>a coralloides (L.) J.<br />

Schröt.; Inocybe <strong>in</strong>odora Vel<strong>en</strong>.; Schizophyllum<br />

commune Fr.; Hygrocybe persisit<strong>en</strong>s (Britzelm.)<br />

S<strong>in</strong>ger; Marasmius oreades (Bolton) Fr.; Agaricus<br />

macrocarpus (F. H. Møller) F. H. Møller; Agaricus<br />

campestris; Suillus coll<strong>in</strong>itus (Fr.) Kuntze;<br />

Leucoagaricus leucothites (Vittad.) Wasser;<br />

Lactarius deterrimus Gröger; Agaricus<br />

xanthodermus G<strong>en</strong>ev.; Inocybe mixtilis (Britzelm.)<br />

Sacc.; Cort<strong>in</strong>arius praestans Cordier; Hygrocybe<br />

nitrata (Pers.) Wünsche; Boletus rubellus Krombh.;<br />

Morchella escul<strong>en</strong>ta (L.) Pers.; Chlorophyllum<br />

rhacodes (Vittad.) Vell<strong>in</strong>ga; Copr<strong>in</strong>us comatus (O.<br />

F. Müll.) Pers.; Calvatia gigantea (Batsch) Lloyd;<br />

Inocybe piceae Stangl & Schwöbel; Clavul<strong>in</strong>a<br />

rugosa (Bull.) J. Schröt.; Russula delica Fr.;<br />

Entoloma mougeotii (Fr.) Hesler; Chroogomphus<br />

rutilus (Schaeff.) O. K. Mill.; Russula torulosa<br />

Bres.; Clitocybe rivulosa (Pers.) P. Kumm.;<br />

Lecc<strong>in</strong>um duriusculum (Schulzer ex Kalchbr.)<br />

S<strong>in</strong>ger; Leucoagaricus barssii (Zeller) Vell<strong>in</strong>ga;<br />

Agaricus osecanus Pilát; Gymnopus fusipes (Bull.)<br />

Gray; Lycoperdon excipuliforme (Scop.) Pers.;<br />

Boletus dryophilus Thiers; Entoloma <strong>in</strong>canum (Fr.)<br />

Hesler; Agaricus augustus Fr.; Hygrophorus<br />

hypothejus (Fr.) Fr.<br />

Species ubiquitous to forests<br />

(3,693 records, 949 species)<br />

Amanita muscaria (L.) Lam; Boletus p<strong>in</strong>ophilus<br />

Pilát & Dermek; Boletus calopus Pers.; Amanita<br />

rubesc<strong>en</strong>s Pers.; Cort<strong>in</strong>arius caperatus (Pers.) Fr.;<br />

Russula vesca Fr.; Boletus erythropus; Chalciporus<br />

piperatus (Bull.) Bataille; Inocybe rimosa (Bull.) P.<br />

Kumm.; Amanita phalloides (Vaill. ex Fr.) L<strong>in</strong>k;;<br />

Clitopilus prunulus (Scop.) P. Kumm.; Tricholoma<br />

scalpturatum (Fr.) Quél.; Russula foet<strong>en</strong>s (Pers.)<br />

Pers.; Gyromitra gigas (Krombh.) Cooke;<br />

Lactarius piperatus (L.) Pers.; Inocybe geophylla<br />

(Fr.) P. Kumm.; Sarcosphaera coronaria (Jacq.) J.<br />

Schröt.; Tricholoma myomyces (Pers.) J.E. Lange;<br />

Pluteus cerv<strong>in</strong>us (Schaeff.) P. Kumm.; Lactarius<br />

chrysorrheus Fr.; Amanita panther<strong>in</strong>a (DC.)<br />

Krombh.; Russula albonigra (Krombh.) Fr.;<br />

Hydnum repandum L.; Russula acrifolia Romagn.;<br />

Rhodocollybia butyracea (Bull.) L<strong>en</strong>nox;<br />

Tricholoma saponaceum (Fr.) P. Kumm.; Xerula<br />

radicata (Relhan) Dörfelt; Gyroporus castaneus<br />

(Bull.) Quél.; Rhodocybe gem<strong>in</strong>a (Fr.) Kuyper &<br />

Noordel.; Amanita citr<strong>in</strong>a (Pers.) Pers.; Amanita<br />

excelsa (Fr.) P. Kumm.; Clitocybe odora (Bull.) P.<br />

Kumm.; Hebeloma later<strong>in</strong>um (Batsch) Vesterh.;<br />

Rhizopogon roseolus (Corda) Th. Fr.; Russula<br />

fragilis Fr.; Russula romellii Maire; Gymnopus<br />

dryophilus (Bull.) Murrill; Lactarius volemus (Fr.)<br />

Fr.; Tricholoma columbetta (Fr.) P. Kumm.;<br />

Boletus chrys<strong>en</strong>teron Bull.; Boletus pru<strong>in</strong>atus Fr. &<br />

Hök; Kuehneromyces mutabilis (Schaeff.) S<strong>in</strong>ger &<br />

A. H. Sm.; Tricholoma sulphureum (Bull.) P.<br />

Kumm.; Hypholoma fasciculare (Huds.) P.<br />

Kumm.; Trametes versicolor (L.) Lloyd; Inocybe<br />

leucoblema Kühner; Suillus lakei (Murrill) A. H.<br />

29


Sm. & Thiers; Tricholoma imbricatum (Fr.) P.<br />

Kumm.; Ramaria pallida (Schaeff.) Rick<strong>en</strong>;<br />

Boletus arm<strong>en</strong>iacus Quél.; Tap<strong>in</strong>ella atrotom<strong>en</strong>tosa<br />

(Batsch) Šutara; Auricularia auricula-judae (Bull.)<br />

Berk.; Hebeloma s<strong>in</strong>apizans (Fr.) Sacc.; Russula<br />

risigall<strong>in</strong>a (Batsch) Sacc.; Craterellus tubaeformis<br />

(Schaeff.) Quél.; Helvella acetabulum (L.) Quél.;<br />

Amanita submembranacea (Bon) Gröger;<br />

Cort<strong>in</strong>arius laniger Fr.; Lactarius pallidus Pers.;<br />

Lepiota ignivolvata Bousset & Joss. ex Joss.;<br />

Stropharia aerug<strong>in</strong>osa (Curtis) Quél.; Trametes<br />

pubesc<strong>en</strong>s (Schumach.) Pilát; Tricholoma<br />

orirub<strong>en</strong>s Quél.; Hydnum rufesc<strong>en</strong>s Pers.;<br />

Lactarius vellereus (Fr.) Fr.; Russula heterophylla<br />

(Fr.) Fr.; Hydnum albidum Peck; Inocybe<br />

oblectabilis (Britzelm.) Sacc.; Lepiota clypeolaria<br />

(Bull.) P. Kumm.; Tricholoma port<strong>en</strong>tosum (Fr.)<br />

Quél.; Amanita gemmata (Fr.) Bertill.; Copr<strong>in</strong>opsis<br />

picacea (Bull.) Redhead, Vilgalys & Moncalvo;<br />

Lyophyllum rhopalopodium Clém<strong>en</strong>çon;<br />

Gymnopilus p<strong>en</strong>etrans (Fr.) Murrill; Inocybe<br />

erubesc<strong>en</strong>s A. Blitt; Lactarius uvidus (Fr.) Fr.;<br />

Ramaria botrytis (Pers.) Rick<strong>en</strong>; Ramaria gracilis<br />

(Pers.) Quél.; Russula amo<strong>en</strong>a Quél.; Russula<br />

parazurea Jul. Schäff.; Tricholoma batschii<br />

Guld<strong>en</strong>; Agaricus ur<strong>in</strong>asc<strong>en</strong>s (Jul. Schäff. & F. H.<br />

Møller) S<strong>in</strong>ger; Russula luteotacta Rea;<br />

Auriscalpium vulgare Gray; Hypholoma capnoides<br />

(Fr.) P. Kumm.; Limacella guttata (Pers.) Konrad<br />

& Maubl.; Paxillus filam<strong>en</strong>tosus Fr.; Pholiota<br />

squarrosa (Bull.) P. Kumm.; Polyporus lepideus<br />

30<br />

Fr.; Ramaria stricta (Pers.) Quél.; Russula<br />

persic<strong>in</strong>a Krombh.<br />

2.3.3.2 CORINE Biotopes Third level<br />

Use of the third level of the CORRINE Biotopes<br />

classification system characterises several habitats<br />

of particular importance and <strong>in</strong>terest for the<br />

European Community.<br />

45.2 Cork (Habitat Natura 2000: 9330 Forests of<br />

Quercus suber)<br />

(221 records, 100 species)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Amanita ponderosa Mal<strong>en</strong>çon & R. Heim; Boletus<br />

pseudoregius (He<strong>in</strong>r. Huber) Estadès; Gymnopilus<br />

suberis (Maire) S<strong>in</strong>ger; Plectania plat<strong>en</strong>sis (Speg.)<br />

Rifai; Russula albonigra (Krombh.) Fr.;<br />

Trichaptum biforme (Fr.) Ryvard<strong>en</strong>.<br />

45.3 Ilex (Habitat Natura 2000: 9340 Forests of<br />

Quercus ilex and Quercus rotundifolia)<br />

(198 records, 75 species)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Boletus aemilii Barbier; Boletus pulchrot<strong>in</strong>ctus<br />

Alessio; Boletus rhodoxanthus (Krombh.) Kall<strong>en</strong>b.;<br />

Russula ilicis Romagn., Chevassut & Privat (Fig. 7<br />

(Chiari et al., 2008)); Lecc<strong>in</strong>ellum lepidum<br />

(Bouchet ex Essette) Bres<strong>in</strong>sky & Manfr. B<strong>in</strong>der.<br />

Fig. 7. Russula ilicis Romagnesi, Chevassut & Privat (Photo: Maurizio Chiari).


Fig. 8. Real distribution of Russula ilicis Romagnesi, Chevassut & Privat <strong>in</strong> the Prov<strong>in</strong>ce of V<strong>en</strong>ice obta<strong>in</strong>ed by associat<strong>in</strong>g location data from<br />

mycological records and the polygons from the Carta della Natura (Nature Map) (ISPRA; 2008) of the relative habitats (ilex: CORINE<br />

Biotopes 45.3; Natura 2000).<br />

41.9 Chestnut (Habitat Natura 2000: 9260<br />

Forests of Castanea sativa)<br />

Frequ<strong>en</strong>t species: Cantharellus cibarius Fr.;<br />

Russula vesca Fr.; Amanita caesarea (Scop.) Pers.;<br />

Boletus reticulatus Schaeff.; Boletus subtom<strong>en</strong>tosus<br />

L.; Fistul<strong>in</strong>a hepatica (Schaeff.) With.; Russula<br />

cyanoxantha (Schaeff.) Fr.; Lactarius piperatus<br />

(L.) Pers.; Gymnopus fusite (Bull.) Gray; Amanita<br />

phalloides (Vaill. ex Fr.) L<strong>in</strong>k; Amanita rubesc<strong>en</strong>s<br />

Pers.; Boletus edulis Bull.; Lactarius volemus (Fr.)<br />

Fr.; Ramaria formosa (Pers.) Quél.<br />

42.8 Mediterranean P<strong>in</strong>e forests (Habitat<br />

Natura 2000: 9540 Mediterranean p<strong>in</strong>e forests<br />

with <strong>en</strong>demic Mesogean p<strong>in</strong>es)<br />

(143 records, 75 species)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Buchwaldoboletus lignicola (Kall<strong>en</strong>b.) Pilát;<br />

Suillus mediterrane<strong>en</strong>sis (Jacquet. & J. Blum)<br />

Redeuilh; Myc<strong>en</strong>a seynesii Quél.; Rhizopogon<br />

roseolus (Corda) Th. Fr.; Boletus obscuratus<br />

(S<strong>in</strong>ger) J. Blum.<br />

Frequ<strong>en</strong>t species:<br />

Lactarius sanguifluus (Paulet) Fr.; Cantharellus<br />

cibarius Fr.; Lactarius deliciosus (L.) Gray; Suillus<br />

coll<strong>in</strong>itus (Fr.) Kuntze; Tricholoma saponaceum<br />

(Fr.) P. Kumm.<br />

At this level by superimpos<strong>in</strong>g the Habitats Map<br />

and the Nature Map (Various Authors, 2004;<br />

AAVV, 2009th; AAVV, 2009b) with the maps of<br />

the stations where the mycological record<strong>in</strong>gs were<br />

made, one obta<strong>in</strong>s the real and pot<strong>en</strong>tial distribution<br />

maps (fig. 8 and fig. 10).<br />

2.3.3.3 CORINE Biotopes Fourth level<br />

At the fourth level of the CORINE Biotopes system<br />

it is possible to id<strong>en</strong>tify other lead<strong>in</strong>g species,<br />

especially <strong>in</strong> those <strong>en</strong>vironm<strong>en</strong>ts considered as<br />

be<strong>in</strong>g of particular ecological importance at<br />

European level (Dir. 92/43 CEE).<br />

16.27 Dune juniper thickets and woods (Habitat<br />

Natura 2000: 2250 Coastal dunes with Juniperus<br />

spp. – Priority)<br />

(214 records, 94 species)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Geastrum m<strong>in</strong>imum Schwe<strong>in</strong>.; Geastrum schmidelii<br />

Vittad.; Helvella juniperi M. Filippa & Baiano;<br />

Marcelle<strong>in</strong>a atroviolacea (Delile ex De Seynes)<br />

Brumm.; Melanoleuca rasilis (Fr.) S<strong>in</strong>ger; Pithya<br />

cupressi (Batsch) Fuckel.<br />

Frequ<strong>en</strong>t species:<br />

Geopora ar<strong>en</strong>icola (Lév.) Kers; Greletia<br />

planchonis (Dunal ex Boud.) Donad<strong>in</strong>i; Inocybe<br />

dulcamara (Alb. & Schwe<strong>in</strong>.) P. Kumm.;<br />

Pustularia patav<strong>in</strong>a (Cooke & Sacc.) Boud.;<br />

Octospora convexula (Pers.) L. R. Batra; Xerula<br />

mediterranea (Pacioni & Lalli) Quadr. & Lungh<strong>in</strong>i.<br />

31


16.29 Wooded dunes (Habitat Natura 2000:<br />

2270 Dunes with forests of P<strong>in</strong>us p<strong>in</strong>ea and/or<br />

P<strong>in</strong>us p<strong>in</strong>aster – Priority)<br />

(126 records, 73 species)<br />

32<br />

Fig. 9. Inocybe psammobrunnea Bon (Photo: M. Marchetti).<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Inocybe pseudodestricta Stangl & J. Veselský;<br />

Inocybe psammobrunnea Bon (Fig. 9); Melanoleuca<br />

microcephala (P. Karst.) S<strong>in</strong>ger; Rhizopogon<br />

luteolus Fr. & Nordholm.<br />

Fig. 10: Real distribution of Inocybe psammobrunnea Bon <strong>in</strong> the Prov<strong>in</strong>ce of Rovigo obta<strong>in</strong>ed by associat<strong>in</strong>g location data from mycological<br />

records and the polygons from the Carta della Natura (Nature Map) (ISPRA; 2008) of the relative habitats (wooded dunes: CORINE<br />

Biotopes 16.29, Habitat Natura 2000: 2270 - Priority).<br />

Very common species:<br />

Geopora ar<strong>en</strong>osa (Fuckel) S. Ahmad; Inocybe<br />

ar<strong>en</strong>icola (R. Heim) Bon; Inocybe dun<strong>en</strong>sis P. D.<br />

Orton; Inocybe heimii Bon; Inocybe <strong>in</strong>odora<br />

Vel<strong>en</strong>.; Inocybe dulcamara (Alb. & Schwe<strong>in</strong>.) P.<br />

Kumm.; Melanoleuca rasilis (Fr.) S<strong>in</strong>ger; Inocybe<br />

rufuloides Bon.


36.11 Boreo-Alpic acid snow-patch communities<br />

(Habitat Natura 2000: 6150 Siliceous alp<strong>in</strong>e and<br />

boreal grasslands)<br />

(90 records, 88 species)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Hebeloma bruchetii Bon; Octospora humosa (Fr.)<br />

D<strong>en</strong>nis; Naucoria tantilla J. Favre; Cort<strong>in</strong>arius<br />

c<strong>in</strong>namomeoluteus P. D. Orton; Cort<strong>in</strong>arius<br />

anomalus (Pers.) Fr.; Entoloma papillatum (Bres.)<br />

D<strong>en</strong>nis; Galer<strong>in</strong>a pseudotundrae Kühner; Helvella<br />

queletii Schulzer; Inocybe bulbosissima (Kühner)<br />

Bon; Inocybe giacomi O. K. Mill.; Laccaria<br />

montana S<strong>in</strong>ger; Lactarius dryadophilus Kühner;<br />

Peziza alaskana E. K. Cash; Russula laccata<br />

Huijsman; Russula saliceti cola (S<strong>in</strong>ger) Kühner ex<br />

Knuds<strong>en</strong> & T. Borg<strong>en</strong>; Scutell<strong>in</strong>ia kerguel<strong>en</strong>sis<br />

(Berk.) Kuntze; Scutell<strong>in</strong>ia superba (Vel<strong>en</strong>.) Le<br />

Gal.<br />

Frequ<strong>en</strong>t species:<br />

Cort<strong>in</strong>arius favrei D. M. H<strong>en</strong>d.; Helvella corium<br />

(O. Weberb.) Massee; Inocybe salicis-herbaceae<br />

Kühner; Myc<strong>en</strong>a pura (Pers.) P. Kumm.; Helvella<br />

lacunosa Afzel.<br />

36.12 Boreo-Alpic calcareous snow-patch<br />

communities (Habitat Natura 2000: 6170 Alp<strong>in</strong>e<br />

and subalp<strong>in</strong>e calcareous grasslands)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Helvella alpestris Boud.; Cort<strong>in</strong>arius<br />

chamaesalicis Bon; Cort<strong>in</strong>arius phaeochrous J.<br />

Favre; Hebeloma alp<strong>in</strong>um (J. Favre) Bruchet;<br />

Helvella capuc<strong>in</strong>a Quél.; Helvella solitaria (P.<br />

Karst.) P. Karst.; Inocybe albovelutipes Stangl;<br />

Inocybe canesc<strong>en</strong>s J. Favre; Inocybe favrei Bon;<br />

Inocybe geraniodora J. Favre; Inocybe lacera (Fr.)<br />

P. Kumm.; Inocybe spl<strong>en</strong>d<strong>en</strong>s var. phaeoleuca<br />

(Kühner) Kuyper; Inocybe subbrunnea Kühner;<br />

Inocybe taxocystis (J. Favre & E. Horak) S<strong>en</strong>n-<br />

Irlet; Inocybe umbr<strong>in</strong>odisca Kühner; Lactarius<br />

salicis-reticulatae Kühner; Peziza saniosa Schrad.;<br />

Russula subrub<strong>en</strong>s (J. E. Lange) Bon; Russula<br />

nana Killerm.<br />

Other Frequ<strong>en</strong>t species:<br />

Inocybe fraudans (Britzelm.) Sacc.; Inocybe<br />

godfr<strong>in</strong>ioides Kühner; Inocybe calamistrata (Fr.)<br />

Gillet; Inocybe nitidiuscula (Britzelm.) Lapl.;<br />

Tricholoma scalpturatum (Fr.) Quél.<br />

44.61 Mediterranean riparian poplar forests.<br />

(Habitat Natura 2000: 9240 Quercus fag<strong>in</strong>ea<br />

and Quercus canari<strong>en</strong>sis Iberian woods)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Helvella spadicea Schaeff.; Inocybe leucoblema<br />

Kühner; Lactarius controversus (Pers.) Pers.;<br />

Lecc<strong>in</strong>um nigellum Redeuilh; Pholiota populnea<br />

(Pers.) Kuyper & Tjall.-Beuk.; Tricholoma<br />

popul<strong>in</strong>um J. E. Lange.<br />

Frequ<strong>en</strong>t species:<br />

Lecc<strong>in</strong>um duriusculum (Schulzer ex Kalchbr.)<br />

S<strong>in</strong>ger; Morchella escul<strong>en</strong>ta (L.) Pers.; Pluteus<br />

cerv<strong>in</strong>us; Mitrophora semilibera (DC.) Lév.<br />

Ev<strong>en</strong> at this level it is possible to match the<br />

mycological data with the Natura Map (AAVV,<br />

2004; AAVV, 2009a; AAVV, 2009b) so as to obta<strong>in</strong><br />

distribution data for each species <strong>in</strong> their relative<br />

habitats.<br />

Fig. 11: Cluster analysis over 33 CORINE Biotopes categories, Fourth level and 975 species of macromycetes.<br />

33


2.3.3.4 CORINE Biotopes Fifth level<br />

Us<strong>in</strong>g the fifth level where possible, particularly<br />

relat<strong>in</strong>g to cat<strong>en</strong>al ecological series, it was possible<br />

to achieve a greater level of detail, especially<br />

regard<strong>in</strong>g the <strong>in</strong>terpretation of dune <strong>en</strong>vironm<strong>en</strong>ts,<br />

which, as also shown <strong>in</strong> figure 11, are significantly<br />

dist<strong>in</strong>ct from other habitats <strong>in</strong> terms of<br />

macromycete populations:<br />

16.211 Embryonic dunes (Habitat Natura 2000:<br />

2110 Embryonic shift<strong>in</strong>g dunes)<br />

Frequ<strong>en</strong>t species:<br />

Cyathus stercoreus (Schwe<strong>in</strong>.) De Toni; Diderma<br />

spumarioides (Fr.) Fr.; Geopora ar<strong>en</strong>osa (Fuckel)<br />

S. Ahmad; Pustularia patav<strong>in</strong>a (Cooke & Sacc.)<br />

Boud.; Psathyrella ammophila (Durieu & Lév.) P.<br />

D. Orton; Rhodocybe mal<strong>en</strong>çonii Pacioni & Lalli.<br />

16.212 Biscay grey dunes (Habitat Natura 2000:<br />

2120 Shift<strong>in</strong>g dunes along the shorel<strong>in</strong>e with<br />

Ammophila ar<strong>en</strong>aria “white dunes”)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Agaricus m<strong>en</strong>ieri Bon; Agrocybe pediades (Fr.)<br />

Fayod; Gyrodon lividus (Bull.) Fr.; Agaricus<br />

aridicola Geml, Geiser & Royse; Gyrophragmium<br />

delilei Mont.; Hygrocybe persist<strong>en</strong>s (Britzelm.)<br />

S<strong>in</strong>ger; Lepiota brunneolilacea Bon & Boiffard;<br />

Marasmius oreades (Bolton) Fr.; Melanoleuca<br />

c<strong>in</strong>ereifolia (Bon) Bon; Montagnea ar<strong>en</strong>aria (DC.)<br />

Zeller; Panaeolus c<strong>in</strong>ctulus (Bolton) Sacc.<br />

Other frequ<strong>en</strong>t species:<br />

Agrocybe pediades (Fr.) Fayod; Psathyrella<br />

ammophila (Durieu & Lév.) P. D. Orton; Peziza<br />

pseudoammophila Bon & Donad<strong>in</strong>i.<br />

16.221 Northern Atlantic grey dunes (Habitat<br />

Natura 2000: 2130 Fixed coastal dunes with<br />

herbaceous vegetation “grey dunes”, Priority)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Arrh<strong>en</strong>ia spathulata (Fr.) Redhead; Xerula<br />

mediterranea (Pacioni & Lalli) Quadr. & Lungh<strong>in</strong>i;<br />

Clitocybe barbularum (Romagn.) P. D. Orton;<br />

Rhizopogon roseolus (Corda) Th. Fr.; Tulostoma<br />

brumale Pers.<br />

Frequ<strong>en</strong>t species:<br />

Geopora ar<strong>en</strong>osa (Fuckel) S. Ahmad; Hebeloma<br />

ammophilum Bohus.<br />

34<br />

16.223 Ibero-Mediterranean grey dunes<br />

(Habitat Natura 2000: 2210 Crucianellion<br />

maritimae fixed beach dunes)<br />

Characteristic and differ<strong>en</strong>tial species:<br />

Marasmius anomalus Peck; Peziza boltonii Quél.;<br />

Galer<strong>in</strong>a laevis (Pers.) S<strong>in</strong>ger; Arrh<strong>en</strong>ia retiruga<br />

(Bull.) Redhead; Clitocybe barbularum (Romagn.)<br />

P. D. Orton; Gymnopus aquosus (Bull.) Antonín &<br />

Noordel.; Conocybe blattaria (Fr.) Kühner;<br />

Conocybe leucopus Kühner ex Kühner & Watl<strong>in</strong>g;<br />

Conocybe rick<strong>en</strong>iana P. D. Orton; Copr<strong>in</strong>us<br />

xanthothrix Romagn.; Cr<strong>in</strong>ipellis scabella (Alb. &<br />

Schwe<strong>in</strong>.) Murrill; Hydnocystis piligera Tul.;<br />

Hygrocybe conica (Schaeff.) P. Kumm.; Mucilago<br />

crustacea P. Micheli ex F. H. Wigg.; Octospora<br />

leucoloma Hedw.; Pachyella celtica (Boud.)<br />

Häffner; Peziza varia (Hedw.) Fr.<br />

Frequ<strong>en</strong>t species:<br />

Agrocybe pediades (Fr.) Fayod; Cyathus olla<br />

(Batsch) Pers.; Peziza pseudoammophila Bon &<br />

Donad<strong>in</strong>i; Volvariella gloiocephala (DC.)<br />

Boekhout & Enderle.<br />

2.3.4 Discussion<br />

Mycological communities, as can be se<strong>en</strong> <strong>in</strong> fig. 11<br />

are far more differ<strong>en</strong>tiated than the natural habitats<br />

<strong>in</strong> which they reside; this can also be se<strong>en</strong> <strong>in</strong> the<br />

specificity of the relationships betwe<strong>en</strong> plants and<br />

fungi.<br />

The CORINE Land Cover system, by us<strong>in</strong>g wider<br />

units to classify vegetation, simplifies l<strong>in</strong>k<strong>in</strong>g<br />

species to habitats and <strong>en</strong>ables the use of a greater<br />

volume of <strong>in</strong>formation; This r<strong>en</strong>ders ecological and<br />

biogeographical analyses less detailed, but it also<br />

allows us to create a map on a scale of 1:100,000<br />

for the <strong>en</strong>tire Italian territory which is comparable<br />

to analogous territorial analyses at a European<br />

level.<br />

The CORINE Biotopes system, <strong>in</strong>stead, makes<br />

possible a connection to the national project called<br />

“Carta della Natura” (Nature Map) (AAVV, 2004;<br />

AAVV, 2009a; AAVV, 2009b), which is itself useful<br />

for determ<strong>in</strong><strong>in</strong>g the real distribution of<br />

macromycetes but which could also be used to map<br />

out the pot<strong>en</strong>tial distribution of fungal species.<br />

The availability of data regard<strong>in</strong>g mycological<br />

diversity <strong>in</strong> the CORINE Biotopes and EUNIS<br />

categories also allows us to gather more useful


<strong>in</strong>formation for a full evaluation of habitat diversity<br />

and the vulnerability of these habitats.<br />

Dur<strong>in</strong>g the creation of the mycological datacards,<br />

available from ISPRA, several fundam<strong>en</strong>tal<br />

guidel<strong>in</strong>es for their use <strong>in</strong> high-level CORINE and<br />

EUNIS classification schemes were established.<br />

Beyond the data normally conta<strong>in</strong>ed <strong>in</strong> mycological<br />

datacards, it was found to be ess<strong>en</strong>tial to:<br />

• For mixed consortia, besides the<br />

dom<strong>in</strong>ant plant species, state the codom<strong>in</strong>ant<br />

ones also, both <strong>in</strong> the canopy,<br />

and the shrub layer and ground cover.<br />

Usually, three or four species are<br />

suffici<strong>en</strong>t to id<strong>en</strong>tify the habitat.<br />

• Increase as far as possible the site<br />

<strong>in</strong>formation with geological substrata<br />

<strong>in</strong>formation, height and geographic<br />

location (WGS 84 for the Carta della<br />

Natura and CORINE Land Cover).<br />

• For garigue and mediterranean<br />

undergrowth formations, <strong>in</strong>dicate the<br />

height of natural surface levels, as the<br />

CORINE Biotopes and EUNIS categories<br />

dist<strong>in</strong>guish betwe<strong>en</strong> high undergrowth<br />

(>3m) low undergrowth (1-3 m) and<br />

garigue (< 1 m).<br />

• For conifers, it is ess<strong>en</strong>tial to establish<br />

whether they are <strong>in</strong> a natural forest or a<br />

reforestation (<strong>in</strong> the latter case, check<br />

whether the <strong>in</strong>stallation was done with<br />

native or ali<strong>en</strong> species). For this type of<br />

analysis prior knowledge of the natural<br />

formations <strong>in</strong> the analysed area is<br />

necessary.<br />

2.4 Mushrooms as a soil quality<br />

bio<strong>in</strong>dicator<br />

2.4.1 Introduction<br />

2.4.1.1 The quality of the soil-system<br />

The <strong>en</strong>vironm<strong>en</strong>tal quality of an area or territory<br />

can be estimated by the use of effective <strong>in</strong>dicators<br />

whereby these <strong>in</strong>dicators are designated as<br />

<strong>in</strong>strum<strong>en</strong>ts capable of repres<strong>en</strong>t<strong>in</strong>g particular<br />

<strong>en</strong>vironm<strong>en</strong>tal conditions.<br />

The quality of a selected <strong>en</strong>vironm<strong>en</strong>tal system<br />

cannot be described by one <strong>in</strong>dicator alone, but<br />

usually needs a comb<strong>in</strong>ation of differ<strong>en</strong>t <strong>in</strong>dicators<br />

which work over differ<strong>en</strong>t scales and which<br />

therefore each have a differ<strong>en</strong>t weight <strong>in</strong> the overall<br />

analysis (B<strong>en</strong>edetti et al., 2006).<br />

A good <strong>in</strong>dicator needs to have certa<strong>in</strong> characteristics<br />

that guarantee repres<strong>en</strong>tativity, accessibility,<br />

trustworth<strong>in</strong>ess and operability. Each <strong>in</strong>dicator has<br />

to furthermore guarantee a certa<strong>in</strong> level of political<br />

relevance and utility, analytical validity and<br />

measurability (OECD, 1999).<br />

The need of turn<strong>in</strong>g to synthetic <strong>in</strong>dicators to<br />

establish soil quality stems from the fact that, be<strong>in</strong>g<br />

a very complex system, oft<strong>en</strong>, through objective<br />

difficulties <strong>in</strong> its measurem<strong>en</strong>t, its importance t<strong>en</strong>ds<br />

to be overlooked. This has led to a decrease of over<br />

10% <strong>in</strong> the productive capacity of cultivated land<br />

worldwide s<strong>in</strong>ce the early ‘80s as soil erosion,<br />

pollution, aggressive modern farm<strong>in</strong>g methods,<br />

graz<strong>in</strong>g, salification and, above all, desertification<br />

due to the loss of organic substances and<br />

biodiversity all take their toll.<br />

Among the various def<strong>in</strong>itions of soil quality, one<br />

of the most widely-accepted is that of Doran and<br />

Park<strong>in</strong> (1994) who def<strong>in</strong>ed it as “the ability of soil<br />

to <strong>in</strong>teract with the ecosystem to ma<strong>in</strong>ta<strong>in</strong><br />

biological productivity, <strong>en</strong>vironm<strong>en</strong>tal quality and<br />

to promote plant and animal health”. In reality,<br />

many sci<strong>en</strong>tists l<strong>in</strong>k soil quality with a fundam<strong>en</strong>tal<br />

conceptual place <strong>in</strong> regards to territorial plann<strong>in</strong>g<br />

and company managem<strong>en</strong>t, add<strong>in</strong>g the vocational<br />

concept of “fit for” to it and th<strong>en</strong> focus<strong>in</strong>g<br />

primarily on what the soil will be used for.<br />

From <strong>in</strong>spection of the sci<strong>en</strong>tific literature on the<br />

subject one quickly notes that there is no s<strong>in</strong>gle<br />

parameter or universal <strong>in</strong>dicator capable of def<strong>in</strong><strong>in</strong>g<br />

every s<strong>in</strong>gle situation or <strong>en</strong>vironm<strong>en</strong>tal pressure;<br />

<strong>in</strong>stead, each time a situation arises it is necessary<br />

to determ<strong>in</strong>e the most appropriate parameters to<br />

measure that particular <strong>en</strong>vironm<strong>en</strong>t, which,<br />

afterwards may be used to monitor the state of the<br />

soil under its new use (Doran et al., 1994).<br />

In the Mediterranean area, which is at risk of<br />

desertification ow<strong>in</strong>g to the marked loss of organic<br />

substances and biodiversity of its soil, bio<strong>in</strong>dicators<br />

– those liv<strong>in</strong>g organisms that can be used as <strong>en</strong>vironm<strong>en</strong>tal<br />

<strong>in</strong>dicators – are of particular importance.<br />

Beyond the traditional exist<strong>en</strong>ce of “<strong>in</strong>dex species”,<br />

which underl<strong>in</strong>e the necessity of hav<strong>in</strong>g systems of<br />

<strong>in</strong>dicators at diverse trophic levels to obta<strong>in</strong> precise<br />

answers from such complex objects as the<br />

35


Mediterranean soil, there is now the need to replace<br />

this with a concept of ecosystem functionality and<br />

to employ those organisms or <strong>in</strong>dicators that can<br />

tell us someth<strong>in</strong>g about how regularly an ecological<br />

system is carry<strong>in</strong>g out its role or how much an<br />

ecological function is slow<strong>in</strong>g down or accelerat<strong>in</strong>g<br />

<strong>in</strong> response to <strong>en</strong>vironm<strong>en</strong>tal or anthropic<br />

pressures.<br />

Of particular usefulness to <strong>en</strong>vironm<strong>en</strong>tal sci<strong>en</strong>tists<br />

are biochemical <strong>in</strong>dicators that describe the<br />

metabolic processes at work <strong>in</strong> the soil and,<br />

therefore, provide a summary of how well-work<strong>in</strong>g<br />

nutritional cycles are. We can discover this<br />

<strong>in</strong>formation by look<strong>in</strong>g at the dosage of molecules<br />

or process-mark<strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> them.<br />

This is the case, for example, for the determ<strong>in</strong>ation<br />

of soil respiration by measur<strong>in</strong>g the CO 2 flows,<br />

which def<strong>in</strong>e all aerobic processes <strong>in</strong> the soil and<br />

therefore govern the organic-matter m<strong>in</strong>eralization<br />

processes as well. Or, the determ<strong>in</strong>ation of<br />

<strong>en</strong>zymatic levels, which <strong>in</strong> addition to metabolic<br />

functions can impact g<strong>en</strong>etic diversity by<br />

repres<strong>en</strong>t<strong>in</strong>g the ph<strong>en</strong>otypic expression of one<br />

produc<strong>in</strong>g organism rather than another.<br />

2.4.1.2 Soil ecology<br />

Soil is <strong>in</strong> a close relationship with the plants it<br />

supports and thereby forms a unique ecosystem<br />

with these and other microorganisms. Its fertility is<br />

<strong>in</strong> fact def<strong>in</strong>ed as the capacity of the soil to r<strong>en</strong>der<br />

crops productive. Normally we speak about<br />

chemical fertility (the sum of nutritional <strong>elem<strong>en</strong>ts</strong><br />

capable of be<strong>in</strong>g absorbed by crops), physical<br />

fertility (structure, terra<strong>in</strong> consist<strong>en</strong>cy, etc.) and<br />

biological fertility (Bloem et al., 2006).<br />

The concept of biological fertility, however, has<br />

only really be<strong>en</strong> established over the last 20 years;<br />

its aim has usually be<strong>en</strong> to characterise soil<br />

metabolism and microbic turnover.<br />

The function of microorganisms <strong>in</strong> the soil is multifaceted.<br />

It is expressed <strong>in</strong> both pedog<strong>en</strong>ic processes<br />

and <strong>in</strong> the regulation of nutri<strong>en</strong>t cycles, and thus <strong>in</strong><br />

plant nutrition. Microorganisms are <strong>in</strong>volved <strong>in</strong> the<br />

m<strong>in</strong>eralisation of organic matter, <strong>in</strong> the synthesis of<br />

nitrog<strong>en</strong>, <strong>in</strong> the formation of humus and also<br />

impact the mobilisation of m<strong>in</strong>eral <strong>elem<strong>en</strong>ts</strong><br />

(Lavelle et al., 2001).<br />

The soil, however, is also an extremely vital <strong>en</strong>tity<br />

and as such parallel studies have be<strong>en</strong> carried out<br />

aim<strong>in</strong>g to understand the synergistic and<br />

competitive relationships betwe<strong>en</strong> microorganisms<br />

36<br />

and mycorrhizae/carpophores <strong>in</strong> diverse<br />

pedological situations (Ste<strong>in</strong>aker et al., 2008).<br />

Rec<strong>en</strong>tly soil fauna has be<strong>en</strong> the object of careful<br />

research and correlations betwe<strong>en</strong> their pres<strong>en</strong>ce<br />

and the developm<strong>en</strong>t of fungal fruit<strong>in</strong>g bodies has<br />

started to emerge. For example, to guarantee the<br />

normal developm<strong>en</strong>t of a Tuber ascocarp, that<br />

organism needs to absorb the nutritional substances<br />

– <strong>in</strong> particular, small organic molecules and<br />

m<strong>in</strong>eral salts – from a land mass which is fairly rich<br />

<strong>in</strong> humus and which is equal to around double the<br />

average range of the truffle (Granetti et al., 2005).<br />

This volume of earth, unfortunately, cannot be<br />

explored by the strands of hyphae that are formed<br />

by the ascocarp because they are of <strong>in</strong>suffici<strong>en</strong>t<br />

l<strong>en</strong>gth. Instead, to facilitate nutrition, truffles take<br />

advantage of the soil microfauna, the biological<br />

activity of which <strong>en</strong>sures a cont<strong>in</strong>uous supply of<br />

nutri<strong>en</strong>ts to the immediate vic<strong>in</strong>ity of the<br />

carpophore. Ev<strong>en</strong> the relationships betwe<strong>en</strong><br />

ectomycorrhizal hyphae and soil fauna, <strong>in</strong>clud<strong>in</strong>g<br />

the relation betwe<strong>en</strong> the various biotic compon<strong>en</strong>ts<br />

and their pot<strong>en</strong>tial function as <strong>in</strong>dicators, have be<strong>en</strong><br />

exam<strong>in</strong>ed <strong>in</strong> detail dur<strong>in</strong>g research <strong>in</strong>to the most<br />

precious Tuber species (Callot et al., 1999). These<br />

studies analysed the roles and relationships<br />

betwe<strong>en</strong> the various compon<strong>en</strong>ts and established<br />

new foundations for future experim<strong>en</strong>tation on soil<br />

bio<strong>in</strong>dication.<br />

The term microfauna of the soil, <strong>in</strong> its widest<br />

s<strong>en</strong>se, <strong>in</strong>cludes a complex series of animal species<br />

of vary<strong>in</strong>g shape, dim<strong>en</strong>sion and role. Species with<br />

<strong>in</strong>dividuals betwe<strong>en</strong> 0.01 and 0.2 mm fall <strong>in</strong>to this<br />

category: protozoa that m<strong>in</strong>eralize nitrog<strong>en</strong>,<br />

phosphorus and sulphur, mak<strong>in</strong>g easily absorbed<br />

nutritional substances available to hyphae; and<br />

nematodes that feed on bacteria, protozoa and<br />

fungal hyphae and are <strong>in</strong>volved <strong>in</strong> the<br />

decomposition of underground carpophores<br />

(Lavelle et al., 2001; Callot et al., 1999).<br />

The mesofauna consists of animal species measur<strong>in</strong>g<br />

from 0.2 to 2 mm, mostly mites and ticks,<br />

other microarthropods (protura, diplura, symphyla,<br />

pauropoda, pseudoscorpions, etc.), and<br />

<strong>en</strong>chytraeidic annelids (oligochaetes), which<br />

display some of the most diverse and specialised<br />

eat<strong>in</strong>g habits around (Lavelle et al., 2001; Siepel,<br />

1994); many microfitofagous and detritivorous<br />

species feed on mycorrhizal hyphae and tufts of<br />

mycelium from carpophores. Their catabolites (rich<br />

<strong>in</strong> undigested fungal hyphae) are a food source for<br />

earthworms (annellids) and nutritional hyphae of<br />

fungal species (Callot et al., 1999), the spores of


wich are <strong>in</strong>oculated <strong>in</strong> mesofauna fecal pellets,<br />

sometimes <strong>in</strong> organic and organo-m<strong>in</strong>eral<br />

compounds (Lavelle et al., 2001; Siepel, 1994),<br />

which have an <strong>en</strong>ormous positive effect on the<br />

growth rates of fungal hyphae.<br />

Macrofauna <strong>in</strong>cludes all <strong>in</strong>dividuals larger than<br />

2 mm; among others earthworms, snails, isopods,<br />

spiders, opiliones, chilopoda (c<strong>en</strong>tipedes),<br />

diplopoda (millipedes) and many <strong>in</strong>sects, mostly<br />

larvae and adult beetles, flies, termites and ants.<br />

These organisms contribute to vary<strong>in</strong>g degrees<br />

towards decomposition and vertical and horizontal<br />

remix<strong>in</strong>g of organic matter, which can be of<br />

vegetable, animal or fungal orig<strong>in</strong> (Lavelle et al.,<br />

2001; M<strong>en</strong>ta, 2008).<br />

The function fulfilled by earthworms takes on<br />

particular relevancy, where, by feed<strong>in</strong>g on organic<br />

fragm<strong>en</strong>ts, the excretions of mites and ticks and<br />

m<strong>in</strong>eral particles, they produce catabolites of<br />

around 1 mm <strong>in</strong> size, surrounded by a mucus-like<br />

<strong>in</strong>test<strong>in</strong>al material (Lavelle et al., 2001; Lavelle,<br />

1997), which are easily and quickly colonised by<br />

the nutritional hyphae of the fungal species. The<br />

fungi also derive great b<strong>en</strong>efits from the aeration<br />

produced by the tunnels these earthworms dig,<br />

which can be up to 2.5 metres deep. Ev<strong>en</strong> ants<br />

provide soil aeration with their tunnels, which can<br />

be at depths of 70-80 cm, but their most important<br />

function is the mov<strong>in</strong>g of material accumulated<br />

dur<strong>in</strong>g the excavation of tunnels from lower strata<br />

towards the surface and thus elim<strong>in</strong>at<strong>in</strong>g the<br />

negative impact of ra<strong>in</strong>water runoff on nutri<strong>en</strong>ts.<br />

(Granetti et al., 2005).<br />

2.4.2 Mushrooms as <strong>in</strong>dicators<br />

2.4.2.1 <strong>mushrooms</strong> as <strong>in</strong>dicators of particular<br />

soil characteristics<br />

Mushrooms may assume the role of bio<strong>in</strong>dicators<br />

<strong>in</strong> a giv<strong>en</strong> ecosystem. In particular we should<br />

underl<strong>in</strong>e the <strong>en</strong>ormous contribution to this<br />

situation made by the studies carried out over the<br />

last 40 years on valuable truffles (ectomycorrhizal<br />

species) to achieve a proper artificial cultivation<br />

and production of them.<br />

Analysis of soil characteristics (profile, particle<br />

size, pH, cont<strong>en</strong>t of m<strong>in</strong>erals, <strong>in</strong>clud<strong>in</strong>g trace<br />

<strong>elem<strong>en</strong>ts</strong>, organic compon<strong>en</strong>t, macro and micro<br />

porosity) have provided a database that is help<strong>in</strong>g<br />

to shed light on the complex relationships betwe<strong>en</strong><br />

soil and fungi. Investigations based on ecological<br />

study <strong>in</strong> artificial ecosystems have shown that some<br />

fungi can be id<strong>en</strong>tified as <strong>in</strong>dicators of undisturbed<br />

natural forests and can demonstrate the degree of<br />

trunk decomposition (Holmer, 1997). Accord<strong>in</strong>g to<br />

these authors, however, studies of fungal<br />

propagation should consider all the mycelium and<br />

not only the fruit<strong>in</strong>g bodies, which constitute a<br />

m<strong>in</strong>or part <strong>in</strong> the vegetative body of a fungus. In<br />

g<strong>en</strong>eral, epigean and hypogean fungi and other<br />

microorganisms that colonise the humic layer of<br />

soil t<strong>en</strong>d to prefer acid or sub-alkal<strong>in</strong>e reactant<br />

substrates; alternatively they t<strong>en</strong>d to be resistant to<br />

thermal stress and stresses deriv<strong>in</strong>g from water. It<br />

is not by chance that microbial taxonomy splits<br />

organisms <strong>in</strong>to groups that demonstrate such<br />

characteristics as be<strong>in</strong>g thermophilic, cryophilic or<br />

alkaphilic, accord<strong>in</strong>g to whether they need to exist<br />

at very high temperatures or <strong>in</strong> places with near<br />

eternal snowfall or <strong>in</strong> ground with sub-alkal<strong>in</strong>e pH.<br />

Mushrooms t<strong>en</strong>d to grow <strong>in</strong> soils with vary<strong>in</strong>g pH<br />

levels, from sub-alkal<strong>in</strong>e to subacid, although many<br />

species prefer soil of around pH 7. Studies on the<br />

pH of natural soils conducted <strong>in</strong> differ<strong>en</strong>t wooded<br />

areas showed a range of levels from 4.8 to 8 with<br />

an optimal value of 7.2 found <strong>in</strong> woods with gre<strong>en</strong><br />

cover <strong>in</strong> excell<strong>en</strong>t health with no loss of branches<br />

and/or leaves. The pH of these forest floors is<br />

affected by the number of trees per hectare and the<br />

type of vegetation cover of the soil (Bersan, com.<br />

pers., 2002).<br />

Research carried out to <strong>in</strong>crease knowledge and<br />

improve cultivation of the ecological characteristics<br />

of hypogeous fungi, especially the precious tuber<br />

varieties, showed soil pH levels rang<strong>in</strong>g from 7 to<br />

8.3 dep<strong>en</strong>d<strong>in</strong>g on the species studied (Granetti,<br />

1994).<br />

In g<strong>en</strong>eral, Tuber ascocarps have improved growth<br />

wh<strong>en</strong> their hyphae live <strong>in</strong> micro-<strong>en</strong>vironm<strong>en</strong>ts with<br />

a pH 6.0, while other ectomycorrhiza develop best<br />

<strong>in</strong> substrates that range from subalkal<strong>in</strong>e to alkal<strong>in</strong>e<br />

(from pH 7 to over 8) (Granetti et al., 2005).<br />

Various studies carried out on naturally occurr<strong>in</strong>g<br />

Tuber sites have demonstrated the follow<strong>in</strong>g<br />

characteristics for the differ<strong>en</strong>t species:<br />

1. T. melanosporum Vittad. (Fig. 12) usually<br />

prefers richly skeletal soil with the rema<strong>in</strong><strong>in</strong>g<br />

parts made up of f<strong>in</strong>e soil (sandy-loam<br />

texture). The pH is very uniform and has an<br />

average of 8.0 ± 0.4 pH (hav<strong>in</strong>g extremes of<br />

5.7 and 8.25). Most of the soils studied <strong>in</strong><br />

three regions of c<strong>en</strong>tral Italy have a pH of<br />

around 8, and an average skeleton of 52% <strong>in</strong><br />

37


38<br />

Abruzzo, 54% <strong>in</strong> Lazio and 52% <strong>in</strong> Umbria (B<strong>en</strong>civ<strong>en</strong>ga et al., 1990 ).<br />

Fig. 12. Tuber melanosporum Vitt. (Prized black truffle from Norcia) (Photo: AMB – CSM Archives).<br />

2. For T. aestivum Vittad. (Fig. 13) the soil is<br />

19 cm deep on average, with a soil skeleton<br />

made of limestone (20%) and f<strong>in</strong>e earth<br />

(80%); of which 16% is sand, 56% silt and<br />

28% clay. The pH is 7.7 on average<br />

(B<strong>en</strong>civ<strong>en</strong>ga et al., 1996).2.<br />

Fig. 13. Tuber aestivum Vitt. (Summer truffle or scorzone) (Photo: AMB – CSM Archives),<br />

3. T. aestivum Vittad. f. unc<strong>in</strong>atum (Chat<strong>in</strong>)<br />

Montecchi & Borelli 1 ; prefers soil on average<br />

28 cm deep, with a skeleton consist<strong>in</strong>g of 10%<br />

limestone and the rema<strong>in</strong><strong>in</strong>g 90% f<strong>in</strong>e earth<br />

4. T. mes<strong>en</strong>tericum Vittad., on average, is<br />

found <strong>in</strong> soil deeper than 30 cm, soft or<br />

compacted, as <strong>in</strong> road cutt<strong>in</strong>gs where<br />

macadam limestone with a neutral or subalkal<strong>in</strong>e<br />

pH accumulates (Pal<strong>en</strong>zona et al.,<br />

1976). Other studies <strong>in</strong> Irp<strong>in</strong>ia (Campania)<br />

found it <strong>in</strong> sandy-loam soil with low levels of<br />

(28% sand, 56% silt and 47% clay). The pH<br />

varies from 7.0 to 7.8 with diverse amounts of<br />

organic matter (B<strong>en</strong>civ<strong>en</strong>ga et al., 1996).<br />

soil skeleton and greater perc<strong>en</strong>tages of<br />

limestone [which almost always <strong>en</strong>sures a pH<br />

close to neutral (7.7)] and <strong>in</strong> some cases, the<br />

pH drops to subacid levels (B<strong>en</strong>civ<strong>en</strong>ga et al.,<br />

1996).<br />

1 This taxonomic <strong>en</strong>tity is recorded as a variety (described <strong>in</strong> 1998 by Ian R. Hall, Peter Buchanan, Wang Yun and Anthony L.J. Cole), referred to<br />

and recorded <strong>in</strong> the CABI (Commonwealth Agricultural Bureaux International) “Index Fungorum” database (RecordID = 318194)<br />

(http://www.<strong>in</strong>dexfungorum.org). After appropriate evaluation, we prefer to classify this <strong>en</strong>tity as a form, as suggested by Montague & Borelli <strong>in</strong><br />

1995 and <strong>in</strong> (Montecchi et al., 2000).


5. T. magnatum Pico (Fig. 14) can be found <strong>in</strong><br />

deep soil with a poor skeleton but rich <strong>in</strong> silt<br />

and clay, which make up a skeleton of 68.4%.<br />

pH levels are close to 8 and vary little<br />

(B<strong>en</strong>civ<strong>en</strong>ga et al., 1988).<br />

Fig. 14. Tuber magnatum Pico (Prized white truffle from Alba) (Photo: AMB – CSM Archives).<br />

6. T. borchii Vittad.; is found <strong>in</strong> soil with an<br />

average skeleton of 31.7%, the rema<strong>in</strong>der<br />

be<strong>in</strong>g on average 66.3% sand, 23.2% silt, and<br />

13.2% clay. The pH varies from 7.5 to 8.0<br />

with average values of 7.6 (Giovagnotti et al.,<br />

1999).<br />

2.4.2.2 Mushrooms as <strong>in</strong>dicators of ongo<strong>in</strong>g<br />

degradation<br />

Some fungal species, by their mere pres<strong>en</strong>ce and<br />

quantity, <strong>in</strong>dicate a curr<strong>en</strong>t imbalance <strong>in</strong> the<br />

ecosystem and can predict other detectable forms<br />

of degradation <strong>in</strong> advance. A fungal species pres<strong>en</strong>t<br />

on the woody rema<strong>in</strong>s and an <strong>in</strong>dicator of<br />

significant amounts of nitrog<strong>en</strong> <strong>in</strong> the substrate is<br />

Megacollybia platyphylla (Pers.) Kotl. & Pouzar,<br />

which, by its <strong>in</strong>tr<strong>in</strong>sic characteristic of act<strong>in</strong>g on<br />

large surfaces with its mycelial cords and<br />

produc<strong>in</strong>g basidiomycetes directly on these<br />

surfaces (Fig. 15), is considered a good <strong>in</strong>dicator of<br />

ongo<strong>in</strong>g forest degradation.<br />

In these cases, the g<strong>en</strong>etic and functional ranges of<br />

fungi provide a large number of species, which<br />

<strong>in</strong>dicate large ecosystem suffer<strong>in</strong>g due to excessive<br />

dead biomass (necromass). We note, among others,<br />

Cerr<strong>en</strong>a unicolor (Bull. : Fr.) Murr., Coriolopsis<br />

gallica Fr. and Trametes trogii Berk., the spores of<br />

which precede the hyphal <strong>en</strong>trance of Megacollybia<br />

platyphylla (Pers. : Fr.) Kotlaba & Pouzar (Bersan,<br />

com. pers., 2002). Ev<strong>en</strong> Clitocybe phaeophthalma<br />

(Pers.) Kuyper is an <strong>in</strong>dicator species, suggest<strong>in</strong>g<br />

excessive amounts of nitrog<strong>en</strong> <strong>in</strong> the substrate, but<br />

unlike Megacollybia platyphylla it has manifold<br />

functions and so its pres<strong>en</strong>ce needs to be evaluated<br />

on a case-by-case basis. For example, an<br />

accumulation of substrate <strong>in</strong> a place with stagnant<br />

water and low v<strong>en</strong>tilation, related to a number of<br />

C. phaeophtalma fruit<strong>in</strong>g bodies, may <strong>in</strong>dicate the<br />

decay of plants <strong>in</strong> the area circumscribed by the<br />

basidiomycetes as the excess necromass <strong>in</strong>hibits the<br />

recycl<strong>in</strong>g processes related to other species of fungi<br />

(Bersan, com. pers., 2002).<br />

39


40<br />

Fig. 15. Rhizomorphs of Megacollybia platyphylla (Pers.: Fr.) Kotl. & Pouzar, with fruit<strong>in</strong>g bodies highlighted (Photo: C. S<strong>in</strong>iscalco).<br />

Other species of gasteroid fungi (Saras<strong>in</strong>i, 2005),<br />

belong<strong>in</strong>g to diverse families (Phallaceae Corda,<br />

Lycoperdaceae Corda, Clathraceae E. Fisch.) are<br />

also <strong>in</strong>dicators of ongo<strong>in</strong>g decay processes: for<br />

2.4.2.3 Mushrooms as <strong>in</strong>dicators of future decay<br />

activites<br />

There are species which, with their fruit<strong>in</strong>g bodies,<br />

by feed<strong>in</strong>g on the by-products of other fungal<br />

species (primary degraders) <strong>in</strong>dicate ecosystem<br />

changes that will only be perceivable to us <strong>in</strong> the<br />

distant future (wh<strong>en</strong> these primary degraders, with<br />

their long cycles, fruit).<br />

Ow<strong>in</strong>g to characteristics connected to their<br />

biological cycle, several species of the g<strong>en</strong>us<br />

Myc<strong>en</strong>a (Pers.) Roussel have this predictive<br />

Fig. 16. Clathrus ruber P. Micheli ex Pers. (Photo: C. S<strong>in</strong>iscalco).<br />

example, Mut<strong>in</strong>us can<strong>in</strong>us (Huds. : Pers.) Fr.,<br />

Lycoperdon pyriforme Schaeff. : Pers., Clathrus<br />

ruber Micheli : Pers. (Fig. 16) (Bersan, com. pers.,<br />

2002).<br />

capacity (Robich, 2003): Myc<strong>en</strong>a rosea (Schumac.)<br />

Gramberg; Myc<strong>en</strong>a pura (Pers. : Fr.) P. Kumm.;<br />

Myc<strong>en</strong>a pelianth<strong>in</strong>a (Fr.) Quél.; Myc<strong>en</strong>a<br />

galericulata (Scop. : Fr.) Gray; Prunulus niveipes<br />

Murril [S<strong>in</strong>. Myc<strong>en</strong>a niveipes (Murrill) Murrill];<br />

Myc<strong>en</strong>a polygramma (Bull. : Fr.) Gray; Myc<strong>en</strong>a<br />

amicta (Fr.) Quél.; Myc<strong>en</strong>a flavoalba (Fr.) Quél.<br />

Myc<strong>en</strong>a rosea has established itself as an excell<strong>en</strong>t<br />

<strong>in</strong>dicator of biodegradation caused by primary<br />

fungal ag<strong>en</strong>ts (Fig. 17) (Bersan, com. pers., 2002).


2.4.2.3 Mushrooms as <strong>in</strong>dicators of habitat<br />

diversity<br />

Organisms capable of <strong>in</strong>dicat<strong>in</strong>g biological<br />

diversity <strong>in</strong> terms of richness and population<br />

abundance are very important for the understand<strong>in</strong>g<br />

and conservation of ecosystems. Ev<strong>en</strong> <strong>mushrooms</strong>,<br />

th<strong>en</strong>, can be used <strong>in</strong> the study and monitor<strong>in</strong>g of<br />

biodiversity of an ecosystem or an <strong>en</strong>vironm<strong>en</strong>t<br />

(B<strong>en</strong>edetti et al., 2006).<br />

Regard<strong>in</strong>g mycological <strong>elem<strong>en</strong>ts</strong>, several studies<br />

were conducted by APAT (today the ISPRA) as of<br />

2003 to build databases <strong>in</strong> collaboration with the<br />

Associazione Micologica Bresadola, C<strong>en</strong>tro Studi<br />

Micologici (AMB. - CSM), who have the mandate<br />

to conduct the first stages of habitat-l<strong>in</strong>k<strong>in</strong>g<br />

betwe<strong>en</strong> the nationally-recognised habitats to their<br />

CORINE Biotopes and Natura 2000 equival<strong>en</strong>ts<br />

(S<strong>in</strong>iscalco, 2008; 2009).<br />

As an example of a similar activity, we can cite the<br />

prelim<strong>in</strong>ary analysis conducted on some habitats of<br />

European importance that has allowed for certa<strong>in</strong><br />

guide species to be id<strong>en</strong>tified for dune<br />

<strong>en</strong>vironm<strong>en</strong>ts (Bianco et al., 2009).<br />

Species lists for each habitat have be<strong>en</strong> created.<br />

These are based on available national data and are<br />

made accord<strong>in</strong>g to the frequ<strong>en</strong>cy of occurr<strong>en</strong>ce of<br />

each species.<br />

Characteristic and differ<strong>en</strong>tial species have<br />

emerged wh<strong>en</strong> compar<strong>in</strong>g their pres<strong>en</strong>ce and<br />

frequ<strong>en</strong>cy with other habitats; frequ<strong>en</strong>t species are<br />

those with high levels of occurr<strong>en</strong>ce, but also<br />

pres<strong>en</strong>t <strong>in</strong> other habitats. These species (n. =177)<br />

repres<strong>en</strong>t an <strong>in</strong>itial sampl<strong>in</strong>g of precious ecological<br />

<strong>elem<strong>en</strong>ts</strong> and <strong>en</strong>vironm<strong>en</strong>tal quality <strong>in</strong>dicators<br />

(Bianco et al., 2009).<br />

Fig. 17. Myc<strong>en</strong>a rosea (Schumac.) Gramberg (Photo: AMB – CSM Archives).<br />

2.4.2.4 The trophic qualities of fungi as a key<br />

function of processes l<strong>in</strong>ked to soil fertility<br />

Mushrooms are <strong>in</strong>creas<strong>in</strong>gly becom<strong>in</strong>g a pr<strong>in</strong>cipal<br />

tool <strong>in</strong> land-quality monitor<strong>in</strong>g thanks to their<br />

specialised trophic activities which guarantee them<br />

a spot <strong>in</strong> all the national habitats.<br />

Mushrooms, along with bacteria and other<br />

microorganisms, <strong>en</strong>sure the catabolic degradation<br />

of organic substances so as to obta<strong>in</strong> simple<br />

molecules <strong>in</strong> the form of water, carbon dioxide and<br />

m<strong>in</strong>eral salts and also <strong>en</strong>sure the metabolic<br />

synthesis of complex organic and organom<strong>in</strong>eral<br />

molecules that are <strong>in</strong>volved <strong>in</strong> the formation of<br />

humus (Zanella et al., 2001).<br />

Therefore <strong>mushrooms</strong> and microorganisms play a<br />

fundam<strong>en</strong>tal role <strong>in</strong> guarantee<strong>in</strong>g soil fertility and<br />

<strong>in</strong> the abs<strong>en</strong>ce of which the soil would be simply an<br />

<strong>in</strong>ert mechanical support.<br />

Rec<strong>en</strong>t observation (Papetti, pers. comm.) seem to<br />

l<strong>en</strong>d weight to the hypothesis that <strong>in</strong> meadows and<br />

mounta<strong>in</strong>s, the pres<strong>en</strong>ce of fruit<strong>in</strong>g bodies of<br />

Hygrophoraceae (grass symbionts) is limited by<br />

excess nitrog<strong>en</strong> of m<strong>in</strong>eral and organic orig<strong>in</strong>. The<br />

reduction of anthropic nutrition seems th<strong>en</strong> to allow<br />

a return to the soil’s orig<strong>in</strong>al condition, probably<br />

because the mycelium caus<strong>in</strong>g mycorrhizal activity<br />

is not, <strong>in</strong> this case, perman<strong>en</strong>tly affected by<br />

nitrog<strong>en</strong> pollution of the soil.<br />

2.4.2.5 Mycorrhizal fungi as <strong>in</strong>dicators of plant<br />

health<br />

Ectomycorrhizae, besides be<strong>in</strong>g a physical barrier<br />

to the p<strong>en</strong>etration of parasites and be<strong>in</strong>g able to<br />

qualitatively and quantitatively change the<br />

metabolites released <strong>in</strong> the plant rhizosphere, also<br />

41


t<strong>en</strong>d to produce antibiotic compounds that repres<strong>en</strong>t<br />

a barrier aga<strong>in</strong>st many toxic soil microorganisms<br />

(Montecchio, 2008). Understand<strong>in</strong>g the mycorrhizal<br />

metabolism and its work<strong>in</strong>g mechanisms<br />

provides a number of bio<strong>in</strong>dication keys, giv<strong>en</strong> that<br />

the roots of an adult forest plant, normally, can<br />

simultaneously bear mycorrhizal fungi from 30 to<br />

50 differ<strong>en</strong>t species, each able to best develop only<br />

under certa<strong>in</strong> <strong>en</strong>vironm<strong>en</strong>tal, ph<strong>en</strong>ological and soil<br />

microclimate conditions (Koide et al. 2000).<br />

These new bio<strong>in</strong>dication resources allow us to say<br />

that mycorrhizae produc<strong>in</strong>g their fruit<strong>in</strong>g bodies,<br />

<strong>en</strong>able us to monitor their b<strong>en</strong>eficial effects on host<br />

42<br />

plants. For example, Rhizopogon v<strong>in</strong>icolor A. H<br />

Sm. confers greater resistance to drought to<br />

seedl<strong>in</strong>gs of Pseudotsuga m<strong>en</strong>ziesii (Mirbel.)<br />

Franco, while Laccaria lacquer (Scop.) Cooke<br />

shows greater resili<strong>en</strong>ce than Hebeloma<br />

crustul<strong>in</strong>iforme (Bull.) Quélet (Fig. 18), stay<strong>in</strong>g<br />

alive far longer than the plant itself after cutt<strong>in</strong>g<br />

(Parke et al., 1983).<br />

H. crustul<strong>in</strong>iforme shows better effici<strong>en</strong>cy <strong>in</strong> the<br />

nitrog<strong>en</strong> mobilization from prote<strong>in</strong>ous substances<br />

<strong>in</strong> Betula p<strong>en</strong>dula Roth than both Amanita<br />

muscaria (L.) Lam. (Fig. 19) and Paxillus <strong>in</strong>volutus<br />

(Batsch) Fr (Abuz<strong>in</strong>adah et al., 1989).<br />

Fig. 18. Hebeloma crustul<strong>in</strong>iforme (Bull.) Quél. (Photo: AMB – CSM Archives).<br />

Mycorrhizal communities are complex and many<br />

differ<strong>en</strong>t factors <strong>in</strong>flu<strong>en</strong>ce their dynamics <strong>in</strong> various<br />

ways, so that is not possible to speak of a s<strong>in</strong>gle<br />

“mycorrhizal effect”, but many associated effects.<br />

For example, there is a very complex syndrome<br />

that is usually designated with the g<strong>en</strong>eric term<br />

"deterioration". In rec<strong>en</strong>t years, “deterioration” has<br />

Fig. 19. Amanita muscaria (L. : Fr.) Hooker. (Photo: AMB – CSM Archives).<br />

be<strong>en</strong> <strong>in</strong>terpreted and evaluated accord<strong>in</strong>g to<br />

differ<strong>en</strong>t criteria ow<strong>in</strong>g to various studies on the<br />

mycorrhizal community. Research has demonstrated<br />

that the absorb<strong>in</strong>g roots of deteriorat<strong>in</strong>g trees<br />

oft<strong>en</strong> show significant variations <strong>in</strong> the make-up of<br />

mycorrhizal communities (Blaschke, 1994; Caus<strong>in</strong><br />

et al. 1996, Mosca et al., 2007). Oft<strong>en</strong>, the


symptoms of deterioration are observably more<br />

markedly <strong>in</strong> conditions wh<strong>en</strong> there is little water, or<br />

where the water is heavily sal<strong>in</strong>e, which means that<br />

these <strong>en</strong>vironm<strong>en</strong>tal factors can play a more<br />

relevant role than others <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the<br />

deterioration of the lesser resistant plant g<strong>en</strong>otypes<br />

(Schütt et al., 1985; Shi et al., 2002; Manion et al.,<br />

1992). In these cases, it has be<strong>en</strong> observed that the<br />

frequ<strong>en</strong>cy of some ectomycorrhizae is associated<br />

with plant health, thus mean<strong>in</strong>g that it may be<br />

possible to id<strong>en</strong>tify the level and <strong>in</strong>t<strong>en</strong>sity of plant<br />

deterioration, ev<strong>en</strong> <strong>in</strong> a prev<strong>en</strong>tative manner,<br />

through objective underground parameters. It has<br />

be<strong>en</strong> observed, <strong>in</strong> fact, that trees deteriorate<br />

gradually, progressively los<strong>in</strong>g their ability to<br />

select the most effici<strong>en</strong>t mycorrhizal symbionts and<br />

allow<strong>in</strong>g them to be replaced with those better<br />

adapted to the chang<strong>in</strong>g <strong>en</strong>vironm<strong>en</strong>tal conditions.<br />

The relative frequ<strong>en</strong>cy of ectomycorrhizal<br />

communities typically varies significantly betwe<strong>en</strong><br />

healthy and slightly/heavily deterioration po<strong>in</strong>ts,<br />

allow<strong>in</strong>g these communities to be used as<br />

bio<strong>in</strong>dicators of the pres<strong>en</strong>ce and degree of<br />

deterioration (Lilleskov et al. 2001; Loreau et al.,<br />

2001).<br />

2.4.2.6 The pres<strong>en</strong>ce of heavy metals <strong>in</strong><br />

<strong>mushrooms</strong>: a possible new <strong>in</strong>strum<strong>en</strong>t for soil<br />

bio<strong>in</strong>dication<br />

The ability of liv<strong>in</strong>g be<strong>in</strong>gs to exchange <strong>elem<strong>en</strong>ts</strong><br />

and substances creates an ecological cycle that will<br />

cont<strong>in</strong>ue until the sun's <strong>en</strong>ergy is no longer<br />

available, provided that no external factors with an<br />

<strong>in</strong>t<strong>en</strong>sity of disturbance exceed<strong>in</strong>g the homeostatic<br />

capacity of the <strong>in</strong>terested ecosystem are <strong>in</strong>troduced.<br />

The pres<strong>en</strong>ce of man on Earth has had a powerful<br />

impact on these natural cycles by artificially<br />

manipulat<strong>in</strong>g the chemical <strong>elem<strong>en</strong>ts</strong> of life and<br />

dispers<strong>in</strong>g <strong>in</strong> the <strong>en</strong>vironm<strong>en</strong>t synthetic and foreign<br />

(x<strong>en</strong>obiotic) substances that have already <strong>en</strong>tered<br />

the metabolic cycle of organisms (Ravera, 1981). A<br />

survey conducted by the American Chemical<br />

Registry found that over fourte<strong>en</strong> million differ<strong>en</strong>t<br />

chemicals are available on the world market and<br />

t<strong>en</strong> thousand new ones become available every<br />

week. The vast majority of these chemicals have<br />

be<strong>en</strong> (and are still be<strong>in</strong>g) released <strong>in</strong>to the<br />

<strong>en</strong>vironm<strong>en</strong>t and are <strong>in</strong>terfer<strong>in</strong>g with the balance of<br />

terrestrial ecosystems (Sequi, 1981; S<strong>in</strong>iscalco et<br />

al., 2002).<br />

For a long time it was considered that soil was able<br />

to reta<strong>in</strong> pollutants and very quickly damp<strong>en</strong> their<br />

harmful effects. Therefore more att<strong>en</strong>tion was paid<br />

to those <strong>en</strong>vironm<strong>en</strong>tal compartm<strong>en</strong>ts such as air or<br />

surface water resources where the effects of<br />

anthropog<strong>en</strong>ic pollution are more immediately<br />

obvious. The capacity of soil to accumulate<br />

pollutants can <strong>in</strong> fact prev<strong>en</strong>t immediate<br />

contam<strong>in</strong>ation of neighbour<strong>in</strong>g <strong>en</strong>vironm<strong>en</strong>tal<br />

assets, but it may also lead to a sudd<strong>en</strong> release of<br />

pollutants once ret<strong>en</strong>tion limits are exceeded<br />

(Gall<strong>in</strong>i, 2002).<br />

Mycelium <strong>in</strong> the soil is <strong>in</strong> direct contact with the<br />

external <strong>en</strong>vironm<strong>en</strong>t and can absorbe and<br />

accumulate heavy ions. These, <strong>in</strong> turn, may be<br />

transferred with<strong>in</strong> the cell. This ph<strong>en</strong>om<strong>en</strong>on<br />

occurs <strong>in</strong> differ<strong>en</strong>t ways across various fungal<br />

families and species. There have be<strong>en</strong> numerous<br />

studies over the past tw<strong>en</strong>ty years, particularly <strong>in</strong><br />

Europe, exam<strong>in</strong><strong>in</strong>g the pres<strong>en</strong>ce of heavy metals <strong>in</strong><br />

<strong>mushrooms</strong> and the results show heterog<strong>en</strong>eous<br />

behaviour betwe<strong>en</strong> species (S<strong>in</strong>iscalco et al., 2001).<br />

Many metals that are pres<strong>en</strong>t <strong>in</strong> trace amounts on<br />

earth are ess<strong>en</strong>tial for growth and reproduction of<br />

microorganisms. Differ<strong>en</strong>t conc<strong>en</strong>trations of heavy<br />

metals <strong>in</strong> soil affect the composition of fungal<br />

communities pres<strong>en</strong>t <strong>in</strong> the litter and soil (Onofri et<br />

al., 1999). In the last decade there has be<strong>en</strong> a<br />

grow<strong>in</strong>g conviction that the results of these studies<br />

require a ref<strong>in</strong>em<strong>en</strong>t of analysis so as to achieve the<br />

creation of a comparative tool, to be called the<br />

“refer<strong>en</strong>ce mushroom” (Cocchi et al., 2006). Wh<strong>en</strong><br />

such a refer<strong>en</strong>ce has be<strong>en</strong> developed for each<br />

species, this could help to shed light on the<br />

physiological function of chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong><br />

fungi; it will give us more <strong>in</strong>formation on<br />

bio<strong>in</strong>dication and taxonomic assessm<strong>en</strong>t and no<br />

less importantly, it will provide an estimate of the<br />

volume of heavy metals that are <strong>in</strong>gested through<br />

diet by man and other liv<strong>in</strong>g be<strong>in</strong>gs (Cocchi 2009).<br />

Refer<strong>en</strong>ce <strong>mushrooms</strong> are probably a very valid<br />

<strong>in</strong>strum<strong>en</strong>ts for evaluat<strong>in</strong>g soil biodiversity and the<br />

ecosystems which are connected to the soil (Petr<strong>in</strong>i<br />

et al., 2009).<br />

From a functional po<strong>in</strong>t of view the complex<br />

formed by hyphal emanations from ectotrophic<br />

mycorrhizae and its connected mycocl<strong>en</strong>a<br />

mobilises various m<strong>in</strong>erals, start<strong>in</strong>g with prote<strong>in</strong>s,<br />

<strong>in</strong> order to protect the apex from those toxic<br />

pollutants (<strong>in</strong>clud<strong>in</strong>g heavy metals) that are <strong>in</strong> the<br />

soil at mycotoxic conc<strong>en</strong>tration levels (Rousseau et<br />

al., 1994).<br />

43


Absorption of heavy metal not only <strong>in</strong>hibits fungal<br />

growth but also causes physiological and<br />

morphological changes. Their toxic effect seems to<br />

be ma<strong>in</strong>ly exerted on <strong>en</strong>zymes. Growth <strong>in</strong>hibition<br />

may be caused by catalytically active groups be<strong>in</strong>g<br />

masked; prote<strong>in</strong> d<strong>en</strong>aturation; steric conformation<br />

be<strong>in</strong>g modified; or by the activation of other sites<br />

<strong>in</strong>volved <strong>in</strong> the formation of <strong>en</strong>zyme-substrate<br />

complexes compet<strong>in</strong>g with those normally pres<strong>en</strong>t.<br />

These toxic actions vary from species to species<br />

and dep<strong>en</strong>d on metal conc<strong>en</strong>trations and exposure<br />

time (Onofri et al., 1999; Tyler et al., 1989).<br />

2.4.2.7 mycorrhizal fungi as <strong>in</strong>dicators of the<br />

quality and health of the plant-soil complex<br />

In mycorrhizal symbiosis, the positive effects of<br />

nutritional exchanges can be observed <strong>in</strong> the<br />

metabolisms of both partners. The effici<strong>en</strong>cy of<br />

these associations varies accord<strong>in</strong>g to a series of<br />

dynamic <strong>in</strong>teractions which <strong>in</strong>volve not only the<br />

plant and the fungus, but other <strong>en</strong>vironm<strong>en</strong>tal and<br />

pedological factors and the relationships that are<br />

established betwe<strong>en</strong> these variables (Montecchio,<br />

2008).<br />

Mycorrhizal fungi can be used as soil-quality<br />

<strong>in</strong>dicators because they carry out key functions<br />

with<strong>in</strong> the soil. The id<strong>en</strong>tification of easily<br />

monitorable metabolic markers makes the<br />

observation and evaluation of changes which can<br />

affect soil <strong>en</strong>vironm<strong>en</strong>t functionality possible. A<br />

good example for this is glomal<strong>in</strong>, a hydrophobic<br />

glycoprote<strong>in</strong> produced by arbuscular mycorrhizal<br />

(AM) fungi (Wright et al., 1996). Glomal<strong>in</strong><br />

accumulates <strong>in</strong> soil <strong>in</strong> the form of a prote<strong>in</strong>ous<br />

substance known as Glomal<strong>in</strong> Related Soil Prote<strong>in</strong><br />

(GRSP). GRSP is an easily measurable marker that<br />

can determ<strong>in</strong>e the medium- to long-term activity of<br />

AM fungi. It has be<strong>en</strong> demonstrated that this<br />

marker is not only s<strong>en</strong>sitive to <strong>en</strong>vironm<strong>en</strong>tal<br />

changes such as the <strong>in</strong>crease of atmospheric CO 2<br />

(Rillig et al., 2000) and to various soil use and<br />

managem<strong>en</strong>t systems (Bed<strong>in</strong>i et al., 2007), but also<br />

bears a high correlation to the stability of particle<br />

aggregations with<strong>in</strong> the soil (Bed<strong>in</strong>i et al., 2009),<br />

an important parameter of the soil’s own<br />

functionality.<br />

2.4.2.8 Mushrooms and the health of the plantsoil<br />

complex<br />

It is rather difficult to make use of the values<br />

supplied by mycological and microbiological<br />

44<br />

parameters because soil microorganisms and fungi<br />

<strong>in</strong> the litter react very quickly to seasonal changes<br />

and rapidly adapt to differ<strong>en</strong>t <strong>en</strong>vironm<strong>en</strong>tal needs.<br />

Thus it becomes difficult to dist<strong>in</strong>guish natural<br />

fluctuations from changes caused by human<br />

activity, especially wh<strong>en</strong> the data are recorded<br />

without a control group, as is the case <strong>in</strong> natural<br />

systems.<br />

Several authors have proposed solutions to this<br />

issue. Brookes (1994), for <strong>in</strong>stance, states that no<br />

parameter can be used <strong>in</strong> isolation but rather a<br />

whole series of correlated parameters should be<br />

jo<strong>in</strong>tly considered so as to create a k<strong>in</strong>d of “<strong>in</strong>ternal<br />

control group”, as is the case wh<strong>en</strong> consider<strong>in</strong>g<br />

carbon <strong>in</strong> microbial biomass and the total organic<br />

carbon <strong>in</strong> soil. Wh<strong>en</strong> a soil sample pres<strong>en</strong>ts a<br />

significant variation from “normal” values<br />

(Cbiomass/C total organic <strong>in</strong> soil) <strong>in</strong> a particular soil<br />

managem<strong>en</strong>t system under particular climatic and<br />

soil type conditions, this value th<strong>en</strong> becomes an<br />

<strong>in</strong>dicator of the soil’s chang<strong>in</strong>g ecosystem<br />

functionality.<br />

There is actually an almost l<strong>in</strong>ear relationship<br />

betwe<strong>en</strong> these two variables, ev<strong>en</strong> if large<br />

discrepancies may exist betwe<strong>en</strong> soils with<br />

differ<strong>in</strong>g physical characteristics or which are<br />

managed differ<strong>en</strong>tly (Bloem et al., 2006).<br />

Many studies have be<strong>en</strong> conducted on the<br />

possibility of us<strong>in</strong>g microbiological and biochemical<br />

parameters to characterize soil microbial<br />

diversity <strong>in</strong> both g<strong>en</strong>etic and functional terms.<br />

Firstly, one must determ<strong>in</strong>e the pres<strong>en</strong>ce of<br />

microbial life <strong>in</strong> soil and its order of magnitude;<br />

next it is ess<strong>en</strong>tial to understand which functions<br />

the liv<strong>in</strong>g population has and how active it is; th<strong>en</strong><br />

f<strong>in</strong>ally, it is important to determ<strong>in</strong>e the structure of<br />

the microbial and mycological communities there<strong>in</strong><br />

and the relationships they establish with plants<br />

(ISPRA, 2009).<br />

Microbiological and biochemical methods are now<br />

able to provide necessary <strong>in</strong>formation on soils.<br />

Rec<strong>en</strong>tly Bloem et al. (2006) have divided these<br />

methods <strong>in</strong>to four groups dep<strong>en</strong>d<strong>in</strong>g on the type of<br />

<strong>in</strong>formation they can provide:<br />

• I. Measurem<strong>en</strong>t of biomass and<br />

microbial load: <strong>in</strong>cludes all methods that<br />

def<strong>in</strong>e the weight of soil and the number<br />

of microorganisms it conta<strong>in</strong>s, both <strong>in</strong><br />

terms of total load and as nutritional or<br />

physiological groups, such as plate<br />

counts, colorimetric microscopy, and<br />

biochemical methods able to provide


<strong>in</strong>formation on active populations; to this<br />

group one should add the study of<br />

mycorrhizae l<strong>in</strong>ked to the mapp<strong>in</strong>g and<br />

<strong>in</strong>v<strong>en</strong>tory of fruit<strong>in</strong>g bodies of<br />

macromycetes.<br />

• II. Measurem<strong>en</strong>t of microbial activity:<br />

<strong>in</strong>cludes all biochemical methods that<br />

provide <strong>in</strong>formation about the metabolic<br />

processes of microbial communities, both<br />

<strong>in</strong> their <strong>en</strong>tirety and divided <strong>in</strong>to<br />

functional groups. The biochemical<br />

methods can be divided <strong>in</strong>to two<br />

subgroups: the first <strong>in</strong>cludes methods that<br />

count the active population <strong>in</strong> its <strong>en</strong>tirety<br />

and that, dep<strong>en</strong>d<strong>in</strong>g on the outcome and<br />

the type of <strong>in</strong>formation it provides,<br />

should be <strong>in</strong>cluded <strong>in</strong> the first group of<br />

methods, regard<strong>in</strong>g weight and number,<br />

m<strong>en</strong>tioned above. The second subgroup<br />

conta<strong>in</strong>s methods that def<strong>in</strong>e the curr<strong>en</strong>t<br />

activity and the activity pot<strong>en</strong>tial of<br />

<strong>in</strong>dividual organisms or metabolic<br />

groups, such as respirometric tests,<br />

nitrog<strong>en</strong> m<strong>in</strong>eralisation, etc. Other<br />

methods can determ<strong>in</strong>e the maximum<br />

activity pot<strong>en</strong>tial that can be reached <strong>in</strong><br />

specific substrates (B<strong>en</strong>edetti, 2004).<br />

• III. Microbial and structural diversity<br />

of a community: this <strong>in</strong>cludes the most<br />

up-to-date methods for acquir<strong>in</strong>g<br />

ecological and molecular data.<br />

Traditionally, analysis of microbial<br />

communities <strong>in</strong> soil was carried out us<strong>in</strong>g<br />

cultivation techniques, but only a small<br />

fraction (


2.5 The refer<strong>en</strong>ce mushroom: a<br />

useful <strong>in</strong>strum<strong>en</strong>t for def<strong>in</strong><strong>in</strong>g the<br />

capacity for bio<strong>in</strong>dication of<br />

superior fungi<br />

2.5.1 Introduction<br />

The first hurdle to be overcome, <strong>in</strong> order to be able<br />

to <strong>in</strong>terpret and evaluate the significance of the<br />

pres<strong>en</strong>ce of chemical <strong>elem<strong>en</strong>ts</strong>, especially heavy<br />

metals <strong>in</strong> higher fungi, was to have <strong>in</strong>ternal and<br />

external standards, previously abs<strong>en</strong>t <strong>in</strong> sci<strong>en</strong>tific<br />

literature. The k<strong>in</strong>gdom of fungi is very complex<br />

and holds more species than the animal and plant<br />

k<strong>in</strong>gdoms, and it is estimated that the still<br />

undescribed fungal species are still hundreds of<br />

thousands (Hawksworth, 1991). Fungi are thus one<br />

of the most significant compon<strong>en</strong>ts of biodiversity<br />

and the sci<strong>en</strong>tific pot<strong>en</strong>tial for the developm<strong>en</strong>t of<br />

studies of these liv<strong>in</strong>g be<strong>in</strong>gs is great. These<br />

considerations led us to further our work <strong>in</strong> try<strong>in</strong>g<br />

to id<strong>en</strong>tify an object of comparison for fungi; the<br />

“refer<strong>en</strong>ce mushroom”, (Cocchi et al., 2006). The<br />

fungal metabolism, however, is still far from be<strong>in</strong>g<br />

fully understood and it is therefore hard to f<strong>in</strong>d an<br />

example <strong>in</strong> nature which, with refer<strong>en</strong>ce to the<br />

conc<strong>en</strong>trations of chemical <strong>elem<strong>en</strong>ts</strong> it conta<strong>in</strong>s,<br />

can be described as "pure". The variables <strong>in</strong>volved<br />

are many, as is shown by the high number of<br />

deviations from standard conc<strong>en</strong>trations measures<br />

(as found <strong>in</strong> data from all other authors) for almost<br />

all chemical <strong>elem<strong>en</strong>ts</strong> (the few exceptions tak<strong>in</strong>g on<br />

especial importance) and not all the variables are<br />

known. In this situation statistical analysis becomes<br />

ess<strong>en</strong>tial.<br />

The idea for the def<strong>in</strong>ition of a “refer<strong>en</strong>ce<br />

mushroom” came from an article by Markert<br />

(1992), who stated that “Two thirds of naturally<br />

occurr<strong>in</strong>g chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> eco-systems are not<br />

<strong>in</strong>vestigated s<strong>in</strong>ce they are viewed as noness<strong>en</strong>tial<br />

or nontoxic to biota. In view of the important role<br />

plants play <strong>in</strong> most ecosystems, their <strong>in</strong>organic<br />

chemical characterization, accord<strong>in</strong>g to modern<br />

<strong>in</strong>strum<strong>en</strong>tal multi-<strong>elem<strong>en</strong>ts</strong> techniques, the<br />

establishm<strong>en</strong>t of a “Refer<strong>en</strong>ce plant”, comparable<br />

to the “Refer<strong>en</strong>ce man” by the International<br />

Commission on Radiological Protection (ICRP),<br />

can be a useful tool for this type of chemical<br />

“f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g” […] In the future, more att<strong>en</strong>tion<br />

should focus on establish<strong>in</strong>g basel<strong>in</strong>e values for<br />

46<br />

“normal” elem<strong>en</strong>tal conc<strong>en</strong>trations <strong>in</strong> ecosystem<br />

compon<strong>en</strong>ts […]”<br />

The idea of ext<strong>en</strong>d<strong>in</strong>g the same concept to<br />

macromycetes, based on the statistical stability<br />

reached by our database, was thus evid<strong>en</strong>t (Cocchi<br />

et al., 2006). As our database conta<strong>in</strong>s <strong>in</strong>formation<br />

only on selected ascomycetes and basidiomycetes,<br />

it only allows us to establish a “refer<strong>en</strong>ce<br />

mushroom” of <strong>in</strong>itial approximation; the follow<strong>in</strong>g<br />

objective will be to ref<strong>in</strong>e analyses (and therefore<br />

gather more data for those species for which it is<br />

necessary) to arrive at the def<strong>in</strong>ition of “refer<strong>en</strong>ce<br />

<strong>mushrooms</strong>” for differ<strong>en</strong>t taxa, up to the level of<br />

species.<br />

In summary, the concept of a “refer<strong>en</strong>ce mushroom”<br />

aids us <strong>in</strong> understand<strong>in</strong>g whether the<br />

conc<strong>en</strong>trations of chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> higher<br />

<strong>mushrooms</strong> might play a role <strong>in</strong>:<br />

• Bio<strong>in</strong>dication.<br />

• Taxonomic evaluation<br />

• Estimation of the consumption of heavy<br />

metals by differ<strong>en</strong>t species of edible<br />

<strong>mushrooms</strong><br />

It should be noted that wh<strong>en</strong> speak<strong>in</strong>g of taxonomic<br />

assessm<strong>en</strong>ts, we refer to a species paradigm<br />

conceptually differ<strong>en</strong>t from the morphological<br />

species concept def<strong>in</strong>ed by both macroscopical and<br />

microscopical characters used so far almost<br />

exclusively <strong>in</strong> basidiomycete taxonomy, but widely<br />

and historically considered obsolete. Indeed <strong>in</strong> the<br />

animal and plant k<strong>in</strong>gdoms, the concept of species<br />

is ess<strong>en</strong>tially biological and historically based on<br />

both classical and molecular phylog<strong>en</strong>etics.<br />

Molecular methods are now <strong>in</strong>creas<strong>in</strong>gly be<strong>in</strong>g<br />

applied to fungal taxonomy and the concept of<br />

species to which we refer <strong>in</strong> our analyses is<br />

analogous to that of a “biological species”, because<br />

the conc<strong>en</strong>trations of the various chemical <strong>elem<strong>en</strong>ts</strong><br />

dep<strong>en</strong>d heavily on the differ<strong>en</strong>t metabolisms of<br />

each species. It is obvious, however, that it would<br />

be absurd to completely disregard the systematics<br />

and taxonomy curr<strong>en</strong>tly used <strong>in</strong> mycology; these<br />

be<strong>in</strong>g the sole criteria available for the taxonomic<br />

determ<strong>in</strong>ation of the fungal samples analysed. For<br />

this reason, id<strong>en</strong>tifications were all controlled by<br />

expert mycologists from the Associazione<br />

Micologica Bresadola (many of our samples came<br />

from the National Sci<strong>en</strong>tific Committee of the<br />

AMB) and from the Gruppo Micologico e<br />

Naturalistico “R<strong>en</strong>zo Franchi” di Reggio Emilia<br />

(AMB). In fact, the comparison and exchange of


<strong>in</strong>formation with other researchers must be<br />

underp<strong>in</strong>ned by the "certa<strong>in</strong>ty" that the samples<br />

each researcher is study<strong>in</strong>g come from the same<br />

species – because systematics and morphological<br />

taxonomy, ev<strong>en</strong> under the rules of the International<br />

Code for Botanical Nom<strong>en</strong>clature, still leave ample<br />

room for manoeuvre <strong>in</strong> nam<strong>in</strong>g species and <strong>in</strong> the<br />

use of synonyms.<br />

Clearly, the "refer<strong>en</strong>ce mushroom" is strongly<br />

<strong>in</strong>flu<strong>en</strong>ced by the size and composition of the<br />

global sample used. Despite this, but by employ<strong>in</strong>g<br />

a large sample, the use of this concept allows us to<br />

determ<strong>in</strong>e to a good degree the average values of<br />

the variables under consideration.<br />

Our work has shown that macromycetes can<br />

accumulate large quantities of various chemical<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> their mycelia. Some authors have<br />

suggested that this accumulation may be specific to<br />

species and g<strong>en</strong>era, but certa<strong>in</strong>ly the composition of<br />

substrate may affect conc<strong>en</strong>trations <strong>in</strong> the<br />

mycelium and th<strong>en</strong> <strong>in</strong> the fruit<strong>in</strong>g bodies. Dur<strong>in</strong>g<br />

this study, which lasted more than 20 years, we<br />

analysed the distribution of over 30 chemical<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> the fruit<strong>in</strong>g bodies of more than 9,000<br />

samples of ascomycetes and basidiomycetes<br />

collected <strong>in</strong> Italy and, to a lesser ext<strong>en</strong>t, <strong>in</strong> other<br />

European regions. The data are pres<strong>en</strong>ted <strong>in</strong> this<br />

work, both <strong>in</strong> ext<strong>en</strong>ded form <strong>in</strong> the App<strong>en</strong>dix and<br />

<strong>in</strong> summarised form <strong>in</strong> Table 2 <strong>in</strong> paragraph 3.1.7.<br />

This type of pres<strong>en</strong>tation should <strong>en</strong>able <strong>in</strong>terested<br />

parties to analyse the <strong>in</strong>formation conta<strong>in</strong>ed <strong>in</strong> the<br />

database <strong>in</strong> detail, pot<strong>en</strong>tially ev<strong>en</strong> start<strong>in</strong>g from the<br />

raw data <strong>in</strong>cluded <strong>in</strong> the accompany<strong>in</strong>g CD.<br />

2.5.2 Elaboration of the “refer<strong>en</strong>ce<br />

mushroom”: an example<br />

We here<strong>in</strong> aim to clarify the procedure we used to<br />

def<strong>in</strong>e our “refer<strong>en</strong>ce mushroom”. We id<strong>en</strong>tified<br />

the species for which we had data from at least 20<br />

samples, and from these (about 60 species), we<br />

selected some at random.<br />

This is a list of the selected species. We have<br />

<strong>in</strong>dicated, for each of the species, the symbol that<br />

repres<strong>en</strong>ts it on the graph <strong>in</strong> Fig. 20 and the number<br />

of samples analysed:<br />

• Agaricus arv<strong>en</strong>sis Schaeff. : (AA). Nr. 58<br />

• Agaricus bisporus (J. E. Lange) Imbach:<br />

(AB). Nr. 43<br />

• Agaricus bitorquis (Quél.) Sacc. : (AC).<br />

Nr. 37<br />

• Agaricus ur<strong>in</strong>asc<strong>en</strong>s (Jul. Schäff. & F. H.<br />

Møller) S<strong>in</strong>ger [s<strong>in</strong>. A. alberti Bon; A.<br />

macrosporus (F.H. Møller & Jul. Schäff.)<br />

Pilát]: (AM). Nr. 51<br />

• Amanita caesarea (Scop.) Pers. : (AI).<br />

Nr. 27<br />

• Amanita muscaria (L.) Lam. : (AF). Nr.<br />

197<br />

• Amanita phalloides (Vaill. ex Fr.) L<strong>in</strong>k:<br />

(AP). Nr. 24<br />

• Armillaria mellea (Vahl) P. Kumm. :<br />

(AR). Nr. 26<br />

• Boletus edulis Bull. : (BE). Nr. 115<br />

• Boletus luridus Schaeff. : (BL). Nr. 37<br />

• Boletus p<strong>in</strong>ophilus Pilát & Dermek: (BP).<br />

Nr. 78<br />

• Calocybe gambosa (Fr.) Donk: (CG). Nr.<br />

20<br />

• Lycoperdon utriforme Bull. [s<strong>in</strong>. Calvatia<br />

utriformis (Bull.) Jaap]: (CU). Nr. 49<br />

• Cantharellus cibarius Fr. : (CC). Nr. 42<br />

• Craterellus lutesc<strong>en</strong>s (Fr.) Fr. [s<strong>in</strong>.<br />

Cantharellus lutesc<strong>en</strong>s Fr.]: (CL). Nr. 39<br />

• Infundibulicybe geotropa (Bull.) Harmaja<br />

[s<strong>in</strong>. Clitocybe geotropa (Bull.) Quél.]:<br />

(CA). Nr. 23<br />

• Entoloma saundersii (Fr.) Sacc. : (ES).<br />

Nr. 41<br />

• Helvella crispa (Scop.) Fr. : (HC). Nr. 29<br />

• Hydnum repandum L.: (HR). Nr. 37<br />

• Marasmius oreades (Bolton) Fr. : (MO).<br />

Nr. 66<br />

• Mitrophora semilibera (DC.) Lév. [s<strong>in</strong>.<br />

Morchella semilibera DC.]: (MS). Nr. 27<br />

• Cort<strong>in</strong>arius caperatus (Pers.) Fr. [s<strong>in</strong>.<br />

Rozites caperatus (Pers.) P. Karst.]:<br />

• (RC). Nr. 52<br />

• Russula cyanoxantha (Schaeff.) Fr. :<br />

(RA). Nr. 33<br />

47


48<br />

• Russula vesca Fr : (RV). Nr. 39<br />

• Boletus rubellus Krombh. [s<strong>in</strong>.<br />

Xerocomus rubellus (Krombh.) Quél.]:<br />

(XR). Nr. 77<br />

• Boletus subtom<strong>en</strong>tosus L. [s<strong>in</strong>.<br />

Xerocomus subtom<strong>en</strong>tosus (L.) Quél.]:<br />

(XS). Nr. 31<br />

Fig. 20. Results of a “multidim<strong>en</strong>sional scal<strong>in</strong>g” analysis applied to the species listed <strong>in</strong> the preced<strong>in</strong>g text. Abbreviations: see text. RM:<br />

calculated values of the refer<strong>en</strong>ce mushroom (stress coeffici<strong>en</strong>t = 0.129).<br />

Statistical analysis and multi-dim<strong>en</strong>sional scal<strong>in</strong>g<br />

(MDS; a powerful multivariate data analysis<br />

technique that helps to id<strong>en</strong>tify key dim<strong>en</strong>sions<br />

among a large set of variables) were applied to the<br />

conc<strong>en</strong>tration data of the selected species. MDS,<br />

unlike others, does not imply particular<br />

mathematical assumptions about the data<br />

distribution type (e.g. data l<strong>in</strong>earity or distribution<br />

normality) and is therefore a g<strong>en</strong>eral procedure<br />

which is not, <strong>in</strong> practice, subject to significant<br />

mathematical distortions. The stress coeffici<strong>en</strong>t of<br />

the f<strong>in</strong>al configuration is an <strong>in</strong>dex that measures the<br />

quality of reduction and <strong>in</strong>dicates if the model is<br />

applicable to the sampled data: data range from 0<br />

(the "ideal value" <strong>in</strong> a practical s<strong>en</strong>se) to 1 (a poor<br />

value). Two coord<strong>in</strong>ates were calculated for each<br />

species and these helped to id<strong>en</strong>tify one po<strong>in</strong>t, a<br />

depiction of the species, <strong>in</strong> the two-dim<strong>en</strong>sional<br />

graph <strong>in</strong> Fig. 20.<br />

The quality of reduction is normally considered<br />

good wh<strong>en</strong> the stress coeffici<strong>en</strong>t is less than 0.2.<br />

The po<strong>in</strong>t that repres<strong>en</strong>ts the "refer<strong>en</strong>ce mushroom<br />

(RM) was measured on all samples us<strong>in</strong>g the mean<br />

values. From Fig. 20 one can note that the RM<br />

po<strong>in</strong>t, as expected, is very near to zero. From the<br />

graph one can also see that po<strong>in</strong>ts BE (Boletus


edulis), BP (Boletus p<strong>in</strong>ophilus), AP (Amanita<br />

phalloides) differ significantly from RM. This<br />

differ<strong>en</strong>ce is characteristic of the species. What we<br />

must do th<strong>en</strong>, is to check to see what the causes of<br />

these respective positions are.<br />

To this <strong>en</strong>d we may refer to the tables conta<strong>in</strong><strong>in</strong>g<br />

the specific average data and their confid<strong>en</strong>ce<br />

<strong>in</strong>tervals as determ<strong>in</strong>ed <strong>in</strong> our research. From these<br />

tables it is clear that factors <strong>in</strong>flu<strong>en</strong>c<strong>in</strong>g distance<br />

from the "refer<strong>en</strong>ce mushroom" for A. phalloides<br />

<strong>in</strong>clude high chlor<strong>in</strong>e conc<strong>en</strong>trations (Cl); for<br />

B. edulis and B. p<strong>in</strong>ophilus (and to a lesser ext<strong>en</strong>t,<br />

for Agaricus bitorquis) high conc<strong>en</strong>trations of Se<br />

are responsible.<br />

In summary we <strong>in</strong>dicate below the key features of<br />

some species on which we have carried out the<br />

same statistical analysis:<br />

• Mitrophora semilibera (DC.) Lév. [s<strong>in</strong>.<br />

Morchella semilibera DC.] (MS): high<br />

levels of alum<strong>in</strong>ium (Al), barium (Ba),<br />

calcium (Ca), cobalt (Co), iron (Fe),<br />

nickel (Ni), phosphorus (P), strontium<br />

(Sr).<br />

• Lycoperdon utriforme Bull. [s<strong>in</strong>.<br />

Calvatia utriformis (Bull.) Jaap] (CU):<br />

high levels of copper (Cu), potassium<br />

(K), lead (Pb) (the fact that this species,<br />

always collected <strong>in</strong> high-altitude<br />

grasslands, pres<strong>en</strong>ts relatively high<br />

conc<strong>en</strong>trations of Pb as compared to<br />

other species, requires further<br />

<strong>in</strong>vestigation), sulphur (S), z<strong>in</strong>c (Zn).<br />

• Agaricus arv<strong>en</strong>sis Schaeff. (AA): high<br />

levels of silver (Ag), cadmium (Cd),<br />

cobalt (Co), copper (Cu), phosphorus (P);<br />

• Agaricus ur<strong>in</strong>asc<strong>en</strong>s (Jul. Schäff. & F.<br />

H. Møller) S<strong>in</strong>ger [s<strong>in</strong>. A. alberti Bon;<br />

A. macrosporus (F. H. Møller & Jul.<br />

Schäff.) Pilát] (AM): high levels of silver<br />

(Ag), cadmium (Cd), cobalt (Co), copper<br />

(Cu), phosphorus (P).<br />

• Amanita muscaria (L.) Lam. (AM): high<br />

levels of vanadium (V), zirconium (Zr).<br />

• Boletus edulis Bull. (BE): high levels of<br />

mercury (Hg), sel<strong>en</strong>ium (Se), sulphur (S)<br />

and low potassium (K).<br />

• Boletus p<strong>in</strong>ophilus Pilát & Dermek (BP):<br />

high levels of mercury (Hg), sel<strong>en</strong>ium<br />

(Se), sulphur (S).<br />

2.5.2.1 Procedures to follow<br />

The methodology described above can be applied<br />

to vary<strong>in</strong>g types of both ecological and taxonomic<br />

data so long as care is tak<strong>en</strong> to establish control<br />

structures each time it is used. In g<strong>en</strong>eral the<br />

procedure to follow will be:<br />

• Check<strong>in</strong>g that the data repres<strong>en</strong>t a<br />

“statistically stable” set.<br />

• Us<strong>in</strong>g <strong>in</strong> a first step descriptive/<br />

exploratory statistics methods (mean,<br />

median, confid<strong>en</strong>ce <strong>in</strong>tervals, maximum,<br />

m<strong>in</strong>imum, and standard deviation).<br />

• If the descriptive methods <strong>in</strong>dicate<br />

possible differ<strong>en</strong>ces, mov<strong>in</strong>g on to<br />

multivariate analysis. Here one can either<br />

use summary data or the raw data,<br />

dep<strong>en</strong>d<strong>in</strong>g on the purpose of each<br />

analysis.<br />

Below, we pres<strong>en</strong>t a concrete example of how the<br />

data gathered can be analysed. The graphs <strong>in</strong> Figs.<br />

21, 22, and 24 are largely similar to those giv<strong>en</strong> <strong>in</strong><br />

Petr<strong>in</strong>i et al. (2009).<br />

2.5.2.2 Univariate analysis<br />

49


Control of sample group homog<strong>en</strong>eity:<br />

50<br />

• By geographic region.<br />

• By matrix or support.<br />

• By elevation<br />

Wh<strong>en</strong> confid<strong>en</strong>ce <strong>in</strong>tervals overlap<br />

one cannot postulate significant<br />

statistical differ<strong>en</strong>ces betwe<strong>en</strong> the<br />

samples.<br />

Second step:<br />

Choice of refer<strong>en</strong>ce mushroom<br />

(Refer<strong>en</strong>ce)<br />

Fig. 21. Univariate analysis: the first step.<br />

For example, if one would aim to study Amanitales, Boletales and<br />

Russulales):<br />

• Refer<strong>en</strong>ce calculated for all samples<br />

• Refer<strong>en</strong>ce for the Amanitales order<br />

• Refer<strong>en</strong>ce for the Boletales order<br />

• Refer<strong>en</strong>ce for the Russulales order


Explorative analysis – comparison<br />

of groups:<br />

The P cont<strong>en</strong>t <strong>in</strong> samples of<br />

Lycoperdon utriforme Bull. [s<strong>in</strong>.<br />

Calvatia utriformis (Bull.) Jaap]<br />

and Calvatia gigantea (Batsch)<br />

Lloyd [s<strong>in</strong>. Langermannia<br />

gigantea (Batsch) Rostk.] is<br />

much higher than <strong>in</strong> other<br />

studied samples.<br />

The Pb cont<strong>en</strong>t <strong>in</strong> samples of<br />

Lycoperdon utriforme Bull. [s<strong>in</strong>.<br />

Calvatia utriformis (Bull.) Jaap]<br />

is much higher than <strong>in</strong> other<br />

studied samples.<br />

Applicability to other samples:<br />

The Se cont<strong>en</strong>t <strong>in</strong> samples of the Boletus<br />

edulis group gathered <strong>in</strong> Calabria and <strong>in</strong> the<br />

Prov<strong>in</strong>ce of Massa are differ<strong>en</strong>t from those<br />

found <strong>in</strong> other Italian, European and<br />

worldwide regions.<br />

Fig. 22. Univariate analysis: the third step.<br />

Fig. 23. Univariate analysis: the fourth step.<br />

51


2.5.2.3 Multivariate analysis<br />

Example: classification of several Boletus species.<br />

The use of MDS (Figure 24) to classify certa<strong>in</strong><br />

species of Boletus – also <strong>in</strong>vestigated by Vizz<strong>in</strong>i et<br />

52<br />

al. (2008) – by us<strong>in</strong>g their cont<strong>en</strong>t of certa<strong>in</strong><br />

chemical <strong>elem<strong>en</strong>ts</strong> has produced results that are <strong>in</strong><br />

complete agreem<strong>en</strong>t with those produced by<br />

molecular biology (details <strong>in</strong> Petr<strong>in</strong>i et al., 2009).<br />

Fig. 24. Results of analysis on several species from the g<strong>en</strong>us Boletus us<strong>in</strong>g MDS (Petr<strong>in</strong>i et al., 2009). F<strong>in</strong>al configuration stress:


of biomass as well as the stor<strong>in</strong>g and<br />

transformation of <strong>en</strong>ergy and m<strong>in</strong>eral/organic<br />

<strong>elem<strong>en</strong>ts</strong>; the soil also acts as a filter protect<strong>in</strong>g<br />

subterranean waters and exchanges gas with the<br />

atmosphere; it constitutes a support for life and<br />

whole ecosystems. Furthermore, soil is a reserve of<br />

g<strong>en</strong>etic resources and raw materials, the custodian<br />

of lost civilisations, and a pillar of the landscape.<br />

To allow the soil to carry out these functions, it<br />

must be def<strong>en</strong>ded from degradation and from other<br />

threats to its well-function<strong>in</strong>g. The Communication<br />

lists the ma<strong>in</strong> threats such as erosion, organic<br />

matter decl<strong>in</strong>e, local and diffuse contam<strong>in</strong>ation,<br />

seal<strong>in</strong>g, compaction, sal<strong>in</strong>isation, landslides and<br />

flood<strong>in</strong>g as well as add<strong>in</strong>g the loss of biodiversity<br />

as a full problem <strong>in</strong> its own right. This last po<strong>in</strong>t<br />

assumes strategic importance as it was one of the<br />

first times the word “biodiversity” featured clearly<br />

<strong>in</strong> any official EC docum<strong>en</strong>ts.<br />

Two other directives are believed to be<br />

fundam<strong>en</strong>tal to safeguard<strong>in</strong>g the <strong>en</strong>vironm<strong>en</strong>t and<br />

its biodiversity: Directive 79/409/EEC, better<br />

known as the "Birds Directive" and Directive<br />

92/43/EEC, the "Habitats Directive". With these<br />

two, signatory countries were asked to make efforts<br />

to conserve biodiversity through the conservation<br />

of natural habitats and of wild fauna and flora,<br />

through the establishm<strong>en</strong>t and ma<strong>in</strong>t<strong>en</strong>ance of a<br />

coher<strong>en</strong>t ecological network of special areas of<br />

conservation. The message s<strong>en</strong>t out was to preserve<br />

and restore plant and animal biodiversity.<br />

So as to better implem<strong>en</strong>t the strategy, <strong>in</strong><br />

September 2006, the European Commission<br />

adopted a series of tools. These were: the SFD Soil<br />

Framework Directive, COM 232 (2006),<br />

Commission Communication, COM 231 (2006)<br />

and the Impact Assessm<strong>en</strong>t SEC 620 (2006). These<br />

tools established soil as hav<strong>in</strong>g a c<strong>en</strong>tral role to<br />

play and consequ<strong>en</strong>tly saw biodiversity as a key<br />

feature <strong>in</strong> its preservation and restoration.<br />

The United Nations Framework Conv<strong>en</strong>tion on<br />

Climate Change (UNFCCC), and the subsequ<strong>en</strong>t<br />

Kyoto Protocol def<strong>in</strong>ed strategies for conta<strong>in</strong><strong>in</strong>g<br />

emissions of gre<strong>en</strong>house gases. They also<br />

recognised that the terrestrial biosphere plays a<br />

fundam<strong>en</strong>tal role <strong>in</strong> the conservation of<br />

ecosystems, plants and the creation of new forests<br />

which are all important steps for combat<strong>in</strong>g the<br />

gre<strong>en</strong>house effect and restor<strong>in</strong>g biodiversity.<br />

The docum<strong>en</strong>ts required signatory countries to<br />

quantify the spatial distribution of six differ<strong>en</strong>t<br />

categories of land use (forests, wetlands, meadows,<br />

farmland, urban areas and other). Furthermore, for<br />

each land category, <strong>in</strong>formation regard<strong>in</strong>g the type<br />

of managem<strong>en</strong>t it requires, the biomass associated<br />

with it, the changes that occur there over time and<br />

an evaluation of the type of transformation there<br />

should be provided. In relation to these aspects the<br />

concepts of biodiversity and bio<strong>in</strong>dication take on<br />

an ever-greater relevance.<br />

Regard<strong>in</strong>g forests, the Forest Pr<strong>in</strong>ciples, adopted<br />

dur<strong>in</strong>g the Earth Summit on Susta<strong>in</strong>able<br />

Developm<strong>en</strong>t, called on States to ma<strong>in</strong>ta<strong>in</strong> or<br />

<strong>in</strong>crease the ext<strong>en</strong>t of forest cover; an ess<strong>en</strong>tial<br />

strategy to protect and <strong>in</strong>crease biodiversity.<br />

The European Landscape Conv<strong>en</strong>tion, signed <strong>in</strong><br />

Flor<strong>en</strong>ce <strong>in</strong> 2000, acknowledges that, "the quality<br />

and diversity of European landscapes constitute a<br />

common resource, and that it is important to cooperate<br />

towards their protection, managem<strong>en</strong>t and<br />

plann<strong>in</strong>g". Actions aimed at guid<strong>in</strong>g and<br />

harmonis<strong>in</strong>g the transformation of the area, such<br />

transformation be<strong>in</strong>g caused by processes l<strong>in</strong>ked to<br />

social, economic or <strong>en</strong>vironm<strong>en</strong>tal developm<strong>en</strong>t,<br />

are a valid means for the susta<strong>in</strong>able managem<strong>en</strong>t<br />

of the “landscape resource”. To provide an idea of<br />

the importance attached to ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the<br />

ext<strong>en</strong>sion of natural and semi-natural areas for<br />

susta<strong>in</strong>able developm<strong>en</strong>t, it should be m<strong>en</strong>tioned<br />

that the "Land Use Change" <strong>in</strong>dicator is part of a<br />

number of <strong>in</strong>dicators proposed by the United<br />

Commission on Susta<strong>in</strong>able Developm<strong>en</strong>t. More<br />

rec<strong>en</strong>tly, the European Environm<strong>en</strong>t Ag<strong>en</strong>cy,<br />

through the IRENA project (Indicator Report<strong>in</strong>g on<br />

the Integration of Environm<strong>en</strong>tal Concerns <strong>in</strong>to<br />

Agriculture Policy) has selected Land Use Change<br />

as one of the 35 agri-<strong>en</strong>vironm<strong>en</strong>tal <strong>in</strong>dicators for<br />

monitor<strong>in</strong>g the <strong>in</strong>tegration of <strong>en</strong>vironm<strong>en</strong>tal needs<br />

with the Common Agricultural Policy.<br />

Throughout the Italian national territory, the<br />

Susta<strong>in</strong>able Use of Natural Resources Sector of the<br />

Natural Resources and Parks Service – APAT,<br />

(ISPRA, today), launched a study of changes <strong>in</strong><br />

land use and vegetation cover that took place <strong>in</strong><br />

Italy betwe<strong>en</strong> 1990 and 2000 us<strong>in</strong>g the CORINE<br />

Land Cover Database for each year. It is evid<strong>en</strong>t<br />

how biodiversity, its ma<strong>in</strong>t<strong>en</strong>ance and its<br />

restoration play an important role <strong>in</strong> this work,<br />

oft<strong>en</strong> with aspects related to the concept of bio<strong>in</strong>dication<br />

go<strong>in</strong>g hand <strong>in</strong> hand with biodiversity and<br />

almost assum<strong>in</strong>g a s<strong>in</strong>gle, <strong>in</strong>terchangeable id<strong>en</strong>tity.<br />

Unfortunately at pres<strong>en</strong>t not <strong>en</strong>ough is known<br />

about soil biodiversity. This will be addressed <strong>in</strong><br />

the Sev<strong>en</strong>th Framework Programme, aimed at<br />

gather<strong>in</strong>g a better understand<strong>in</strong>g of biodiversity as<br />

an <strong>en</strong>vironm<strong>en</strong>tal function. This process of<br />

53


knowledge build<strong>in</strong>g will also be supported by<br />

ongo<strong>in</strong>g <strong>in</strong>itiatives connected to the Conv<strong>en</strong>tion on<br />

Biological Diversity and the "Forest Focus"<br />

programme.<br />

In conclusion, the data relat<strong>in</strong>g to <strong>mushrooms</strong><br />

pres<strong>en</strong>ted <strong>in</strong> this book augm<strong>en</strong>t and complete the<br />

<strong>in</strong>formation requested by the various <strong>in</strong>ternational<br />

ag<strong>en</strong>cies.<br />

The biodiversity of the Italian fungal species we<br />

have studied and the use of the chemical<br />

conc<strong>en</strong>tration levels <strong>in</strong> them, s<strong>in</strong>gle out fungi as<br />

54<br />

pot<strong>en</strong>tial biological <strong>in</strong>dicators for the quality of<br />

forest, woodland and semi-natural habitats.<br />

In addition, the very broad range of data <strong>in</strong>cluded<br />

here can be used over the next few decades to<br />

<strong>en</strong>able a comparison with future data, which could<br />

th<strong>en</strong> make possible a better and more<br />

compreh<strong>en</strong>sive <strong>in</strong>terpretation of the effectiv<strong>en</strong>ess<br />

of curr<strong>en</strong>t <strong>en</strong>vironm<strong>en</strong>tal protection legislation <strong>in</strong><br />

m<strong>in</strong>imis<strong>in</strong>g or negat<strong>in</strong>g the effects of climate<br />

change.


3.1 Consideration on statistics<br />

and statistical methods employed<br />

One of the fundam<strong>en</strong>tal problems <strong>in</strong> taxonomy <strong>in</strong><br />

g<strong>en</strong>eral is the selection of <strong>in</strong>ternal and external<br />

control groups for the samples analysed.<br />

Phylog<strong>en</strong>etics researchers have found a solution<br />

with external samples (outgroups), but classical<br />

taxonomy does not yet have trustworthy models <strong>in</strong><br />

this field.<br />

Therefore, we have rec<strong>en</strong>tly suggested mak<strong>in</strong>g use<br />

of c<strong>en</strong>troids to establish <strong>in</strong>ternal and external<br />

refer<strong>en</strong>ces <strong>in</strong> cases where significant amounts of<br />

data are available that can be summarised with<br />

parametric and nonparametric descriptive statistics<br />

(Petr<strong>in</strong>i et al. 2009).<br />

3.1.1 Sample choice<br />

Dur<strong>in</strong>g our work we collected data for about 9,000<br />

samples (carpophores) of basidiomycetes and<br />

ascomycetes. Our work can be described as a nonrandom<br />

semi-quantitative c<strong>en</strong>sus, because the<br />

samples tested were provided <strong>in</strong> most cases by<br />

colleagues and fri<strong>en</strong>ds belong<strong>in</strong>g to the AMB. In<br />

g<strong>en</strong>eral, the exact orig<strong>in</strong> of each carpophore was<br />

recorded for all those <strong>mushrooms</strong> provided by<br />

Italian and foreign mycologists. However, we also<br />

exam<strong>in</strong>ed samples from exhibitions of mycology <strong>in</strong><br />

Italy, and the orig<strong>in</strong> of these was not always<br />

traceable. The majority of samples were collected<br />

<strong>in</strong> the prov<strong>in</strong>ce of Reggio Emilia (50% of<br />

<strong>mushrooms</strong> were from exhibitions). Therefore, the<br />

repres<strong>en</strong>tativ<strong>en</strong>ess of our sample is somewhat<br />

reduced, because the data collected are especially<br />

repres<strong>en</strong>tative of Reggio Emilia and we cannot<br />

exclude the possibility that analysis of a differ<strong>en</strong>t<br />

set of sample data may provide a differ<strong>en</strong>t set of<br />

Chapter III<br />

Data Synthesis<br />

results. Descriptive analysis of subsamples,<br />

however, showed that at least for Italian<br />

<strong>mushrooms</strong>, our results are repres<strong>en</strong>tative.<br />

Furthermore, our sample is particularly<br />

repres<strong>en</strong>tative of basidiomycetes, because only<br />

relatively few ascomycetes were exam<strong>in</strong>ed. We<br />

note that our tables, which <strong>in</strong>clude the mean values<br />

and 95% confid<strong>en</strong>ce <strong>in</strong>tervals for the various<br />

chemical <strong>elem<strong>en</strong>ts</strong> studied, summarise all the data<br />

we collected and most of these tables are <strong>in</strong>cluded<br />

<strong>in</strong> the CD attached to this docum<strong>en</strong>t. Please note<br />

that only samples of taxa for which at least 20-30<br />

carpophores (orig<strong>in</strong>at<strong>in</strong>g from differ<strong>en</strong>t sites) were<br />

exam<strong>in</strong>ed provide reliable values. Wh<strong>en</strong> only a few<br />

carpophores of a giv<strong>en</strong> species were studied, the<br />

values are to be regarded as <strong>in</strong>dicative only.<br />

3.1.2 Statistical measurem<strong>en</strong>ts<br />

In our work we ma<strong>in</strong>ly used descriptive statistics,<br />

particularly mean, median and confid<strong>en</strong>ce <strong>in</strong>tervals.<br />

Of the differ<strong>en</strong>t types of mean (such as arithmetic,<br />

geometric, and harmonic), we used the arithmetic<br />

mean, which together with the median proved best<br />

suited to describe the datasets we collected.<br />

The 95% confid<strong>en</strong>ce <strong>in</strong>terval (95% CI) is used to<br />

estimate "real" values. By def<strong>in</strong>ition, the actual<br />

value of the <strong>en</strong>tire population can only be<br />

estimated, because one never has access to the<br />

<strong>en</strong>tire population. The CI therefore describes a set<br />

of values <strong>in</strong>side which most likely lies the "real"<br />

value, calculated us<strong>in</strong>g observed results from the<br />

sample, giv<strong>en</strong> a certa<strong>in</strong> marg<strong>in</strong> of error.<br />

The calculated data can th<strong>en</strong> be plotted us<strong>in</strong>g<br />

differ<strong>en</strong>t techniques. An example is shown <strong>in</strong> Fig.<br />

25.<br />

55


Fig. 25. Ars<strong>en</strong>ic cont<strong>en</strong>t <strong>in</strong> specim<strong>en</strong>s of Boletus edulis collected <strong>in</strong> differ<strong>en</strong>t geographical regions. The circle repres<strong>en</strong>ts the average, while the<br />

vertical bars <strong>en</strong>close all values with<strong>in</strong> the CI of 95%.<br />

3.1.3 Statistical stability<br />

To perform reliable statistical analyses, it is<br />

important that the variation of data with<strong>in</strong><br />

taxonomic (or ecological) groups to be exam<strong>in</strong>ed<br />

be stable and rema<strong>in</strong> constant over random samples<br />

56<br />

Ag (mg/Kg)<br />

dur<strong>in</strong>g resampl<strong>in</strong>g procedures and wh<strong>en</strong> new<br />

<strong>elem<strong>en</strong>ts</strong> are <strong>in</strong>troduced (Cocchi et al., 2006). Our<br />

database has reached statistical stability, as shown<br />

<strong>in</strong> Figure 26.<br />

Fig. 26. Cont<strong>en</strong>t (average and 95% CI) of Ag <strong>in</strong> the g<strong>en</strong>us Boletus. Results of n<strong>in</strong>e resampl<strong>in</strong>gs with the <strong>in</strong>troduction of new <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> the<br />

samples. The f<strong>in</strong>al sample conta<strong>in</strong>s 504 <strong>elem<strong>en</strong>ts</strong>.<br />

3.1.4 The refer<strong>en</strong>ce mushroom<br />

A great aid <strong>in</strong> statistical analysis is the use of a<br />

“refer<strong>en</strong>ce mushroom”. A propos this we hereby<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Boletus (N=504)<br />

1 2 3 4 5 6 7 8 9<br />

reproduce a part of a docum<strong>en</strong>t we published <strong>in</strong><br />

2006 (Cocchi et al. 2006).


Markert (1992), has proposed the adoption of a<br />

"refer<strong>en</strong>ce plant", an ideal plant that would have the<br />

anatomical and physiological characteristics of the<br />

average plant <strong>in</strong> the sample. This idea is <strong>in</strong>timately<br />

l<strong>in</strong>ked to that of the "refer<strong>en</strong>ce man" proposed by<br />

the ICRP and which corresponds to a person with<br />

the anatomical and physiological characteristics of<br />

the average <strong>in</strong>dividual. Similarly, the "refer<strong>en</strong>ce<br />

mushroom" is a fungus that has the anatomical and<br />

physiological characteristics of the average fungus<br />

<strong>in</strong> the sample group studied (Cocchi et al., 2006).<br />

In summary, the concept of the "refer<strong>en</strong>ce<br />

mushroom" is used to determ<strong>in</strong>e whether the<br />

conc<strong>en</strong>trations of chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> higher<br />

<strong>mushrooms</strong> may have a role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the<br />

possibility of their use <strong>in</strong> bio<strong>in</strong>dication, taxonomic<br />

evaluation and estimat<strong>in</strong>g the dietary <strong>in</strong>take of<br />

heavy metals through the consumption of edible<br />

mushroom species.<br />

Obviously the "refer<strong>en</strong>ce mushroom" is strongly<br />

<strong>in</strong>flu<strong>en</strong>ced by the size and composition of the<br />

global sample group used. Nevertheless, with a<br />

large sample group, the use of this concept allows<br />

us to ga<strong>in</strong> a good approximation of the average<br />

value of the variables under consideration.<br />

Therefore one must not forget that any average will<br />

dep<strong>en</strong>d greatly on the size and composition of the<br />

sample group and that consequ<strong>en</strong>tly a “refer<strong>en</strong>ce<br />

mushroom” needs to be id<strong>en</strong>tified on a case-bycase<br />

basis.<br />

3.1.5 Data analysis<br />

Dur<strong>in</strong>g this study, which lasted more than 20 years,<br />

we analysed the distribution of over 30 chemical<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> the fruit<strong>in</strong>g bodies of more than 9,000<br />

samples of ascomycetes and basidiomycetes<br />

collected <strong>in</strong> Italy and, to a lesser ext<strong>en</strong>t, <strong>in</strong> other<br />

European regions.<br />

3.1.5.1 Procedures followed<br />

The above-described methodology can be applied<br />

to various data-types, <strong>in</strong>clud<strong>in</strong>g both ecological and<br />

taxonomic data.<br />

3.1.5.2 Multivariate analysis<br />

The purpose of multivariate analysis is oft<strong>en</strong> to<br />

detect clusters (taxonomic, ecological, etc..) that<br />

can lead to a classification which can be used for<br />

id<strong>en</strong>tification purposes. In this work, we have not<br />

used any order<strong>in</strong>g or classification techniques,<br />

s<strong>in</strong>ce the purpose of this docum<strong>en</strong>t is purely<br />

descriptive, and <strong>in</strong>stead we aim to very briefly<br />

describe some methods that could be applied to the<br />

data pres<strong>en</strong>ted <strong>in</strong> this work.<br />

There are various methods available for group<strong>in</strong>g<br />

("order<strong>in</strong>g") data, and <strong>in</strong>clude, to m<strong>en</strong>tion only the<br />

most popular, cluster analysis, factor analysis,<br />

multidim<strong>en</strong>sional scal<strong>in</strong>g (MDS) and multiple<br />

correspond<strong>en</strong>ce analysis. Each of them has<br />

advantages and disadvantages, but all result <strong>in</strong> a<br />

reduction of a model from “n” to just a few values,<br />

this be<strong>in</strong>g mostly accomplished by optimis<strong>in</strong>g/<br />

reduc<strong>in</strong>g system variance. A deeper but simple<br />

description of the process, writt<strong>en</strong> for non<br />

statisticians and with more-detailed bibliographical<br />

refer<strong>en</strong>ces can be found <strong>in</strong> Petr<strong>in</strong>i and Sieber<br />

(2000) and Sieber et al. (1998).<br />

As regards the id<strong>en</strong>tification of samples, canonical<br />

discrim<strong>in</strong>ant analysis is perhaps the best known<br />

technique. Here we refer to more specialised texts,<br />

also cited <strong>in</strong> Petr<strong>in</strong>i and Sieber (2000).<br />

3.1.6 Software used<br />

The data were gathered us<strong>in</strong>g a Microsoft®<br />

Access® database and analysed with SPSS, version<br />

17 (SPSS Inc., Chicago, IL, USA).<br />

3.1.7 Results<br />

The CD that accompanies this report conta<strong>in</strong>s<br />

descriptive statistics describ<strong>in</strong>g the refer<strong>en</strong>ce<br />

<strong>mushrooms</strong> for each of the families, g<strong>en</strong>era and<br />

species of fungi studied. It also conta<strong>in</strong>s the<br />

number of samples, the average values and the<br />

relative 95% CI for the taxa studied. As a<br />

repres<strong>en</strong>tative example of the analyzed data we<br />

pres<strong>en</strong>t here the levels of all chemical <strong>elem<strong>en</strong>ts</strong><br />

considered <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the universal "refer<strong>en</strong>ce<br />

mushroom” (the c<strong>en</strong>troid of the total sample of<br />

about 9,000 carpophores).<br />

57


Table 2. Total samples, average values and 95% CI for all samples (N= 9328) (<strong>in</strong> mg/kg dry weight or bq/kg dry material by Cs 134 , Cs 137 and K 40 ).<br />

58<br />

Elem<strong>en</strong>t N Average 95% CI<br />

Al 9074 346 333 - 360<br />

Ag 9326 3.44 3.27 - 3.61<br />

As 9327 15.4 11.6 - 19.2<br />

B 8881 9.64 9.06 - 10.2<br />

Ba 9279 3.84 3.59 - 4.08<br />

Be 7222 0.014 0.01 - 0.01<br />

Ca 9326 914 848 - 980<br />

Cd 9328 4.20 3.92 - 4.49<br />

Cl 845 3670 3290 - 4040<br />

Co 9240 0.40 0.38 - 0.42<br />

Cr 9327 1.49 1.40 - 1.58<br />

Cs 7852 2.28 2.04 - 2.52<br />

Cs 134 328 91.8 44.7 - 139<br />

Cs 137 328 2590 1740 - 3435<br />

Cu 9327 58.8 56.4 - 61.3<br />

Fe 9323 330 318 - 343<br />

Ge 1182 0.033 0.03 - 0.04<br />

Hg 9296 1.19 1.11 - 1.28<br />

K 9327 39630 39310 - 39950<br />

K 40 328 1350 1290 - 1410<br />

La 6534 0.34 0.29 - 0.39<br />

Li 9248 0.36 0.35 - 0.38<br />

Mg 9327 1310 1300 - 1330<br />

Mn 9327 34.7 33.0 - 36.4<br />

Mo 9216 0.20 0.19 - 0.21<br />

Na 9327 328 314 - 342<br />

Ni 9327 1.87 1.79 - 1.96<br />

P 9300 7195 710 – 7286<br />

Pb 9320 1.61 1.51 - 1.72<br />

Rb 9327 138 133 - 144<br />

S 9317 3364 3314 - 3415<br />

Sc 5623 0.27 0.25 - 0.3<br />

Se 9327 4.13 3.87 - 4.39<br />

Sr 9307 3.22 2.97 - 3.48<br />

Ti 8102 10.2 9.8 - 10.6<br />

V 9327 3.22 2.83 - 3.61<br />

Y 5620 0.20 0.18 - 0.22<br />

Zn 9327 117 115 - 119<br />

Zr 6633 0.42 0.37 - 0.47


3.2 Applied geostatistical analysis<br />

3.2.1 Introduction<br />

Geostatistics is the branch of statistics that deals<br />

with the analysis of spatial data derived from<br />

sampl<strong>in</strong>g. In <strong>en</strong>vironm<strong>en</strong>tal analysis and modell<strong>in</strong>g<br />

it is an ess<strong>en</strong>tial tool for the managem<strong>en</strong>t,<br />

understand<strong>in</strong>g, and correct use of data from<br />

<strong>en</strong>vironm<strong>en</strong>tal surveys and measurem<strong>en</strong>ts (such as<br />

meteorological data, pollutant conc<strong>en</strong>trations,<br />

piezometers, etc.).<br />

Geostatistical analysis consists <strong>in</strong> modell<strong>in</strong>g the<br />

ph<strong>en</strong>om<strong>en</strong>on one wishes to <strong>in</strong>vestigate with a<br />

random variable characterized by a spatial,<br />

temporal or spatiotemporal law. This approach<br />

allows one to highlight and describe the regional or<br />

temporal variability (qualitative and quantitative)<br />

of the data analysed and to map out the results. It<br />

measures the effect of the position of the measur<strong>in</strong>g<br />

po<strong>in</strong>t on the variability of the data observed.<br />

Geostatistical methods are valid for all fields of<br />

applied sci<strong>en</strong>ce <strong>in</strong> which the ph<strong>en</strong>om<strong>en</strong>a to be<br />

studied are spatial <strong>in</strong> nature. Over the past three<br />

decades, it has be<strong>en</strong> used, for <strong>in</strong>stance, <strong>in</strong> soil<br />

sci<strong>en</strong>ce, hydrology, hydrogeology, geochemistry,<br />

meteorology, oceanography, <strong>en</strong>vironm<strong>en</strong>tal health,<br />

agronomy, and imag<strong>in</strong>g analysis.<br />

Let us take a spatial ph<strong>en</strong>om<strong>en</strong>on, for example the<br />

heavy metal pollution of a site. In g<strong>en</strong>eral, by<br />

<strong>in</strong>dicat<strong>in</strong>g the conc<strong>en</strong>tration of the pollutant with z,<br />

and the g<strong>en</strong>eric coord<strong>in</strong>ate po<strong>in</strong>t of the field (xlat,<br />

xlong) i with x i, Z(x) is a variable that repres<strong>en</strong>ts the<br />

conc<strong>en</strong>tration of pollution <strong>in</strong> certa<strong>in</strong> po<strong>in</strong>ts of the<br />

site.<br />

If one property varies <strong>in</strong> a more or less cont<strong>in</strong>uous<br />

way through space, it can be tak<strong>en</strong> as a regionalised<br />

variable (Goovaerts, 1997) and analysed with<br />

geostatistical <strong>in</strong>strum<strong>en</strong>ts.<br />

Estimat<strong>in</strong>g by krig<strong>in</strong>g <strong>in</strong>terpolation <strong>en</strong>ables a more<br />

detailed local spatial variation of the properties<br />

under study to be achieved. This type of<br />

<strong>in</strong>terpolation is appropriate only where the property<br />

varies <strong>in</strong> a cont<strong>in</strong>uous manner and the data are<br />

spatially dep<strong>en</strong>d<strong>en</strong>t or correlated. The model of<br />

spatial variation for geostatistical estimation is as<br />

follows:<br />

Z(x) = μ�v + ε(x)<br />

where Z(x) is the random variable <strong>in</strong> location x, μ v<br />

is the local average of Z <strong>in</strong> the predef<strong>in</strong>ed limits of<br />

location x, and ε(x) is a random term with an<br />

expectation of zero, and a variance equal to:<br />

var[ε�(x) −ε�(x + h)]= E[ε�(x) −ε�(x + h) 2 ]= 2γ(h)<br />

variance is calculated for all couples of locations<br />

x + x+h, where h is a distance vector (lag) for all<br />

distances and directions. γ is the semivariance<br />

betwe<strong>en</strong> two locations, which, where this is<br />

stationary (μ v is locally constant) will be equival<strong>en</strong>t<br />

to:<br />

γ(h) = 1 /2 var [Z(x) – Z(x+h)] = 1 /2 E [Z(x) – Z(x+h) 2 ]<br />

and def<strong>in</strong>es the variogram of Z. The variogram<br />

provides an unbiased description of the scale and<br />

pattern of spatial variation, the spatial model<br />

needed for krig<strong>in</strong>g, and a basis for design<strong>in</strong>g<br />

optimal sampl<strong>in</strong>g schemes (McBratney et al.,<br />

1981). Theoretical variogram modell<strong>in</strong>g, start<strong>in</strong>g<br />

from experim<strong>en</strong>tal variogram modell<strong>in</strong>g, can<br />

<strong>in</strong>dicate which approach to take <strong>in</strong> predictive<br />

<strong>in</strong>vestigation.<br />

3.2.2 Ord<strong>in</strong>ary krig<strong>in</strong>g<br />

At this po<strong>in</strong>t values can be estimated <strong>in</strong> po<strong>in</strong>ts or <strong>in</strong><br />

blocks through krig<strong>in</strong>g, a shift<strong>in</strong>g mean weighted to<br />

observed values based on the variogram <strong>in</strong>side<br />

determ<strong>in</strong>ed limits def<strong>in</strong>ed by an area N (<strong>in</strong>side<br />

which the stationary values of the variable are<br />

assumed to hold). For a regionalised variable Z,<br />

with values measured as be<strong>in</strong>g z(xi) at site (x i),<br />

I = 1, 2, …, n, the ord<strong>in</strong>ary krig<strong>in</strong>g algorithm will<br />

be:<br />

ZB ( )<br />

N<br />

i = 1<br />

λ . zx<br />

i<br />

where Z(B) repres<strong>en</strong>ts the value estimated for<br />

block B and λi the weights assigned to <strong>in</strong>ternal<br />

po<strong>in</strong>ts at N. The krig<strong>in</strong>g estimator can be def<strong>in</strong>ed as<br />

non-distorted (the weights add up to one) and<br />

optimal (the weights are selected so as to reduce<br />

variance to a m<strong>in</strong>imum). Unlike with classical<br />

<strong>in</strong>terpolation methods (<strong>in</strong>verse square of the<br />

distance, triangulations, variable mean ...), this<br />

<strong>in</strong>terpolation allows not only obta<strong>in</strong><strong>in</strong>g an<br />

estimation map of the parameter but also a map of<br />

the estimation variance (the krig<strong>in</strong>g error), allow<strong>in</strong>g<br />

evaluation of the reliability of prediction.<br />

59


One of the most common tasks <strong>in</strong> the process<strong>in</strong>g of<br />

spatial data is the construction of thematic maps,<br />

i.e. geo-refer<strong>en</strong>ced maps relat<strong>in</strong>g to selected<br />

geographic areas, <strong>in</strong> which, by an appropriate<br />

method of repres<strong>en</strong>tation, the tr<strong>en</strong>d of a variable<br />

under study – <strong>in</strong> our case the conc<strong>en</strong>tration of<br />

metals – is giv<strong>en</strong>.<br />

Iso-value contour maps, which <strong>in</strong> cartographic<br />

jargon are also known as vector maps, are just one<br />

of many ways of repres<strong>en</strong>t<strong>in</strong>g a geographic<br />

variable. They are not obta<strong>in</strong>ed directly, but<br />

through creat<strong>in</strong>g a regular grid to repres<strong>en</strong>t the<br />

variable, itself obta<strong>in</strong>ed by an estimation<br />

60<br />

Fig. 27. Construction of a map, start<strong>in</strong>g from measurem<strong>en</strong>t po<strong>in</strong>ts.<br />

These maps are normally made by start<strong>in</strong>g from the<br />

values of the variable as measured with<strong>in</strong> the area.<br />

For example, from the <strong>in</strong>itial situation shown <strong>in</strong><br />

Fig. 27a, which repres<strong>en</strong>ts the location of the<br />

samples and the measured values of a variable, we<br />

aim to build an iso-value contour map such as that<br />

shown <strong>in</strong> Fig. 27b. Note the non-uniform<br />

distribution of the samples <strong>in</strong> the example.<br />

calculation (Fig. 28a). The contour l<strong>in</strong>es are created<br />

by <strong>in</strong>terpolat<strong>in</strong>g the values on the mesh axes (Fig.<br />

28b). It is thus clear that the quality of the map is<br />

wholly dep<strong>en</strong>d<strong>en</strong>t on the equation that produced the<br />

grid values.<br />

Fig. 28. Construction of a vector map: a) reconstruction of the variable to a regular grid;<br />

b) <strong>in</strong>terpolation trac<strong>in</strong>g of the iso-value l<strong>in</strong>es.


3.2.3 Geostatistical analysis applied to<br />

the distribution of <strong>in</strong>organic <strong>elem<strong>en</strong>ts</strong> <strong>in</strong><br />

soil and <strong>in</strong> fungi<br />

For this book, our geostatistical analysis was<br />

focused on the follow<strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> or physiochemical<br />

parameters found <strong>in</strong> the surface soil and<br />

<strong>in</strong> <strong>mushrooms</strong> gathered <strong>in</strong> the Prov<strong>in</strong>ce of Reggio<br />

Emilia: pH, alum<strong>in</strong>ium, ars<strong>en</strong>ic, cadmium,<br />

chromium, mercury, nickel, lead, copper, sel<strong>en</strong>ium,<br />

vanadium, z<strong>in</strong>c and zirconium. Irregular gridpattern<br />

sampl<strong>in</strong>g was carried out over a large area<br />

<strong>in</strong> the southern part of the prov<strong>in</strong>ce of Reggio<br />

Emilia.<br />

An exploratory analysis of experim<strong>en</strong>tal data us<strong>in</strong>g<br />

basic statistics was carried out, along with data<br />

frequ<strong>en</strong>cy distributions and experim<strong>en</strong>tal<br />

variograms. All <strong>elem<strong>en</strong>ts</strong> tested showed a t<strong>en</strong>d<strong>en</strong>cy<br />

to lognormal distribution, characterised by the<br />

pres<strong>en</strong>ce of a small number of sampl<strong>in</strong>g po<strong>in</strong>ts with<br />

values of betwe<strong>en</strong> one to two orders of magnitude<br />

greater than the database. Analysis of the spatial<br />

correlation of the data was conducted by<br />

In some cases, a logarithmic transformation of data<br />

was applied to normalise distributions and to<br />

clarify the spatial correlation, by <strong>in</strong>sert<strong>in</strong>g a new<br />

transformation <strong>in</strong> the orig<strong>in</strong>al scale of the estimate<br />

data.<br />

The figures, relat<strong>in</strong>g to the spatial distribution of<br />

conc<strong>en</strong>tration parameters, were g<strong>en</strong>erated with the<br />

program Surfer 8.0, while the data grid was<br />

Table 3. Classification of variograms used.<br />

calculat<strong>in</strong>g the experim<strong>en</strong>tal variogram, which was<br />

th<strong>en</strong> used to develop a model of <strong>in</strong>terpolation<br />

accord<strong>in</strong>g to the Krig<strong>in</strong>g method (Isaaks and<br />

Srivastava, 1989) for the methodological<br />

framework and Carlon et al. (2000), for specific<br />

application to contam<strong>in</strong>ated soils.<br />

The spatial correlation of the data were g<strong>en</strong>erally<br />

good and proved suffici<strong>en</strong>t to furnish an<br />

<strong>in</strong>terpolation function. In a few cases however, the<br />

correlation was very weak, return<strong>in</strong>g a spatial<br />

repres<strong>en</strong>tation of the data which was too low to<br />

allow an estimate of the distribution of the chemical<br />

<strong>elem<strong>en</strong>ts</strong> by <strong>in</strong>terpolation. In these cases, the<br />

distribution of <strong>elem<strong>en</strong>ts</strong> cannot be repres<strong>en</strong>ted by a<br />

vector map, but <strong>in</strong>stead by maps of sampl<strong>in</strong>g po<strong>in</strong>ts<br />

divided by differ<strong>en</strong>t classes of conc<strong>en</strong>tration.<br />

The experim<strong>en</strong>tal variograms were modelled with<br />

spherical functions characterised by the range, sill<br />

and nugget values shown <strong>in</strong> Table 3, a value of zero<br />

<strong>in</strong>tercept was imposed at the outset (nugget = 0) <strong>in</strong><br />

order to honour the measured values.<br />

obta<strong>in</strong>ed by Krig<strong>in</strong>g (Isaaks and Srivastava, 1989;<br />

Clark and Harper, 2004). The variographic model<br />

was tested by cross-validation. The data provided<br />

relate to the sampl<strong>in</strong>g and chemical analysis<br />

procedures as described <strong>in</strong> previous chapters, and<br />

they are all listed <strong>in</strong> the attachm<strong>en</strong>ts to this<br />

docum<strong>en</strong>t.<br />

61


4.1 Methods for chemical<br />

analysis: soil and macromycete<br />

carpophores<br />

4.1.1 Carpophores<br />

For a mean<strong>in</strong>gful comparison of analytical results it<br />

is important to consider the degree of maturity at<br />

harvest of the carpophores that were used to<br />

determ<strong>in</strong>e the conc<strong>en</strong>tration of <strong>in</strong>organic <strong>elem<strong>en</strong>ts</strong>.<br />

Based on experi<strong>en</strong>ce and the standard practice<br />

followed by many mycologists, maturity can only<br />

be estimated empirically as there are no analytical<br />

methods to measure this parameter. Nevertheless,<br />

the empirical method that assigns "numbers" to the<br />

various stages of carpophore maturity comb<strong>in</strong>ed<br />

with the experi<strong>en</strong>ce of the mycologist works quite<br />

well and certa<strong>in</strong>ly contributes to reduc<strong>in</strong>g the errors<br />

that could arise through variations of chemical<br />

conc<strong>en</strong>trations due to the vary<strong>in</strong>g age of<br />

carpophores. The scale used is as follows:<br />

1. Primordial (carpophore is still <strong>in</strong> embryonic<br />

form)<br />

2. Young (carpophore already formed, with<br />

hym<strong>en</strong>ium not exposed to air <strong>in</strong> carpophores<br />

hav<strong>in</strong>g a secondary veil like a cloak or a r<strong>in</strong>g)<br />

3. Almost mature (spores beg<strong>in</strong> to mature and<br />

the hym<strong>en</strong>ium is completely exposed to the<br />

air)<br />

4. Mature (the spores are ripe and <strong>in</strong> most<br />

species the hym<strong>en</strong>ium takes on the colour of a<br />

spore)<br />

5. Old (the first signs of deterioration or<br />

putrefaction have set <strong>in</strong>)<br />

It is clear that a more-ref<strong>in</strong>ed evaluation (by use of<br />

half numbers) is the highest degree of s<strong>en</strong>sitivity<br />

that this empirical scale of carpophore maturity<br />

could atta<strong>in</strong>.<br />

Most of the carpophores analysed dur<strong>in</strong>g this study<br />

had a maturity-level of 4, therefore mature<br />

carpophores formed the basis of the study.<br />

Chapter IV<br />

Materials and Methods<br />

After be<strong>in</strong>g gathered, the carpophores were very<br />

carefully cleaned with special, soft brushes to<br />

remove any soil or sand particles, plant debris,<br />

<strong>in</strong>sects, larvae or other material. After clean<strong>in</strong>g, the<br />

carpophores were roughly cut <strong>in</strong>to slices to verify<br />

that there was no foreign material on the <strong>in</strong>side<br />

either.<br />

At this stage the amount of fungal material to be<br />

dried was weighed out: 20 grams can usually be<br />

considered suffici<strong>en</strong>t. Dur<strong>in</strong>g this operation it was<br />

important to ma<strong>in</strong>ta<strong>in</strong> the real weight proportions<br />

betwe<strong>en</strong> the differ<strong>en</strong>t parts of each carpophore<br />

(stem, cap, hym<strong>en</strong>ium). The cut material was th<strong>en</strong><br />

set <strong>in</strong> a crystallizer and placed <strong>in</strong> a v<strong>en</strong>tilated ov<strong>en</strong><br />

at a temperature of 45°C for 48 hours. At the same<br />

time, for a small number of samples, dry<strong>in</strong>g was<br />

carried out at 105°C to measure water loss.<br />

Mushrooms were not kept for longer than<br />

necessary <strong>in</strong> contact with metal objects to avoid<br />

contam<strong>in</strong>at<strong>in</strong>g the samples, especially wh<strong>en</strong> damp.<br />

Instead we made use of other tools and treatm<strong>en</strong>t<br />

methods that <strong>in</strong>volved plastic or glass tools.<br />

After be<strong>in</strong>g dried at 45 o C the samples were ground<br />

with an agate pestle and mortar and the ground part<br />

was th<strong>en</strong> put <strong>in</strong>to a pre-washed polyethyl<strong>en</strong>e<br />

conta<strong>in</strong>er with two stoppers. Into this receptacle we<br />

put a 10 mm-diameter sphere of Teflon or glass to<br />

homog<strong>en</strong>ise each sample before weigh<strong>in</strong>g and<br />

before follow<strong>in</strong>g treatm<strong>en</strong>ts.<br />

The acid m<strong>in</strong>eralisation of all carpophores was<br />

performed by plac<strong>in</strong>g a quantity of sample<br />

weigh<strong>in</strong>g 0.5-0.7 grams <strong>in</strong> a microwave ov<strong>en</strong> with<br />

aqua regia. After m<strong>in</strong>eralisation, the sample was<br />

<strong>in</strong>creased to 50 ml <strong>in</strong> a volumetric flask with<br />

ultrapure H2O (C<strong>en</strong>ci et al., 2008).<br />

The quantitative determ<strong>in</strong>ation of all <strong>elem<strong>en</strong>ts</strong><br />

(except Hg) was performed with a ICP-AES Perk<strong>in</strong><br />

Elmer Optima 3000 XL spectrophotometer. The<br />

determ<strong>in</strong>ation of mercury was performed us<strong>in</strong>g an<br />

Perk<strong>in</strong> Elmer FIMS 100 atomic absorption<br />

spectrophotometer designed for cold-vapour<br />

mercury determ<strong>in</strong>ation.<br />

The preparation of calibration standards was<br />

carried out start<strong>in</strong>g from certified ultrapure monoelem<strong>en</strong>t<br />

solutions of 1000 mg/l by ICP <strong>in</strong>strum<strong>en</strong>ts.<br />

63


Certified Refer<strong>en</strong>ce Materials (NBS and SRM)<br />

with a matrix similar to that of fungi were<br />

m<strong>in</strong>eralised and subsequ<strong>en</strong>tly analysed. The<br />

conc<strong>en</strong>tration levels obta<strong>in</strong>ed were with<strong>in</strong> tolerance<br />

<strong>in</strong>tervals.<br />

4.1.2 Soil<br />

At the base of the carpophore stems 4-5 cubes of<br />

soil, each measur<strong>in</strong>g 5x5x5 cm, were collected and<br />

all grass, stones, leaves and other matter were<br />

immediately removed.<br />

The soil samples were subsequ<strong>en</strong>tly placed <strong>in</strong><br />

plastic bags and mixed manually to form a s<strong>in</strong>gle<br />

sample. In the laboratory each sample was dried<br />

and th<strong>en</strong> passed through a 2 mm sieve. The<br />

particles of the sample which were equal to or<br />

smaller than 2mm were th<strong>en</strong> ground with a mortar<br />

and pestle and th<strong>en</strong> placed <strong>in</strong> polyethyl<strong>en</strong>e bags, as<br />

was the case for the mushroom samples; likewise,<br />

64<br />

Table 4. detection limits (d.l.) expressed <strong>in</strong> mg/kg.<br />

the m<strong>in</strong>eralisation process was also carried out <strong>in</strong><br />

the same way as for the <strong>mushrooms</strong>.<br />

Determ<strong>in</strong>ation of the conc<strong>en</strong>trations of the various<br />

<strong>elem<strong>en</strong>ts</strong> under <strong>in</strong>vestigation was carried out us<strong>in</strong>g<br />

the same analytical <strong>in</strong>strum<strong>en</strong>ts as for the<br />

mushroom carpophores.<br />

The Certified Refer<strong>en</strong>ce Materials for soil and<br />

sedim<strong>en</strong>t (CRM 141 R, Calcareous Loam Soil e<br />

CRM 277, Estuar<strong>in</strong>e Sedim<strong>en</strong>t) were m<strong>in</strong>eralised<br />

and subsequ<strong>en</strong>tly analysed. The conc<strong>en</strong>tration<br />

levels obta<strong>in</strong>ed were with<strong>in</strong> tolerance <strong>in</strong>tervals.<br />

4.1.3 Criteria for data collection<br />

Table four <strong>in</strong>dicates the elem<strong>en</strong>t-by-elem<strong>en</strong>t<br />

detection limits (d.l.) obta<strong>in</strong>ed by measur<strong>in</strong>g each<br />

sample t<strong>en</strong> times . The d.l. repres<strong>en</strong>ts the triple of<br />

the standard deviation. This criterion is widely used<br />

<strong>in</strong> analytical laboratories.<br />

d.l. d.l. d.l. d.l. d.l. d.l.<br />

Al 1 Cd 0.05 Cr 0.1 Hg 0.05 Cu 0.2 Ti 0.05<br />

Ag 0.05 Ca 2 Fe 0.1 Mo 0.2 Rb 0.5 V 0.1<br />

As 1 Cs 0.1 P 5 Ni 0.2 Se 2 Zn 0.2<br />

Ba 0.1 Cl 5 Mg 0.2 Pb 0.5 Na 3 Zr 0.05<br />

B 0.2 Co 0.1 Mn 0.05 K 500 Sr 0.3 S 10<br />

Wh<strong>en</strong> a measurem<strong>en</strong>t was less than the detection<br />

limit, a value equal to one t<strong>en</strong>th of the d.l. was<br />

<strong>en</strong>tered <strong>in</strong> the archive: this is because otherwise, <strong>in</strong><br />

our statistical analysis, it would not have be<strong>en</strong><br />

possible to dist<strong>in</strong>guish a cell with no value (where a<br />

measurem<strong>en</strong>t for that elem<strong>en</strong>t <strong>in</strong> that sample was<br />

not made) from a cell <strong>in</strong> which the measurem<strong>en</strong>t<br />

was less than the d.l..<br />

Although the tables show values for samples and/or<br />

<strong>elem<strong>en</strong>ts</strong> for which also very few measurem<strong>en</strong>ts<br />

were tak<strong>en</strong>, only samples and/or <strong>elem<strong>en</strong>ts</strong> hav<strong>in</strong>g at<br />

least 30 measurem<strong>en</strong>ts are to be considered reliable<br />

<strong>in</strong> this statistical analysis.<br />

4.2 Distribution map of <strong>elem<strong>en</strong>ts</strong><br />

<strong>in</strong> soil<br />

An exploration of the thematic maps result<strong>in</strong>g from<br />

our studies will now follow, aim<strong>in</strong>g to <strong>in</strong>terpret the<br />

spatial distribution of several <strong>in</strong>organic trace<br />

<strong>elem<strong>en</strong>ts</strong>, also known as persist<strong>en</strong>t <strong>in</strong>organic<br />

contam<strong>in</strong>ants. Furthermore, both alum<strong>in</strong>ium and<br />

the pH levels of surface soil will be tak<strong>en</strong> <strong>in</strong>to<br />

consideration.<br />

After appropriate treatm<strong>en</strong>t, around 180 samples of<br />

surface soil, tak<strong>en</strong> from depths of betwe<strong>en</strong> 0 to<br />

5cm, were used to assess conc<strong>en</strong>tration levels of<br />

alum<strong>in</strong>ium, ars<strong>en</strong>ic, cadmium, chromium, copper,<br />

mercury, nickel, lead, vanadium, sel<strong>en</strong>ium, z<strong>in</strong>c,<br />

zirconium, and pH levels.<br />

The area of <strong>in</strong>vestigation is repres<strong>en</strong>ted by the<br />

prov<strong>in</strong>ce of Reggio Emilia (Fig. 29), more<br />

precisely, start<strong>in</strong>g from State Road 9, (known as


Via Aemilia) to the Ap<strong>en</strong>n<strong>in</strong>e border with Tuscany,<br />

<strong>in</strong>clud<strong>in</strong>g a small area of the Tuscan-Emilian<br />

National Park.<br />

This area can be divided <strong>in</strong>to five sections start<strong>in</strong>g<br />

from the city of Reggio Emilia. In this segm<strong>en</strong>t of<br />

lowlands the towns Bibbiano, Cavriago and<br />

Montecchio are situated. Farther to the south is a<br />

narrow strip of land with hills spread out betwe<strong>en</strong><br />

the pla<strong>in</strong>s and the northern footpath. The towns<br />

which <strong>in</strong> part make up this area are: San Polo,<br />

Before comm<strong>en</strong>c<strong>in</strong>g with a description of the<br />

thematic maps perta<strong>in</strong><strong>in</strong>g to the <strong>elem<strong>en</strong>ts</strong> under<br />

study, it is important to emphasise that what is<br />

proposed and illustrated <strong>in</strong> the figures repres<strong>en</strong>ts<br />

conc<strong>en</strong>tration distributions. This aim to<br />

demonstrate the real conc<strong>en</strong>tration base levels.<br />

These are the sum of geochemical cont<strong>en</strong>ts,<br />

understood as purely natural ph<strong>en</strong>om<strong>en</strong>a, and<br />

conc<strong>en</strong>tration values due to anthropog<strong>en</strong>ic activity.<br />

Fig. 29. Geographical map of the Prov<strong>in</strong>ce of Reggio Emilia.<br />

Quattro Castella, Alb<strong>in</strong>ea, Scandiano and<br />

Casalgrande.<br />

Cont<strong>in</strong>u<strong>in</strong>g south, one comes across a wide hilly<br />

area. The towns it <strong>en</strong>compasses are Vezzano,<br />

Baiso, Viano and Canossa. The towns of Carp<strong>in</strong>eti,<br />

Toano, Vetto and Castelnovo nei Monti lie betwe<strong>en</strong><br />

the Enza and Dolo rivers. F<strong>in</strong>ally <strong>in</strong> the area with a<br />

purely mounta<strong>in</strong>ous morphology are the resort<br />

towns of Villa M<strong>in</strong>ozzo, Ligonchio Besana,<br />

Ramiseto and Collagna.<br />

For all twelve <strong>elem<strong>en</strong>ts</strong> under study, g<strong>en</strong>eral<br />

remarks can be made stat<strong>in</strong>g that the conc<strong>en</strong>tration<br />

distribution throughout Reggio Emilia is mostly<br />

monotonic and qualitatively comparable.<br />

In g<strong>en</strong>eral, the many human activities that have<br />

acted and are act<strong>in</strong>g on the Reggio Emilia area,<br />

have not left significant signs of contam<strong>in</strong>ation,<br />

furthermore, the data we have be<strong>en</strong> obta<strong>in</strong>ed are<br />

very similar to f<strong>in</strong>d<strong>in</strong>gs reported by Marks et al.<br />

(2009) <strong>in</strong> their study of the soil of Emilia Romagna.<br />

65


Further confirmation of this was provided by the<br />

chemical data obta<strong>in</strong>ed by analys<strong>in</strong>g the surface<br />

soils collected <strong>in</strong> Scandiano, Carp<strong>in</strong>eti, and their<br />

large surround<strong>in</strong>g areas. For most of the <strong>elem<strong>en</strong>ts</strong>,<br />

the conc<strong>en</strong>tration levels found dur<strong>in</strong>g this<br />

66<br />

monitor<strong>in</strong>g study yielded very similar results aga<strong>in</strong><br />

(C<strong>en</strong>ci et al., 2005).<br />

Alum<strong>in</strong>ium (Fig. 30) can be se<strong>en</strong> to have a rather<br />

homog<strong>en</strong>eous conc<strong>en</strong>tration distribution. Lower<br />

levels can be found <strong>in</strong> the hills.<br />

Fig. 30. Spatial distribution of the conc<strong>en</strong>tration levels of alum<strong>in</strong>ium (mg/kg dry weight) <strong>in</strong> surface soils.<br />

In the pla<strong>in</strong>s and mounta<strong>in</strong>s conc<strong>en</strong>trations are<br />

higher; this is ma<strong>in</strong>ly due to the geology of the<br />

area. Ars<strong>en</strong>ic (Fig. 31) mirrors the f<strong>in</strong>d<strong>in</strong>gs for<br />

alum<strong>in</strong>ium, while for cadmium (Fig. 32), there are<br />

two areas, San Polo d'Enza and Reggio Emilia,<br />

where one could reasonably expect to see<br />

significant man-made effects. For the rema<strong>in</strong><strong>in</strong>g<br />

part of the area, levels rema<strong>in</strong> rather uniform.<br />

Fig. 31. Spatial distribution of the conc<strong>en</strong>tration levels of ars<strong>en</strong>ic (mg/kg dry weight) <strong>in</strong> surface soils.


Fig. 32. Spatial distribution of the conc<strong>en</strong>tration levels of cadmium (mg/kg dry weight) <strong>in</strong> surface soils.<br />

Chromium and nickel (Fig. 33) have a very similar<br />

spatial distribution of conc<strong>en</strong>tration levels, as one<br />

would expect, and both are pres<strong>en</strong>t <strong>in</strong> the western<br />

zone, <strong>in</strong> two areas ly<strong>in</strong>g congru<strong>en</strong>t to ophiolitic<br />

ultramafic outcrops of the Enza bas<strong>in</strong>: the levels<br />

found here were quite high. The small area near<br />

State Road 9, which is already known for its high<br />

cadmium levels, should also be considered a po<strong>in</strong>t<br />

of contam<strong>in</strong>ation for chromium. Oft<strong>en</strong> chromium is<br />

found to be <strong>en</strong>riched with many <strong>elem<strong>en</strong>ts</strong>, but not<br />

nickel, which, <strong>in</strong> cases where there has be<strong>en</strong> a<br />

geog<strong>en</strong>ic malfunction, grows <strong>in</strong> proportion to the<br />

chromium.<br />

Fig. 33. Spatial distribution of the conc<strong>en</strong>tration levels of nickel (mg/kg dry weight) <strong>in</strong> surface soils.<br />

The <strong>elem<strong>en</strong>ts</strong> copper and mercury (Figs. 34 and 35)<br />

show a fairly uniform distribution of conc<strong>en</strong>tration<br />

levels which, as a whole, are fairly low. Only two<br />

localized areas <strong>in</strong> the mounta<strong>in</strong>s showed higherthan-expected<br />

levels, presumably due to local<br />

contam<strong>in</strong>ation.<br />

67


68<br />

Fig. 34. Spatial distribution of the conc<strong>en</strong>tration levels of copper (mg/kg dry weight) <strong>in</strong> surface soils.<br />

Fig. 35. Spatial distribution of the conc<strong>en</strong>tration levels of mercury (mg/kg dry weight) <strong>in</strong> surface soils.<br />

The spatial distribution of the conc<strong>en</strong>tration levels<br />

of lead were also fairly homog<strong>en</strong>eous throughout<br />

the territory (Fig. 36); such values suggest a<br />

g<strong>en</strong>eral <strong>en</strong>richm<strong>en</strong>t due to contribution by man.<br />

There are two areas that have certa<strong>in</strong>ly be<strong>en</strong><br />

“contam<strong>in</strong>ated”: one near State Road 9 and the<br />

other <strong>in</strong> the Baiso area.<br />

For vanadium and sel<strong>en</strong>ium, the Ap<strong>en</strong>n<strong>in</strong>e area<br />

appears to have lower conc<strong>en</strong>tration levels, the<br />

latter also be<strong>in</strong>g conf<strong>in</strong>ed to the mounta<strong>in</strong>ous areas.<br />

The largest conc<strong>en</strong>tration levels are diametrically<br />

opposed: high values for sel<strong>en</strong>ium were found <strong>in</strong><br />

the pla<strong>in</strong>s, while for vanadium, high levels were<br />

observed <strong>in</strong> the mounta<strong>in</strong>s. Regard<strong>in</strong>g the latter,<br />

there appears to be also a localised contam<strong>in</strong>ation<br />

<strong>in</strong> this area (near Reggio Emilia and State Road 9)<br />

of cadmium, chromium and lead.


Fig. 36. Spatial distribution of the conc<strong>en</strong>tration levels of lead (mg/kg dry weight) <strong>in</strong> surface soils.<br />

For z<strong>in</strong>c, as with cadmium, chromium, lead and<br />

vanadium; soil contam<strong>in</strong>ation is found near State<br />

Road 9. The rema<strong>in</strong><strong>in</strong>g area conta<strong>in</strong>s practically<br />

uniform conc<strong>en</strong>tration levels, except for the higher<br />

levels found <strong>in</strong> the mounta<strong>in</strong>ous ranges to the east.<br />

Low conc<strong>en</strong>tration levels were found consist<strong>en</strong>tly<br />

for zirconium and it was only <strong>in</strong> the Ap<strong>en</strong>n<strong>in</strong>es that<br />

higher conc<strong>en</strong>trations of it were registered. The<br />

zirconium levels observed <strong>in</strong> this study are on<br />

Fig. 37. Spatial distribution of pH levels <strong>in</strong> surface soils.<br />

average one order of magnitude lower than those<br />

obta<strong>in</strong>ed by Marchi et al. (2009).<br />

Lastly, the acidity levels of Reggio Emilia soils<br />

measured spatially (Fig. 37) are considered.<br />

Throughout most of the territory pH levels of<br />

around 6.5 are the norm. In two areas, one located<br />

<strong>in</strong> the mounta<strong>in</strong>s and the other <strong>in</strong> the south, there<br />

are more acidic soils, while those <strong>in</strong> the Ap<strong>en</strong>n<strong>in</strong>es<br />

t<strong>en</strong>d toward neutral-alkal<strong>in</strong>e pH.<br />

69


4.3 Distribution map of <strong>elem<strong>en</strong>ts</strong><br />

<strong>in</strong> <strong>mushrooms</strong><br />

Heavy metals can be regarded as one of the ma<strong>in</strong><br />

sources of <strong>en</strong>vironm<strong>en</strong>tal pollution. For several<br />

decades the output of heavy metals <strong>in</strong>to the<br />

<strong>en</strong>vironm<strong>en</strong>t due to human activity exceeded those<br />

of natural orig<strong>in</strong> such as volcanic eruptions and<br />

large forest fires. A large part of these persist<strong>en</strong>t<br />

<strong>in</strong>organic contam<strong>in</strong>ants <strong>en</strong>ds up <strong>in</strong> the soil,<br />

<strong>in</strong>creas<strong>in</strong>g chemical elem<strong>en</strong>t conc<strong>en</strong>tration levels.<br />

The soil, thus <strong>en</strong>riched with heavy metals, may, as<br />

a result of leach<strong>in</strong>g processes, allow some of these<br />

metals to leak <strong>in</strong>to groundwater tables. The fact<br />

that <strong>mushrooms</strong> are bioaccumulators means that<br />

their fruit<strong>in</strong>g bodies may take on these<br />

contam<strong>in</strong>ants and pass them on to animal biota –<br />

with pot<strong>en</strong>tially hazardous results for humans.<br />

Regard<strong>in</strong>g the heavy-metal and macro-elem<strong>en</strong>t<br />

conc<strong>en</strong>tration levels which accumulate <strong>in</strong><br />

<strong>mushrooms</strong>, they can dep<strong>en</strong>d on and be <strong>in</strong>flu<strong>en</strong>ced<br />

by factors such as soil type and the conc<strong>en</strong>tration<br />

levels of the metals. It should be noted that<br />

conc<strong>en</strong>trations of heavy metals <strong>in</strong> soils, <strong>in</strong> this<br />

study area of the prov<strong>in</strong>ce of Reggio Emilia, are<br />

completely consist<strong>en</strong>t with the geology of the area<br />

(Marchi, pers. comm., 2010).<br />

Other factors that may affect this accumulation are<br />

the chemical forms of the heavy metals <strong>in</strong>volved,<br />

the cont<strong>en</strong>t of organic matter and the conc<strong>en</strong>tration<br />

of hydrog<strong>en</strong> ions <strong>in</strong> the soil, and many other factors<br />

(Garcia et al., 2009) that, together, may play a<br />

decisive role <strong>in</strong> the process of bioaccumulation.<br />

Other aspects relate to the g<strong>en</strong>era and species of<br />

<strong>mushrooms</strong>, and which are able to bioaccumulate<br />

heavy metals, and to what degree. It should also be<br />

remembered that aspects such as d<strong>en</strong>sity, depth and<br />

age of the fungal mycelia; their lifecycles that can<br />

last for months to years – all these factors affect the<br />

growth of fungal fruit<strong>in</strong>g bodies (carpophores),<br />

affect<strong>in</strong>g and condition<strong>in</strong>g the processes of<br />

bioaccumulation. Knowledge about the<br />

mechanisms which transport heavy metals from the<br />

soil-substrate to the mycelium and from th<strong>en</strong>ce to<br />

the carpophores, however, are as yet poorly<br />

understood (Svoboda and Kalač, 2000).<br />

The data collection <strong>in</strong> this book is really quite vast,<br />

with more than 9,000 carpophore samples collected<br />

from all over Italy, correspond<strong>in</strong>g to a universe of<br />

about 1,000 species of fungi. For each sample the<br />

conc<strong>en</strong>trations of 32 <strong>elem<strong>en</strong>ts</strong> were quantified. In<br />

70<br />

addition, approximately 350 surface soil samples<br />

were exam<strong>in</strong>ed so as to obta<strong>in</strong> a better<br />

<strong>in</strong>terpretation of bioaccumulation processes. For<br />

the surface soil samples, <strong>in</strong> addition to the 32<br />

<strong>elem<strong>en</strong>ts</strong>, their respective conc<strong>en</strong>trations of<br />

hydrog<strong>en</strong> ions were evaluated.<br />

The graphic repres<strong>en</strong>tation of over 300,000 sample<br />

data cannot be shown and discussed <strong>in</strong> a<br />

compreh<strong>en</strong>sive way here; therefore it was decided<br />

to pres<strong>en</strong>t, evaluate and <strong>in</strong>terpret data only for areas<br />

<strong>in</strong> the prov<strong>in</strong>ce of Reggio Emilia where carpophore<br />

collection was carried out with greatest <strong>in</strong>t<strong>en</strong>sity.<br />

These zones ext<strong>en</strong>d from State Road 9 up to the<br />

southern ridge of the Tosco Emiliano Ap<strong>en</strong>n<strong>in</strong>es<br />

and <strong>in</strong>clude areas of the Tuscan mounta<strong>in</strong>side (Alta<br />

Garfagnana and Lunigiana).<br />

We selected for exam<strong>in</strong>ation the <strong>elem<strong>en</strong>ts</strong> which,<br />

based on the sci<strong>en</strong>tific data and literature to hand,<br />

were the most significant and highly-studied:<br />

alum<strong>in</strong>ium (Al), ars<strong>en</strong>ic (As), cadmium (Cd),<br />

chromium (Cr), copper (Cu), mercury (Hg), nickel<br />

(Ni), lead (Pb) and z<strong>in</strong>c (Zn). Sel<strong>en</strong>ium (Se) was<br />

only exam<strong>in</strong>ed for Boletus edulis, as it is not found<br />

to a significant degree <strong>in</strong> other taxa; Vanadium (V)<br />

and zirconium (Zr) that were <strong>in</strong>vestigated only for<br />

Amanita muscaria (L.) Lam., as they were not<br />

found to a significant degree <strong>in</strong> any other taxa.<br />

Also <strong>in</strong>cluded <strong>in</strong> the study were those taxa that had<br />

an "abundance" of suffici<strong>en</strong>tly large sample groups<br />

(a total of 24,000 conc<strong>en</strong>tration level values) <strong>in</strong><br />

order to create distribution maps for the average,<br />

m<strong>in</strong>imum and maximum conc<strong>en</strong>tration values,<br />

thereby form<strong>in</strong>g a complete overview, which is<br />

summarised <strong>in</strong> Table 5.<br />

� Subdivision Basidiomycot<strong>in</strong>a - Subclass<br />

Agaricomycetideae<br />

• Order Tricholomatales and its G<strong>en</strong>us<br />

Clitocybe.<br />

• G<strong>en</strong>us Amanita and the species Am.<br />

Muscaria.<br />

• G<strong>en</strong>us Russula.<br />

• G<strong>en</strong>us Agaricus and the sections<br />

Bitorques [Subg<strong>en</strong>us Agaricus (L. : Fr.)<br />

He<strong>in</strong>em.] and Arv<strong>en</strong>ses [SottoG<strong>en</strong>us<br />

Flavoagaricus Wasser].<br />

• Group of Boletus edulis (B. aereus, B.<br />

reticulatus, B. edulis, B. P<strong>in</strong>ophilus).


� Subdivision Basidiomycot<strong>in</strong>a - Subclass<br />

Aphyllophoromycetideae<br />

• G<strong>en</strong>us Cantharellus.<br />

• G<strong>en</strong>us Ramaria.<br />

� Subdivision Ascomycot<strong>in</strong>a - Subclass<br />

Pezizomycetideae<br />

• G<strong>en</strong>us Morchella.<br />

Table 5. average, m<strong>in</strong>imum and maximum values for the <strong>elem<strong>en</strong>ts</strong> analysed relative to taxa <strong>in</strong>cluded <strong>in</strong> the study.<br />

Order Tricholomatales<br />

Order Tricholomatales<br />

G<strong>en</strong>us Clitocybe<br />

G<strong>en</strong>us Amanita<br />

Amanita muscaria<br />

G<strong>en</strong>us Russula<br />

G<strong>en</strong>us Agaricus<br />

G<strong>en</strong>us Agaricus<br />

Section Bitorques<br />

G<strong>en</strong>us Agaricus<br />

Section Arv<strong>en</strong>ses<br />

G<strong>en</strong>us Boletus<br />

Gruppo B. edulis<br />

G<strong>en</strong>us Cantharellus<br />

G<strong>en</strong>us Ramaria<br />

G<strong>en</strong>us Morchella<br />

The discussion deals separately with each of the<br />

various taxa considered. Below, there are<br />

distribution maps of certa<strong>in</strong> <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> conjunction<br />

with evaluations regard<strong>in</strong>g differ<strong>en</strong>t<br />

<strong>en</strong>richm<strong>en</strong>t factors and with data obta<strong>in</strong>ed from<br />

analysis of the pr<strong>in</strong>cipal compon<strong>en</strong>ts of this study.<br />

Al As Cd Cr Cu Hg Ni Pb Zn Se V Zr<br />

Average 217 1.0 2.37 1.94 36.4 0.35 1.37 0.94 157 - - -<br />

m<strong>in</strong> Value 16 0.1 0.09 0.10 4.0 0.01 0.14 0.05 50.0 - - -<br />

Max Value 2400 59 14.5 63.5 93.0 4.0 24.5 18.8 340 - - -<br />

Average 178 0.4 1.08 1.26 93.7 2.24 1.44 1.97 98.2 - - -<br />

m<strong>in</strong> Value 6 0.1 0.30 0.10 33.0 0.37 0.20 0.05 65.0 - - -<br />

Max Value 1520 9.0 3.88 5.30 319 6.00 5.00 21.5 165 - - -<br />

Average 334 0.2 5.02 2.03 63.6 1.19 1.37 1.32 131 - - -<br />

m<strong>in</strong> Value 13 0.1 0.12 0.01 6.0 0.01 0.02 0.05 20.0 - - -<br />

Max Value 3410 7.0 33.4 29.9 740 24.3 10.1 64.3 328 - - -<br />

Average 225 0.4 12.2 1.01 31.7 0.73 0.84 0.91 138 - 99.0 4.66<br />

m<strong>in</strong> Value 33 0.1 2.74 0.10 6.0 0.20 0.02 0.05 58.0 - 12.5 0.05<br />

Max value 1500 2.0 33.4 4.90 69.0 2.55 3.30 19.1 280 - 195 19.4<br />

Average 288 0.2 3.33 1.06 53.7 0.52 1.69 1.83 91.0 - - -<br />

m<strong>in</strong> Value 11 0.1 0.08 0.01 10.0 0.01 0.20 0.05 21.0 - - -<br />

Max Value 2940 7.0 24.6 6.10 189 4.06 13.5 53.6 864 - - -<br />

Average 488 0.1 1.58 6.07 161 2.29 3.15 1.09 110 - - -<br />

m<strong>in</strong> Value 113 0.1 0.12 0.20 33.0 0.19 0.20 0.05 47.0 - - -<br />

Max Value 1290 1.0 5.83 125 934 7.26 27.0 3.70 203 - - -<br />

Average 539 0.3 1.99 1.90 132 5.25 2.89 3.94 100 - - -<br />

m<strong>in</strong> Value 61 0.1 0.25 0.10 20.0 0.12 0.20 0.05 46.0 - - -<br />

Max Value 2770 4.0 9.20 7.40 812 25.3 14.1 29.5 273 - - -<br />

Average 119 1.5 40.9 0.74 188 4.99 2.39 2.52 156 - - -<br />

m<strong>in</strong> Value 9 0.1 0.05 0.01 27.0 0.43 0.20 0.05 50.0 - - -<br />

Max Value 797 21 391 10.9 1410 19.3 14.3 22.7 361 - - -<br />

Average 252 0.1 3.52 1.52 37.3 3.52 2.49 0.80 138 51.2 - -<br />

m<strong>in</strong> Value 3 0.1 0.34 0.10 5.0 0.13 0.75 0.05 28.0 5.0 - -<br />

Max Value 2490 3.0 15.7 22.1 98.0 28.9 16.6 9.10 447 223 - -<br />

Average 270 0.1 0.49 2.91 42.9 0.23 2.33 1.97 71.3 - - -<br />

m<strong>in</strong> Value 26 0.1 0.09 0.10 15.0 0.01 0.20 0.05 28.0 - - -<br />

Max Value 1360 0.1 2.87 57.3 111 1.44 28.6 5.50 143 - - -<br />

Average 327 8.7 5.74 3.54 51.4 0.99 10.19 0.98 71.1 - - -<br />

m<strong>in</strong> Value 10 0.1 0.52 0.30 19.0 0.01 1.10 0.05 31.0 - - -<br />

Max Value 970 40 32.3 28.6 244 8.23 48.3 3.20 167 - - -<br />

Average 709 0.1 0.94 3.27 53.6 0.09 2.40 1.19 144 - - -<br />

m<strong>in</strong> Value 21 0.1 0.19 0.20 11.0 0.01 0.40 0.05 60.0 - - -<br />

Max Value 6100 3.0 4.12 30.7 123 0.25 12.2 11.0 281 - - -<br />

4.3.1 Order Tricholomatales<br />

(Subdivision Basidiomycot<strong>in</strong>a – Subclass<br />

Agaricomycetideae)<br />

The distribution maps for the <strong>elem<strong>en</strong>ts</strong> ars<strong>en</strong>ic,<br />

cadmium, chromium, copper, mercury, nickel, lead<br />

and z<strong>in</strong>c, were far from uniform. Alum<strong>in</strong>ium,<br />

71


chromium and nickel t<strong>en</strong>d to have a similar<br />

conc<strong>en</strong>tration distribution and are g<strong>en</strong>erally<br />

consist<strong>en</strong>t throughout, but it is <strong>in</strong>terest<strong>in</strong>g to note<br />

that for chromium and nickel there is a strong<br />

overlap with the distribution maps of soil. Figs. 38<br />

and 39, that show copper and z<strong>in</strong>c, highlight<br />

Cadmium, mercury and lead (figs. 40, 41 and 42)<br />

have higher levels <strong>in</strong> hilly areas and, only for<br />

cadmium, ev<strong>en</strong> <strong>in</strong> the mounta<strong>in</strong>ous border with<br />

Tuscany.<br />

72<br />

Fig. 38. Spatial distribution of copper for the order Tricholomatales.<br />

Fig. 39. Spatial distribution of z<strong>in</strong>c for the order Tricholomatales.<br />

common areas where conc<strong>en</strong>trations are similar <strong>in</strong><br />

proportion. In the Alb<strong>in</strong>ea and Quattro Castella<br />

areas, maximum conc<strong>en</strong>tration levels for ars<strong>en</strong>ic<br />

were observed. Regard<strong>in</strong>g pH, areas with more<br />

highly-acidic soils display correspond<strong>in</strong>gly high<br />

levels of copper and z<strong>in</strong>c.<br />

Cadmium: the average conc<strong>en</strong>tration level was 2.37<br />

mg/kg. Slightly lower levels (1.67 mg/kg) were<br />

found east of the Black Sea (Demirbaş, 2001),<br />

while also <strong>in</strong> Turkey (Soylak et al., 2005) <strong>in</strong> Ma.


oreades and T. argyraceum 0.63 and 0.91 mg/kg<br />

were found. In the same area Yamaç et al. (2007)<br />

repeatedly found 0.58 and 1.99 mg/kg <strong>in</strong> I.<br />

geotropa and T. equestre. In the area of Epirus and<br />

Mercury: the average level of mercury was<br />

0.35mg/kg; this is far lower than <strong>in</strong> the Czech<br />

Republic <strong>in</strong> the proximity of silver m<strong>in</strong>es, where<br />

Svoboda et al. (2006) found levels of 10.5 and 8.9<br />

Lead: the average conc<strong>en</strong>tration level was 0.94<br />

mg/kg. In an area east of the Black Sea, a level of<br />

0.06 mg/kg was observed <strong>in</strong> the species T. terreum<br />

Fig. 40. Spatial distribution of cadmium for the order Tricholomatales.<br />

Fig. 41. Spatial distribution of mercury for the order Tricholomatales.<br />

Macedonia, Ouzoun et al. (2009) found,<br />

respectively, conc<strong>en</strong>trations of 1.8, 1.67 and 0.25<br />

mg/kg <strong>in</strong> three species, Ar. tabesc<strong>en</strong>s, Ar. mellea<br />

and T. rutilans.<br />

mg/kg <strong>in</strong> Le. nuda and Ar. mellea respectively. On<br />

the other hand, <strong>in</strong> Turkey, levels of 0.07 and 0.09<br />

mg/kg (Demirbaş, 2000) were recorded <strong>in</strong><br />

La. laccata and T. terreum.<br />

(Demirbaş, 2001). In a rec<strong>en</strong>t study, significantly<br />

higher values were observed <strong>in</strong> c<strong>en</strong>tral Spa<strong>in</strong> by<br />

Campos et al. (2009).<br />

73


Dur<strong>in</strong>g analysis of I. geotropa, T. ustaloides and<br />

T. rutilans, the authors found levels of 4.73; 3.33<br />

and 3.23 mg/kg respectively (although the method<br />

of measurem<strong>en</strong>t used should be considered here).<br />

In the Black Sea area, Sesli et al. (2008) found a<br />

conc<strong>en</strong>tration of 2.6 mg/kg <strong>in</strong> Le. nuda. Demirbaş<br />

(2001) <strong>in</strong> the same area, found levels of 2.43 mg/kg<br />

<strong>in</strong> the species T. terreum, while a level of 0.86<br />

mg/kg was found <strong>in</strong> La. laccata (Demirbaş, 2000).<br />

In Turkey, Yamaç et al. (2007) found 1.22 and<br />

1.59 mg/kg <strong>in</strong> I. geotropa and T. equestre<br />

respectively.<br />

The <strong>en</strong>richm<strong>en</strong>t-factor levels show that the<br />

<strong>elem<strong>en</strong>ts</strong> t<strong>en</strong>d to accumulate <strong>in</strong> carpophores and<br />

their accumulation usually varies with fungal<br />

species. In g<strong>en</strong>eral it was observed that ars<strong>en</strong>ic,<br />

chromium, nickel and lead do not t<strong>en</strong>d to<br />

accumulate <strong>in</strong> the fungi of this order, despite the<br />

soil be<strong>in</strong>g rich <strong>in</strong> them (Kalač and Svobova, 2000;<br />

García et al., 2009). In contrast, cadmium, copper,<br />

mercury and z<strong>in</strong>c can accumulate <strong>in</strong> carpophores,<br />

with above average conc<strong>en</strong>tration factors, ev<strong>en</strong><br />

wh<strong>en</strong> the soil only holds low conc<strong>en</strong>trations. This<br />

has be<strong>en</strong> further confirmed for mercury (Falandysz<br />

et al., 2002).<br />

In addition, Kalač and Svobova (2000), found<br />

<strong>en</strong>richm<strong>en</strong>t factors equal to 50-300 and 30-500 for<br />

74<br />

Fig. 42. Spatial distribution of lead for the order Tricholomatales.<br />

In accordance with our own f<strong>in</strong>d<strong>in</strong>gs, <strong>in</strong> Macedonia<br />

and <strong>in</strong> the area of Epirus, Ouzouni et al. (2009),<br />

found levels of 0.79; 0.49 and 1.16 mg/kg <strong>in</strong><br />

Ar. tabesc<strong>en</strong>s, Ar. mellea and Le. nuda<br />

respectively, while <strong>in</strong> Turkey (Soylak et al., 2005)<br />

levels of 1.05 and 1.89 mg/kg were recorded <strong>in</strong> Ma.<br />

oreades and T. argyraceum. In France; <strong>in</strong> the area<br />

surround<strong>in</strong>g Paris, C. nebularis, Ma. oreades and<br />

T. terreum were found to have levels equal to 42.5;<br />

33.6 and 24.3 mg/kg.<br />

cadmium and mercury and 0.1-0.2 for lead, as<br />

previously observed by Kalač et al. (1989b).<br />

The results obta<strong>in</strong>ed from pr<strong>in</strong>cipal compon<strong>en</strong>t<br />

analysis are pres<strong>en</strong>ted <strong>in</strong> Table 6. The first three<br />

compon<strong>en</strong>ts describe 63% of the total variance. In<br />

the first compon<strong>en</strong>t, soil acidity does not seem to<br />

affect the <strong>in</strong>crease <strong>in</strong> cadmium, chromium, copper<br />

and z<strong>in</strong>c; this is <strong>in</strong> contrast to the behaviour of lead<br />

as described by Kalač and Svobova (2000). Ma<strong>in</strong><br />

compon<strong>en</strong>t 2 describes the relationship betwe<strong>en</strong><br />

nickel, cadmium, mercury and lead that t<strong>en</strong>d to<br />

build up under moderately acidic conditions.<br />

Cadmium, mercury and lead are all typically<br />

affected by human activities. The third compon<strong>en</strong>t<br />

describes the relationship betwe<strong>en</strong> alkal<strong>in</strong>ity of the<br />

soil and high levels of ars<strong>en</strong>ic bioaccumulation.


4.3.2 G<strong>en</strong>us Clitocybe (Subdivision<br />

Basidiomycot<strong>in</strong>a - Subclass Agaricomycetideae<br />

– Order Tricholomatales)<br />

The g<strong>en</strong>us Clitocybe, as a whole and also for<br />

selected species, will be exam<strong>in</strong>ed here <strong>in</strong><br />

comparison with species from the order<br />

Tricholomatales. In the g<strong>en</strong>us Clitocybe, spatial<br />

distribution of elem<strong>en</strong>t conc<strong>en</strong>trations displays two<br />

types of associations. The first is repres<strong>en</strong>ted by<br />

chromium, nickel and z<strong>in</strong>c with maximum levels of<br />

5.3, 6 and 165 mg/kg, respectively which were<br />

observed <strong>in</strong> the areas of Toano and Reggio Emilia.<br />

The total rema<strong>in</strong><strong>in</strong>g area, with the exception of z<strong>in</strong>c<br />

conc<strong>en</strong>trations <strong>in</strong> Collagna bore uniform<br />

conc<strong>en</strong>tration values. A second association is<br />

repres<strong>en</strong>ted by alum<strong>in</strong>ium and copper and it is the<br />

area of Reggio Emilia which provided the highest<br />

levels.<br />

The maps repres<strong>en</strong>t<strong>in</strong>g ars<strong>en</strong>ic, mercury, cadmium<br />

and lead are very differ<strong>en</strong>t both among themselves<br />

and compared to other distribution maps. They<br />

confirm that the only overlap with the soil acidity<br />

map is the mercury cont<strong>en</strong>t <strong>in</strong> <strong>mushrooms</strong>. The<br />

Spatial distribution of elem<strong>en</strong>t conc<strong>en</strong>trations<br />

shows a few types of associations. The first is<br />

repres<strong>en</strong>ted by chromium and nickel with the<br />

highest levels, 125 and 27 mg/kg, respectively,<br />

found <strong>in</strong> Montecchio; other areas display<strong>in</strong>g<br />

uniform conc<strong>en</strong>tration levels. A second association<br />

is repres<strong>en</strong>ted by copper and lead with the area of<br />

Carp<strong>in</strong>eti which registered the highest values for<br />

those <strong>elem<strong>en</strong>ts</strong>.<br />

Alum<strong>in</strong>ium, z<strong>in</strong>c and mercury partly overlap, while<br />

ars<strong>en</strong>ic and cadmium are quite differ<strong>en</strong>t both<br />

Table 6. Results of pr<strong>in</strong>cipal compon<strong>en</strong>t analysis .<br />

Compon<strong>en</strong>t<br />

1 2 3<br />

pH_s -.042 -.060 .803<br />

As_FA .006 .093 .721<br />

Cd_FA .437 .304 .003<br />

Cr_FA .839 .004 -.037<br />

Cu_FA .897 .191 -.055<br />

Hg_FA .209 .788 .054<br />

Ni_FA .242 .629 -.350<br />

Pb_FA -.102 .692 .131<br />

Zn_FA .932 -.013 -.019<br />

betwe<strong>en</strong> themselves and with other distribution<br />

maps. The map show<strong>in</strong>g soil acidity has a<br />

resemblance to that display<strong>in</strong>g the z<strong>in</strong>c and<br />

mercury cont<strong>en</strong>t <strong>in</strong> <strong>mushrooms</strong> and also a<br />

quantitative overlap betwe<strong>en</strong> the alum<strong>in</strong>ium <strong>in</strong> the<br />

soil and the conc<strong>en</strong>trations of alum<strong>in</strong>ium <strong>in</strong><br />

<strong>mushrooms</strong> has be<strong>en</strong> observed.<br />

The maps <strong>in</strong> Figs. 43, 44 and 45 illustrate the<br />

conc<strong>en</strong>tration distribution of ars<strong>en</strong>ic, copper and<br />

mercury, the average levels of which are,<br />

respectively: 0.43, 93.7 and 2.24 mg/kg.<br />

Ars<strong>en</strong>ic: the areas of highest conc<strong>en</strong>tration were<br />

found betwe<strong>en</strong> Cas<strong>in</strong>a and Canossa, where the<br />

maximum is 9 mg/kg, while for the rest of the<br />

territory, the distribution is mostly uniform. Other<br />

authors found higher values (1.76 mg/kg) <strong>in</strong> La.<br />

laccata (Demirbaş, 2001) at the Black Sea. In<br />

samples from the various European nations and<br />

Brazil Slejkovec et al. (1977) found a value of 0.66<br />

mg/kg <strong>in</strong> La. laccata, while their highest<br />

conc<strong>en</strong>tration was found <strong>in</strong> La. fraterna, hav<strong>in</strong>g 30<br />

mg/kg. Konuk et al. (2007) reported a level of 0.44<br />

mg/kg <strong>in</strong> a sample of Ar. mellea collected <strong>in</strong><br />

Turkey.<br />

Copper: Fig. 44 shows the distribution of<br />

copper. High values are pres<strong>en</strong>t <strong>in</strong> the pla<strong>in</strong>s<br />

around the city of Reggio and area to the north of<br />

the Pedemontana road with a maximum level of<br />

319 mg/kg. In a previous study, differ<strong>en</strong>t values<br />

were reported <strong>in</strong> La. laccata; respectively 12.9 and<br />

92.5 mg/kg (Demirbaş, 2000, 2001).<br />

75


In Macedonia and the area of Epirus, Ouzoun et<br />

al. (2009) have found levels of 17.38 and 17.47<br />

mg/kg <strong>in</strong> samples of Ar.mellea and Ar. tabesc<strong>en</strong>s<br />

respectively. The same authors, Ouzoun et al<br />

(2007), found conc<strong>en</strong>trations of 16 and 4.65 mg/kg<br />

<strong>in</strong> Hy. eburneus and Hy. chrysodon. In Turkey<br />

Yamachiche et al. (2007) found 144.2 and 82.4<br />

Mercury: the Mercury map is shown <strong>in</strong> Fig. 45.<br />

The Quattro Castella site displays the highest<br />

76<br />

Fig. 43. Spatial distribution of ars<strong>en</strong>ic for the g<strong>en</strong>us Clitocybe.<br />

Fig. 44. Spatial distribution of copper for the g<strong>en</strong>us Clitocybe.<br />

mg/kg <strong>in</strong> Le. nuda and I. geotropa respectively. In<br />

an area of the Black Sea, Sesli et al (2008) found<br />

conc<strong>en</strong>trations of 32.8, 52.4 and 20.1 mg/kg <strong>in</strong> the<br />

species La. amethyst<strong>in</strong>a, Cl. gibba and Le. nuda. In<br />

France there was a conc<strong>en</strong>tration of 56.9 mg/kg <strong>in</strong><br />

samples of Cl. nebularis (Michelot et al., 1998).<br />

levels, equal to 6 mg/kg. Moderately high values<br />

were also observed on the Ap<strong>en</strong>n<strong>in</strong>e border. In


literature there are relatively few data on mercury.<br />

Demirbaş (2000, 2001), <strong>in</strong> two studies carried out<br />

east of the Black Sea, obta<strong>in</strong>ed levels which were<br />

differ<strong>en</strong>t (0.39 and 0.072 mg/kg) and much lower<br />

than those observed <strong>in</strong> Reggio Emilia, by us<strong>in</strong>g and<br />

analyz<strong>in</strong>g samples of La. laccata. Cocchi et<br />

al. (2006), <strong>in</strong> the prov<strong>in</strong>ce of Reggio Emilia have<br />

reported levels of 6.25, 0.12, 0.22, 0.77, 1.74 and<br />

1.78 mg/kg <strong>in</strong> Le. nuda, La. laccata, Hy. p<strong>en</strong>arius,<br />

Hy. russula, Ly. decastes and Ma. oreades<br />

As has already be<strong>en</strong> observed for other g<strong>en</strong>era and<br />

species of fungi, ars<strong>en</strong>ic, chromium, nickel and<br />

lead do not t<strong>en</strong>d to accumulate <strong>in</strong> carpophores. This<br />

is evid<strong>en</strong>ced by the <strong>en</strong>richm<strong>en</strong>t factors for lead and<br />

confirmed by the studies of Garcia et al. (2009). In<br />

contrast the <strong>elem<strong>en</strong>ts</strong> mercury (especially <strong>in</strong> Le.<br />

nuda) (Kalač et al., 1989b), cadmium, copper and<br />

Fig. 45. Spatial distribution of mercury for the g<strong>en</strong>us Clitocybe.<br />

Table 7. Result of pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

Compon<strong>en</strong>t<br />

1 2 3<br />

pH_s -.128 -.096 .961<br />

As_FA .975 .175 -.090<br />

Cd_FA .948 .256 -.123<br />

Cr_FA .701 .304 .267<br />

Cu_FA .980 .097 -.128<br />

Hg_FA .215 .964 -.105<br />

Ni_FA .988 .040 -.132<br />

Pb_FA .911 .312 -.085<br />

Zn_FA .977 .159 -.113<br />

respectively. In Cl. nebularis there was a<br />

significantly higher conc<strong>en</strong>tration, equival<strong>en</strong>t to<br />

62.9 mg/kg (Michelot et al., 1998). In the Czech<br />

Republic, <strong>in</strong> an area adjo<strong>in</strong><strong>in</strong>g silver m<strong>in</strong>es,<br />

Svoboda et al. (2006) found levels of 12.9 and 4.2<br />

mg/kg <strong>in</strong> Ar. mellea and Le. nuda. These values are<br />

considerably higher than both the average<br />

conc<strong>en</strong>tration level and the maximum value<br />

obta<strong>in</strong>ed <strong>in</strong> the prov<strong>in</strong>ce of Reggio Emilia.<br />

z<strong>in</strong>c t<strong>en</strong>d to accumulate, but not <strong>in</strong> such a marked<br />

manner <strong>in</strong> Clitocybe carpophores, ev<strong>en</strong> though the<br />

soil is low <strong>in</strong> conc<strong>en</strong>tration levels of these. All this<br />

is confirmed for mercury by Falandysz et al.<br />

(2002).<br />

The results obta<strong>in</strong>ed from pr<strong>in</strong>cipal compon<strong>en</strong>t<br />

analysis are pres<strong>en</strong>ted <strong>in</strong> Table 7.<br />

77


The first three compon<strong>en</strong>ts describe and expla<strong>in</strong><br />

94% of the total variance. It is noted that mercury<br />

is <strong>in</strong> contrast with other <strong>elem<strong>en</strong>ts</strong> and is dissociated<br />

by the acidity of the soil. The second compon<strong>en</strong>t<br />

re<strong>in</strong>forces what has be<strong>en</strong> described, mercury be<strong>in</strong>g<br />

separated from the other <strong>elem<strong>en</strong>ts</strong>, and the third<br />

constitu<strong>en</strong>t describes the "weak" l<strong>in</strong>k betwe<strong>en</strong><br />

acidity and chrome. The rema<strong>in</strong><strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> are<br />

not related to pH.<br />

4.3.3 G<strong>en</strong>us Amanita (Subdivision<br />

Basidiomycot<strong>in</strong>a - Subclass Agaricomycetideae<br />

- Order Amanitales)<br />

The chart of the conc<strong>en</strong>tration levels for ars<strong>en</strong>ic,<br />

cadmium, chromium, copper, mercury, nickel, lead<br />

and z<strong>in</strong>c, was quite uniform. The exceptions are the<br />

pairs of alum<strong>in</strong>ium and nickel and also chromium<br />

and cadmium that are qualitatively similar. As for<br />

the comparison betwe<strong>en</strong> the conc<strong>en</strong>tration<br />

distributions <strong>in</strong> the <strong>mushrooms</strong> with those of the<br />

soil, the map does not appear related to the pH<br />

distribution, while the cont<strong>en</strong>t of chromium, nickel<br />

and alum<strong>in</strong>ium <strong>in</strong> the soil displays a<br />

correspond<strong>en</strong>ce with the <strong>mushrooms</strong>.<br />

Copper: the distribution of copper is shown <strong>in</strong> Fig.<br />

47. The average level is 63.59 mg/kg. The highest<br />

values are found <strong>in</strong> the pla<strong>in</strong>s of the prov<strong>in</strong>ce while<br />

78<br />

Fig. 46. Spatial distribution of cadmium for the g<strong>en</strong>us Amanita.<br />

Cadmium: Fig 46 shows the distribution of<br />

cadmium, for which the average value is 2.5 mg/kg<br />

with a maximum of 33.4 mg/kg located <strong>in</strong> the<br />

Ap<strong>en</strong>n<strong>in</strong>es. High levels are also found <strong>in</strong> the air<br />

betwe<strong>en</strong> Vezzano and Viano. In Turkey, Tüz<strong>en</strong><br />

(2003) found a similar level <strong>in</strong> Am. solitaria, equal<br />

to 7.5 mg/kg, while <strong>in</strong> Macedonia and <strong>in</strong> the area of<br />

Epirus, Ouzoun et al. (2009) found a rather modest<br />

level of 1.3 mg/kg <strong>in</strong> Am. caesarea. Similar values<br />

were found <strong>in</strong> the Black Sea <strong>in</strong> M. muscaria, Am.<br />

rubesc<strong>en</strong>s and Am. vag<strong>in</strong>ata, with values of 1.6,<br />

0.79 and 0:56 mg/kg, respectively (Demirbaş,<br />

2001). In Turkey, Yamaç et al. (2007) measured a<br />

level of 2.46 mg/kg <strong>in</strong> Am. Caesarea, which is <strong>in</strong><br />

the middle betwe<strong>en</strong> what is stated <strong>in</strong> our<br />

<strong>in</strong>vestigation and that of the other authors cited. A<br />

significant number of samples from species <strong>in</strong> the<br />

g<strong>en</strong>us of Amanita was analysed by Michellot et al.<br />

(1998) <strong>in</strong> the Paris region. These <strong>in</strong>cluded Am.<br />

Excelsa var. excelsa, Am. gemmata, Am. muscaria,<br />

Am. ovoidea, Am. panther<strong>in</strong>a, Am. phalloides, Am.<br />

rubesc<strong>en</strong>s, Am. solitaria, Am. excelsa var. spissa<br />

and Am. vag<strong>in</strong>ata. The values obta<strong>in</strong>ed were<br />

similar to those observed by us, be<strong>in</strong>g, respectively:<br />

6; 14.9; 13.9; 2.9; 10.3; 1.5; 2.4; 2.6; 2.5 and 7.7<br />

mg/kg.<br />

other areas are very uniform and quite close to the<br />

average level. A similar value of 50.8 mg/kg was<br />

found <strong>in</strong> Turkey <strong>in</strong> Am. Caesarea (Yamachiche et


al., 2007), while Tüz<strong>en</strong> (2003) found 96.2 mg/kg <strong>in</strong><br />

Am. solitaria. Demirbaş (2001) recorded slightly<br />

erratic values of 23.5, 51.2 and 5.1 mg/kg <strong>in</strong><br />

Am. muscaria, Am. rubesc<strong>en</strong>s and Am. vag<strong>in</strong>ata <strong>in</strong><br />

the Black Sea area. In Macedonia and Epirus,<br />

Ouzoun et al.(2009) recorded 19.3 mg/kg <strong>in</strong><br />

samples of Am.Caesarea. Also regard<strong>in</strong>g copper,<br />

Michellot et al. (1998) observed similar levels <strong>in</strong><br />

Mercury: The highest values of mercury were<br />

found <strong>in</strong> the area of Casalgrande (24.3 mg/kg be<strong>in</strong>g<br />

the maximum level) (Fig. 48).<br />

The average value of 1.19 mg/kg is repres<strong>en</strong>tative<br />

of a substantial part of the Reggio Emilia area. In<br />

the Czech Republic, <strong>in</strong> an area close to silver<br />

m<strong>in</strong>es, Svoboda et al. (2006) found 1.55 mg/kg <strong>in</strong><br />

the Am. rubesc<strong>en</strong>s. Values one order of magnitude<br />

lower were found <strong>in</strong> the Black Sea <strong>in</strong> the Am.<br />

muscaria (0.18 mg/kg), Am. rubesc<strong>en</strong>s (0.23<br />

mg/kg) and Am. vag<strong>in</strong>ata (0.32 mg/kg) (Demirbaş,<br />

2001). In Poland, Falandysz et al. (2002) found<br />

Fig. 47. Spatial distribution of copper for the g<strong>en</strong>us Amanita.<br />

Am. excelsa var. excelsa (75.6 mg/kg), Am.<br />

gemmata (44.4 mg/kg), Am. muscaria (28.4<br />

mg/kg), Am. ovoidea (21.7 mg/kg), Am. panther<strong>in</strong>a<br />

(38.5 mg/kg), Am. phalloides (29.7 mg/kg), Am.<br />

rubesc<strong>en</strong>s (41.9 mg/kg), Am. solitaria (24 mg/kg),<br />

Am. excelsa var. spissa (29.2 mg/kg) and Am.<br />

vag<strong>in</strong>ata (65.9 mg/kg).<br />

levels betwe<strong>en</strong> 0.07 and 1.5 mg/kg <strong>in</strong> the caps and<br />

betwe<strong>en</strong> 0.021 and 1.3 mg/kg <strong>in</strong> the stalks of Am.<br />

muscaria. The mercury levels found by Michellot<br />

et al. (1998) appear excessively high <strong>in</strong>: Am.<br />

excelsa var. excelsa (61.3 mg/kg), Am. Gemmata<br />

(37.4 mg/kg), Am. muscaria (61.3 mg/kg), Am.<br />

ovoidea (61.4 mg/kg), Am. panther<strong>in</strong>a (64.9<br />

mg/kg), Am. phalloides (40.3 mg/kg), Am.<br />

rubesc<strong>en</strong>s (57 mg/kg), Am. solitaria (48.8 mg/kg),<br />

Am. excelsa var. spissa (58.4 mg/kg) and Am.<br />

vag<strong>in</strong>ata (54.3 mg/kg).<br />

79


4.3.4 Amanita muscaria (L.) Lam.<br />

(Subdivision Basidiomycot<strong>in</strong>a - Subclass<br />

Agaricomycetideae - Order Amanitales -<br />

G<strong>en</strong>us Amanita)<br />

For Am. muscaria, a medium-high to high<br />

frequ<strong>en</strong>cy species, distribution maps of vanadium<br />

and zirconium (Figs. 49 and 50) have be<strong>en</strong> drawn<br />

because the conc<strong>en</strong>trations of these <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> this<br />

species are by all means exceptional. The areas<br />

80<br />

Fig. 48. Spatial distribution of mercury for the g<strong>en</strong>us Amanita.<br />

Fig. 49. Spatial distribution of vanadium for Am. muscaria.<br />

with the greatest conc<strong>en</strong>trations are located <strong>in</strong> the<br />

Ap<strong>en</strong>n<strong>in</strong>es, where vanadium and zirconium occur<br />

<strong>in</strong> their highest levels of 195 and 19.4 mg/kg<br />

respectively. From the conc<strong>en</strong>tration levels of the<br />

two <strong>elem<strong>en</strong>ts</strong> and the soil pH levels, no direct<br />

relationship is evid<strong>en</strong>t, as was the case with<br />

samples of Am. muscaria. The two <strong>elem<strong>en</strong>ts</strong> are<br />

bioaccumulated regardless of the conc<strong>en</strong>tration<br />

pres<strong>en</strong>t <strong>in</strong> soils and their acidity.


It has be<strong>en</strong> noted that ars<strong>en</strong>ic, chromium, nickel<br />

and lead do not t<strong>en</strong>d to accumulate <strong>in</strong> the g<strong>en</strong>us<br />

Amanita, ev<strong>en</strong> if the soil is rich <strong>in</strong> these <strong>elem<strong>en</strong>ts</strong><br />

(Kalac and Svobova, 2000, García et al., 2009).<br />

The <strong>elem<strong>en</strong>ts</strong> copper and z<strong>in</strong>c t<strong>en</strong>d to accumulate<br />

but to a lesser ext<strong>en</strong>t, while cadmium and mercury<br />

accumulate abundantly (Sova et al., 1991; Vetter,<br />

Fig. 50. Spatial distribution of zirconium for Am. muscaria.<br />

Table 8. Results of pr<strong>in</strong>cipal compon<strong>en</strong>ts analysis.<br />

Compon<strong>en</strong>t<br />

1 2 3 4 5<br />

Al_a -.096 .017 .832 -.035 .054<br />

As_a -.038 .139 -.221 -.104 .099<br />

Cd_a -.084 .611 -.138 -.004 .077<br />

Cr_a .091 -.026 .721 -.058 -.054<br />

Cu_a -.065 .025 .069 .802 .137<br />

Hg_a .129 -.043 .057 .612 .065<br />

Ni_a .006 -.104 .884 -.031 .009<br />

Pb_a -.091 .186 .272 .020 -.052<br />

Zn_a -.104 .432 -.048 .664 .026<br />

Al_s .009 .776 .040 -.093 .457<br />

As_s .293 .627 .011 .171 -.049<br />

Cd_s .730 -.083 -.056 .106 .010<br />

Cr_s .872 .227 .027 .075 .086<br />

Cu_s .026 .056 -.056 .259 .917<br />

Hg_s .086 -.599 -.032 .077 -.098<br />

Ni_s .913 -.163 .004 -.031 -.003<br />

Pb_s .211 -.263 -.181 .613 -.036<br />

Zn_s .070 .277 -.088 .002 .913<br />

1994). This has be<strong>en</strong> confirmed by Falandysz et al.<br />

(2002) for the elem<strong>en</strong>t mercury. Kalač and<br />

Svobova (2000) exam<strong>in</strong>ed <strong>en</strong>richm<strong>en</strong>t factors equal<br />

to 50-300 and 30-500 for cadmium and mercury.<br />

The results obta<strong>in</strong>ed from pr<strong>in</strong>cipal compon<strong>en</strong>ts<br />

analysis are pres<strong>en</strong>ted <strong>in</strong> Table 8. The first five<br />

compon<strong>en</strong>ts expla<strong>in</strong>ed 59% of the total variance.<br />

81


In compon<strong>en</strong>t one, nickel and chromium <strong>in</strong><br />

particular and also cadmium are l<strong>in</strong>ked together<br />

and fall marg<strong>in</strong>ally below the other <strong>elem<strong>en</strong>ts</strong> <strong>in</strong><br />

soils and fungi. In compon<strong>en</strong>t two, cadmium and<br />

z<strong>in</strong>c t<strong>en</strong>d to <strong>in</strong>crease <strong>in</strong> <strong>mushrooms</strong> with <strong>in</strong>creas<strong>in</strong>g<br />

alum<strong>in</strong>ium and ars<strong>en</strong>ic <strong>in</strong> soils, while the mercury<br />

<strong>in</strong> the soil decreases. The third compon<strong>en</strong>t<br />

describes the l<strong>in</strong>k betwe<strong>en</strong> alum<strong>in</strong>ium, chromium<br />

and nickel <strong>in</strong> <strong>mushrooms</strong> of terrig<strong>en</strong>ous orig<strong>in</strong>, <strong>in</strong><br />

contrast aga<strong>in</strong> with fall<strong>in</strong>g ars<strong>en</strong>ic levels <strong>in</strong><br />

82<br />

<strong>mushrooms</strong>. The fourth compon<strong>en</strong>t shows an<br />

<strong>in</strong>crease of copper and mercury <strong>in</strong> <strong>mushrooms</strong> with<br />

lead, while the rema<strong>in</strong><strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> do not change.<br />

The fifth compon<strong>en</strong>t concerns alum<strong>in</strong>ium, copper<br />

and z<strong>in</strong>c <strong>in</strong> soils.<br />

As for the <strong>en</strong>richm<strong>en</strong>t factor, the results obta<strong>in</strong>ed<br />

from the pr<strong>in</strong>cipal compon<strong>en</strong>ts analysis are<br />

pres<strong>en</strong>ted <strong>in</strong> Table 9. These are related to<br />

<strong>en</strong>richm<strong>en</strong>t factors, and the first three compon<strong>en</strong>ts<br />

describe and expla<strong>in</strong> 93% of the total variance.<br />

Table 9. Results of pr<strong>in</strong>cipal compon<strong>en</strong>ts analysis <strong>in</strong> Amanita muscaria (L.) Lam..<br />

Base levels <strong>in</strong> soils are directly correlated with the<br />

bioaccumulation of almost all <strong>elem<strong>en</strong>ts</strong> except for<br />

copper and lead, while nickel is predom<strong>in</strong>antly<br />

bioaccumulated <strong>in</strong> acidic soils. Compon<strong>en</strong>t two<br />

expla<strong>in</strong>s how acidic soils are <strong>in</strong> particular<br />

opposition to vanadium, cadmium, copper, nickel<br />

and z<strong>in</strong>c. The third compon<strong>en</strong>t describes a strong<br />

relationship betwe<strong>en</strong> pH and lead, an <strong>in</strong>crease <strong>in</strong><br />

one also <strong>in</strong>creases the other and vice versa.<br />

4.3.5 G<strong>en</strong>us Russula (Subdivision<br />

Basidiomycot<strong>in</strong>a - Subclass Agaricomycetideae<br />

- Order Russulales)<br />

An overview and comparison of the maps show<strong>in</strong>g<br />

ars<strong>en</strong>ic, cadmium, chromium, copper, mercury,<br />

nickel, lead and z<strong>in</strong>c reveal a rather heterog<strong>en</strong>eous<br />

distribution of conc<strong>en</strong>trations.<br />

Ars<strong>en</strong>ic: for this elem<strong>en</strong>t (Fig. 51), the distribution<br />

is constant over the <strong>en</strong>tire <strong>in</strong>vestigated area. The<br />

1<br />

Compon<strong>en</strong>t<br />

2 3<br />

As_FA .996 -.013 -.050<br />

Cd_FA .867 .451 -.044<br />

Cr_FA .926 .154 .170<br />

Cu_FA .112 .973 -.113<br />

Hg_FA .941 .063 .304<br />

Ni_FA -.265 .922 .018<br />

Pb_FA .070 -.088 .954<br />

Zn_FA .279 .923 -.187<br />

V_FA .587 .759 -.126<br />

Zr_FA .984 -.123 .110<br />

pH_s .416 -.460 .549<br />

higher values of 7 and 5 mg/kg were found near<br />

Ligonchio and Viano. The average level is 0.2<br />

mg/kg.<br />

Higher conc<strong>en</strong>tration values <strong>in</strong> four species of<br />

Russula were found by Demirbaş (2001) to the east<br />

of the Black Sea. In c<strong>en</strong>tral F<strong>in</strong>land conc<strong>en</strong>trations<br />

rang<strong>in</strong>g from 0.1 to 0.5 mg/kg were found<br />

(Nikkar<strong>in</strong><strong>en</strong> and Mertan<strong>en</strong>, 2004).<br />

Lead and Z<strong>in</strong>c: Figs. 52 and 53 illustrate the<br />

spatial distribution of lead and z<strong>in</strong>c conc<strong>en</strong>trations<br />

that appear to be qualitatively similar, except for a<br />

small area repres<strong>en</strong>ted by the area of the city of<br />

Reggio Emilia, where the levels of lead appear to<br />

be significantly higher. These levels are due to<br />

motor vehicle fuel conta<strong>in</strong><strong>in</strong>g tetraethyl lead as an<br />

antiknock additive (C<strong>en</strong>ci et al., 2008). The<br />

average level is 1.8 mg/kg, <strong>in</strong> agreem<strong>en</strong>t with that<br />

found <strong>in</strong> F<strong>in</strong>land (1.4 ÷ 2 mg/kg; Demirbaş, 2001)<br />

and Turkey (2.3 mg/kg; Tüz<strong>en</strong>, 2003).


Still focus<strong>in</strong>g on Turkey, the lead conc<strong>en</strong>tration <strong>in</strong><br />

Ru. delica was 3.89 mg/kg (Demirbaş, 2000), while<br />

Konuk et al. (2007) found the rather small level of<br />

0.03 mg/kg. This value, judg<strong>in</strong>g by observations of<br />

other <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> differ<strong>en</strong>t fungi, seems somewhat<br />

underestimated. For z<strong>in</strong>c the average conc<strong>en</strong>tration<br />

Fig. 51. Spatial distribution of ars<strong>en</strong>ic for the g<strong>en</strong>us Russula.<br />

Fig. 52. Spatial distribution of lead for the g<strong>en</strong>us Russula.<br />

of 91mg/kg was higher than average levels, that<br />

ranged betwe<strong>en</strong> 19 and 32 mg/kg (Demirbaş,<br />

2001), whereas the value of 78 mg/kg repored from<br />

Turkey (Tüz<strong>en</strong>, 2003) looks quite similar to the one<br />

observed <strong>in</strong> our study.<br />

83


The values of <strong>en</strong>richm<strong>en</strong>t factors showed that<br />

ars<strong>en</strong>ic, chromium, nickel and lead do not t<strong>en</strong>d to<br />

accumulate <strong>in</strong> <strong>mushrooms</strong> ev<strong>en</strong> if the soil has high<br />

conc<strong>en</strong>trations of these <strong>elem<strong>en</strong>ts</strong>. This ph<strong>en</strong>om<strong>en</strong>on<br />

has be<strong>en</strong> further confirmed by Garcia et al. (2009).<br />

By contrast, cadmium, copper, z<strong>in</strong>c and mercury<br />

t<strong>en</strong>d to accumulate <strong>in</strong> the fruit<strong>in</strong>g bodies of fungi<br />

ev<strong>en</strong> wh<strong>en</strong> these <strong>elem<strong>en</strong>ts</strong> are at low conc<strong>en</strong>trations<br />

84<br />

Fig. 53. Spatial distribution of z<strong>in</strong>c for the g<strong>en</strong>us Russula.<br />

Table 10. Results of pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

Compon<strong>en</strong>ts<br />

1 2 3 4 5<br />

pH_s .325 .123 .282 -.662 -.403<br />

Al_r -.083 .850 .022 .059 .136<br />

As_r .075 .139 -.096 -.144 .365<br />

Cd_r -.011 -.162 -.332 -.127 .018<br />

Cr_r .058 .904 .101 .017 .101<br />

Cu_r .110 -.204 -.472 .165 .129<br />

Hg_r .188 .090 -.148 -.031 -.258<br />

Ni_r -.030 .767 .073 -.143 -.235<br />

Pb_r .203 .383 -.358 -.005 .476<br />

Zn_r .239 .181 -.071 .046 .289<br />

Al_s .065 .146 -.004 .719 -.491<br />

As_s .196 -.068 .114 .893 -.083<br />

Cd_s .196 -.211 .574 .051 .471<br />

Cr_s .267 -.033 .851 .064 -.183<br />

Cu_s .939 -.018 .047 -.072 .116<br />

Hg_s .027 -.080 .055 -.043 .681<br />

Ni_s .094 -.061 .884 -.102 .166<br />

Pb_s .834 -.086 .213 .116 -.060<br />

Zn_s .910 .009 .060 .067 .124<br />

<strong>in</strong> the soil (Kalac and Svoboda, 2000). This has<br />

be<strong>en</strong> confirmed for mercury <strong>in</strong> Ru. emetica<br />

(Falandysz et al., 2002) and for cadmium <strong>in</strong> Ru.<br />

cyanoxantha (Vetter, 1994).<br />

The results obta<strong>in</strong>ed from pr<strong>in</strong>cipal compon<strong>en</strong>t<br />

analysis are pres<strong>en</strong>ted <strong>in</strong> Table 10. The first five<br />

compon<strong>en</strong>ts describe and expla<strong>in</strong> 60% of the total<br />

variance.


In compon<strong>en</strong>t 1, only copper, lead and z<strong>in</strong>c are<br />

associated with soil pH. With <strong>in</strong>creas<strong>in</strong>g pH the<br />

three <strong>elem<strong>en</strong>ts</strong> <strong>in</strong>crease, therefore lower soil acidity<br />

is directly related to an <strong>in</strong>crease <strong>in</strong> the<br />

conc<strong>en</strong>tration levels of those three <strong>elem<strong>en</strong>ts</strong>. The<br />

association of chromium and nickel <strong>in</strong> the g<strong>en</strong>us<br />

Russula is affected by alum<strong>in</strong>ium. The same<br />

association, along with cadmium, can be found <strong>in</strong><br />

soil and it repres<strong>en</strong>ts a countertr<strong>en</strong>d to copper and<br />

lead <strong>in</strong> <strong>mushrooms</strong>. Increases <strong>in</strong> the alum<strong>in</strong>ium<br />

conc<strong>en</strong>tration <strong>in</strong> soil are associated with <strong>in</strong>creases<br />

<strong>in</strong> ars<strong>en</strong>ic and run counter to pH levels. In the fifth<br />

compon<strong>en</strong>t we can see a diverg<strong>en</strong>ce betwe<strong>en</strong> the<br />

pH level and alum<strong>in</strong>ium aga<strong>in</strong>st ars<strong>en</strong>ic and lead <strong>in</strong><br />

soil and cadmium and mercury <strong>in</strong> <strong>mushrooms</strong>. For<br />

these last two items the <strong>in</strong>crease <strong>in</strong> conc<strong>en</strong>tration<br />

<strong>in</strong>side carpophores is <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>t of conc<strong>en</strong>tration<br />

levels of the substrate (Kalač et al., 1989b; Jorhem<br />

and Sundström, 1995; Falandysz et al., 2002).<br />

4.3.6 G<strong>en</strong>us Agaricus (Subdivision<br />

Basidiomycot<strong>in</strong>a - Subclass Agaricomycetideae<br />

- Order Agaricales)<br />

Spatial distribution of the elem<strong>en</strong>t conc<strong>en</strong>trations<br />

highlights a few types of "associations". The first is<br />

repres<strong>en</strong>ted by chromium and nickel with the<br />

highest values, 125 and 27 mg/kg respectively.<br />

They are characteristic of the area of Montecchio,<br />

while the rema<strong>in</strong><strong>in</strong>g area displays ma<strong>in</strong>ly uniform<br />

Fig. 54. Spatial distribution of cadmium for the g<strong>en</strong>us Agaricus.<br />

conc<strong>en</strong>tration values. A second association is<br />

repres<strong>en</strong>ted by copper and lead: we registered the<br />

maximum levels <strong>in</strong> the area of Carp<strong>in</strong>eti. The levels<br />

of alum<strong>in</strong>ium, z<strong>in</strong>c and mercury partly overlap,<br />

while ars<strong>en</strong>ic and cadmium are quite differ<strong>en</strong>t both<br />

from each other and from other conc<strong>en</strong>tration<br />

distribution maps. The map show<strong>in</strong>g soil acidity<br />

has a resemblance to that display<strong>in</strong>g z<strong>in</strong>c and<br />

mercury <strong>in</strong> <strong>mushrooms</strong>: one ev<strong>en</strong> notes a<br />

quantitative overlap betwe<strong>en</strong> the alum<strong>in</strong>ium <strong>in</strong> the<br />

soil; appar<strong>en</strong>tly, alum<strong>in</strong>ium accumulates <strong>in</strong> fungi.<br />

Maps 54, 55 and 56 illustrate the conc<strong>en</strong>tration<br />

distribution of cadmium, mercury and lead. The<br />

average levels are respectively 1.58, 2.29 and 1.09<br />

mg/kg.<br />

Cadmium: the areas of highest conc<strong>en</strong>tration were<br />

found near Carp<strong>in</strong>eti, Vezzano and Reggio Emilia.<br />

Demirbaş (2001) reported similar values, of 3.84<br />

and 1.04 mg/kg <strong>in</strong> Ag. bisporus and Ag. Silvicola<br />

near the Black Sea. The same author <strong>in</strong> Turkey<br />

(Demirbaş, 2000) reported 2.17 mg/kg by<br />

analys<strong>in</strong>g the species Ag. bitorquis. In Greece<br />

Ouzoun et al. (2007) found 0.15 mg/kg of cadmium<br />

<strong>in</strong> Ag. cupreobruneus.<br />

M<strong>en</strong>dil et al. (2004) reported a value of 0.1 mg/kg<br />

<strong>in</strong> Ag. bisporus <strong>in</strong> an area with high vehicular<br />

traffic <strong>in</strong> Turkey.<br />

85


Mercury: the distribution of mercury<br />

conc<strong>en</strong>trations over the territory was not uniform<br />

(Fig. 55). The highest values were se<strong>en</strong> <strong>in</strong> the area<br />

of Carp<strong>in</strong>eti. Also, those areas compris<strong>in</strong>g the<br />

towns of Castelnovo Monti, Vetto and Ramiseto<br />

have comparatively high values.<br />

<strong>in</strong> the Black Sea Demirbaş (2001) recorded lower<br />

levels, 0.6 and 0.15 mg/kg, <strong>in</strong> Ag. bisporus and Ag.<br />

Lead: Fig. 56 shows that the highest levels are<br />

those <strong>in</strong> the areas of Carp<strong>in</strong>eti and the town of<br />

86<br />

Fig. 55. Spatial distribution of mercury for the g<strong>en</strong>us Agaricus.<br />

Fig. 56. Spatial distribution of lead for the g<strong>en</strong>us Agaricus.<br />

silvicola respectively. The same author (Demirbaş,<br />

2000) reported 0.14 mg/kg <strong>in</strong> Ag. bitorquis <strong>in</strong><br />

Turkey. These levels are significantly lower than<br />

those observed <strong>in</strong> this study. In the Czech Republic,<br />

<strong>in</strong> an area close to silver m<strong>in</strong>es the average<br />

conc<strong>en</strong>tration levels reported for Ch. rhacodes<br />

were 2.59 mg/kg (Svoboda et al., 2006).<br />

Reggio Emilia. The latter probably due to its high<br />

volume of vehicular traffic.


Differ<strong>en</strong>t levels were reported by Demirbaş (2000,<br />

2001): <strong>in</strong> samples of Ag. bitorquis, Ag. bisporus<br />

and Ag. Silvicola they found 1.34, 2.41 and 0.92<br />

mg/kg respectively. M<strong>en</strong>dil et al. (2004), reported a<br />

level of 6.9 mg/kg <strong>in</strong> Ag. bisporus <strong>in</strong> an area with<br />

high traffic levels <strong>in</strong> Turkey. Campos et al. (2009)<br />

found a 2.53 mg/kg <strong>in</strong> an Ag. campestris sample <strong>in</strong><br />

c<strong>en</strong>tral Spa<strong>in</strong>. García et al. (2009), <strong>in</strong> the prov<strong>in</strong>ce<br />

of Lugo (Spa<strong>in</strong>) analyzed Ag. bisporus, Ag.<br />

campestris, Ag. ur<strong>in</strong>asc<strong>en</strong>s and Ag. silvicola, and<br />

found conc<strong>en</strong>trations <strong>in</strong> the mushroom caps of 0.35,<br />

3, 1.4 and 1.4 mg/kg. The same authors evaluated<br />

<strong>en</strong>richm<strong>en</strong>t factors, conclud<strong>in</strong>g that lead does not<br />

t<strong>en</strong>d to accumulate <strong>in</strong> fungi, ev<strong>en</strong> if it is pres<strong>en</strong>t <strong>in</strong><br />

high conc<strong>en</strong>trations <strong>in</strong> the soil.<br />

Ars<strong>en</strong>ic, chromium, nickel and lead do not t<strong>en</strong>d to<br />

accumulate <strong>in</strong> fungi. This aspect has be<strong>en</strong> shown by<br />

<strong>en</strong>richm<strong>en</strong>t factors, and conv<strong>in</strong>c<strong>in</strong>gly confirmed for<br />

lead by García et al. (2009). In contrast the<br />

<strong>elem<strong>en</strong>ts</strong> mercury (<strong>in</strong> particular), cadmium, copper,<br />

Table 11. Results of pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

Compon<strong>en</strong>ts<br />

1 2 3 4<br />

pH_s .486 .462 .621 .086<br />

Al_s .203 -.562 .284 .727<br />

As_s .551 -.592 .187 .538<br />

Cd_s .961 -.180 .078 -.062<br />

Cr_s .898 .056 .286 .274<br />

Cu_s .944 .242 .186 -.028<br />

Hg_s .102 .684 -.102 -.266<br />

Ni_s .979 .120 .144 -.032<br />

Pb_s .918 -.019 .256 .269<br />

Zn_s .944 -.264 .123 .083<br />

AL_a .101 -.756 .305 -.074<br />

As_a .014 -.440 .159 -.755<br />

Cd_a -.003 .835 .253 .055<br />

Cr_a .420 -.219 .810 .017<br />

Cu_a -.190 .710 -.133 -.017<br />

Hg_a -.495 .359 -.068 -.486<br />

Ni_a .301 .214 .828 -.107<br />

Pb_a .177 .811 .186 .032<br />

Zn_a .002 .256 -.838 -.144<br />

and z<strong>in</strong>c t<strong>en</strong>d to accumulate <strong>in</strong> the g<strong>en</strong>us Agaricus,<br />

ev<strong>en</strong> where the soil has low conc<strong>en</strong>trations,<br />

however this accumulation is not particularly strong<br />

or marked. This was confirmed for the elem<strong>en</strong>t<br />

mercury by Falandysz et al. (2002).<br />

The results obta<strong>in</strong>ed from pr<strong>in</strong>cipal compon<strong>en</strong>t<br />

analysis are pres<strong>en</strong>ted <strong>in</strong> Table 11. The first four<br />

compon<strong>en</strong>ts describe and expla<strong>in</strong> 75% of the total<br />

variance.<br />

The first compon<strong>en</strong>t shows that the mercury <strong>in</strong><br />

<strong>mushrooms</strong> goes aga<strong>in</strong>st the majority of <strong>elem<strong>en</strong>ts</strong><br />

<strong>in</strong> the soil and is not affected by the mercury<br />

cont<strong>en</strong>t of the soil itself. The second compon<strong>en</strong>t<br />

supports this idea and l<strong>in</strong>ks pH levels to cadmium,<br />

lead and copper <strong>in</strong> <strong>mushrooms</strong> <strong>in</strong> contrast to<br />

alum<strong>in</strong>ium and ars<strong>en</strong>ic <strong>in</strong> the soil. The third<br />

compon<strong>en</strong>t describes the l<strong>in</strong>k betwe<strong>en</strong> nickel and<br />

chromium <strong>in</strong> fungi with the soil pH level. The<br />

fourth compon<strong>en</strong>t expla<strong>in</strong>s how the conc<strong>en</strong>tration<br />

of ars<strong>en</strong>ic <strong>in</strong> <strong>mushrooms</strong> is <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>t and<br />

detached from soil.<br />

87


4.3.7 Section Bitorques (Subdivision<br />

Basidiomycot<strong>in</strong>a - Subclass Agaricomycetideae<br />

- Order Agaricales – G<strong>en</strong>us<br />

Agaricus – Subg<strong>en</strong>us Agaricus)<br />

Only one pattern adequately summarises the spatial<br />

distribution of the conc<strong>en</strong>tration levels of ars<strong>en</strong>ic,<br />

chromium, mercury and nickel. For ars<strong>en</strong>ic and<br />

other more-strongly “associated” <strong>elem<strong>en</strong>ts</strong>, the<br />

areas of highest conc<strong>en</strong>tration are betwe<strong>en</strong> Canossa<br />

and the northern border of the Ap<strong>en</strong>n<strong>in</strong>es, for<br />

chromium and mercury we can also <strong>in</strong>clude the<br />

area of Reggio Emilia and Castellarano. As regards<br />

the other <strong>elem<strong>en</strong>ts</strong>, alum<strong>in</strong>ium reaches its highest<br />

levels (2,771 mg/kg) <strong>in</strong> the Ap<strong>en</strong>n<strong>in</strong>e zone of<br />

Ramiseto; cadmium (9.2 mg/kg) <strong>in</strong> the area of Villa<br />

M<strong>in</strong>ozzo, copper (812 mg/kg) <strong>in</strong> Casalgrande and<br />

Castellarano, lead (29.5 mg/kg) <strong>in</strong> certa<strong>in</strong> areas<br />

88<br />

near the city of Reggio Emilia and z<strong>in</strong>c (273<br />

mg/kg) <strong>in</strong> Montecchio.<br />

Overlap with the values <strong>in</strong> soils is possible with<br />

nickel and to a lesser ext<strong>en</strong>t for chromium and lead.<br />

The rema<strong>in</strong><strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> and pH levels have<br />

appar<strong>en</strong>tly no direct relationship to the<br />

conc<strong>en</strong>tration levels <strong>in</strong> <strong>mushrooms</strong>.<br />

Ars<strong>en</strong>ic: the distribution of the conc<strong>en</strong>tration levels<br />

of ars<strong>en</strong>ic is shown <strong>in</strong> Fig. 57. An average level of<br />

0.3 mg/kg was found over most of the territory.<br />

The maximum levels were found <strong>in</strong> a vast area<br />

rang<strong>in</strong>g from Canossa to Ligonchio. Slejkovec et<br />

al. (1977), analysed doz<strong>en</strong>s of mushroom samples<br />

from European countries and Brazil and found a<br />

level of 1 mg/kg <strong>in</strong> the species Ag. bisporus, which<br />

is three times higher than that we found. Always <strong>in</strong><br />

the Black Sea, Demirbaş (2001) reported a<br />

conc<strong>en</strong>tration level of 0.76 mg/kg <strong>in</strong> Ag. bisporus.<br />

Fig. 57. Spatial distribution of ars<strong>en</strong>ic for the section Bitorques of the g<strong>en</strong>us Agaricus.<br />

Cadmium: Fig 58 shows the distribution of<br />

cadmium. The highest levels were recorded <strong>in</strong> the<br />

Ap<strong>en</strong>n<strong>in</strong>e area and the whole southern zone that<br />

runs from Casalgrande to Villa M<strong>in</strong>ozzo. The<br />

average level, equal to 1.99 mg/kg, is characteristic<br />

of a good part of the territory. Values higher than<br />

those we <strong>en</strong>countered were reported by Demirbaş<br />

(2000, 2001) to the east of the Black Sea and <strong>in</strong><br />

Turkey respectively <strong>in</strong> Ag. bisporus (3.48 mg/kg)<br />

and Ag. bitorquis (2.17 mg/kg). M<strong>en</strong>dil et al.<br />

(2004) <strong>in</strong> an area of high traffic <strong>in</strong> Turkey reported<br />

an extremely low level of 0.1 mg/kg <strong>in</strong> the species<br />

Ag. bisporus, a fact not easily expla<strong>in</strong>ed, because<br />

from the <strong>en</strong>vironm<strong>en</strong>tal context <strong>in</strong> which it was<br />

found one would expect far higher conc<strong>en</strong>tration<br />

levels.<br />

Lead: lead is shown <strong>in</strong> Fig. 59. The average level<br />

of 3.94 mg/kg was found <strong>in</strong> almost every part of<br />

the territory <strong>in</strong>vestigated, the highest values for this<br />

species were <strong>in</strong> the vic<strong>in</strong>ity of the city of Reggio<br />

Emilia. M<strong>en</strong>dil et al. (2004) reported a level of 6.9<br />

mg/kg <strong>in</strong> Ag. bisporus <strong>in</strong> an area with high<br />

vehicular traffic.


Fig. 58. Spatial distribution of cadmium for the section Bitorques of the g<strong>en</strong>us Agaricus.<br />

Demirbaş (2000, 2001) found a level slightly below<br />

the average level of 2.41 mg/kg <strong>in</strong> Ag. bisporus<br />

east of the Black Sea, while <strong>in</strong> Turkey on Ag.<br />

bitorquis the conc<strong>en</strong>trations were significantly<br />

lower (1.34 mg/kg). García et al. (2009), <strong>in</strong> the<br />

prov<strong>in</strong>ce of Lugo (Spa<strong>in</strong>), analysed Ag. bisporus<br />

and observed levels of 0.35 mg/kg <strong>in</strong> the caps and<br />

0.54 mg/kg <strong>in</strong> the stems which repres<strong>en</strong>t fairly low<br />

conc<strong>en</strong>tration levels.<br />

In the Paris region, Michellot et al. (1998) observed<br />

31 mg/kg <strong>in</strong> Ag. maleol<strong>en</strong>s and 32 mg/kg <strong>in</strong> Ag.<br />

silvaticus.<br />

Fig. 59. Spatial distribution of lead for the section Bitorques of the g<strong>en</strong>us Agaricus.<br />

Ars<strong>en</strong>ic, chromium, nickel and lead do not t<strong>en</strong>d to<br />

accumulate <strong>in</strong> the fruit<strong>in</strong>g bodies, while mercury<br />

(Vetter, 1994), cadmium, copper, and z<strong>in</strong>c, <strong>in</strong><br />

desc<strong>en</strong>d<strong>in</strong>g order t<strong>en</strong>d to accumulate <strong>in</strong> the fruit<strong>in</strong>g<br />

bodies of section Bitorques, but not <strong>in</strong> a<br />

particularly marked manner.<br />

89


The results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis are<br />

pres<strong>en</strong>ted <strong>in</strong> Table 12. The first four compon<strong>en</strong>ts<br />

Compon<strong>en</strong>t one describes how a great deal of the<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> soils are themselves l<strong>in</strong>ked and pres<strong>en</strong>t<br />

a countertr<strong>en</strong>d to ars<strong>en</strong>ic and, to a lesser ext<strong>en</strong>t with<br />

cadmium, <strong>in</strong> <strong>mushrooms</strong>. Compon<strong>en</strong>t two <strong>in</strong><br />

particular describes the conflict that exists betwe<strong>en</strong><br />

the conc<strong>en</strong>trations of mercury, z<strong>in</strong>c, cadmium and<br />

copper <strong>in</strong> soils <strong>in</strong> relation to those found <strong>in</strong> fungi. It<br />

also describes the lack of any l<strong>in</strong>k betwe<strong>en</strong><br />

chromium, nickel, and to a lesser ext<strong>en</strong>t for ars<strong>en</strong>ic<br />

and lead <strong>in</strong> <strong>mushrooms</strong> with the elem<strong>en</strong>tal cont<strong>en</strong>ts<br />

of the soil. Compon<strong>en</strong>t three groups several<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> soil which have tr<strong>en</strong>ds contrary to<br />

mercury, while the fourth constitu<strong>en</strong>t expla<strong>in</strong>s how<br />

cadmium and z<strong>in</strong>c <strong>in</strong> fungi are not related to the<br />

conc<strong>en</strong>tration levels <strong>in</strong> the soil for the same<br />

<strong>elem<strong>en</strong>ts</strong> and are both opposed to ars<strong>en</strong>ic <strong>in</strong> soil.<br />

4.3.8 Section Arv<strong>en</strong>ses (Subdivision<br />

Basidiomycot<strong>in</strong>a - Subclass Agaricomycetideae<br />

- Order Agaricales – G<strong>en</strong>us<br />

Agaricus - Subg<strong>en</strong>us Flavoagaricus)<br />

Detailed observation rules out significant<br />

similarities betwe<strong>en</strong> the conc<strong>en</strong>tration distributions<br />

90<br />

Table 12. Results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

Compon<strong>en</strong>ts<br />

1 2 3 4<br />

Al_b -.013 .667 -.165 .210<br />

As_b -.425 .375 .051 -.369<br />

Cd_b -.125 -.108 -.027 .825<br />

Cr_b .002 .939 .069 -.012<br />

Cu_b .037 .197 .101 .812<br />

Hg_b .470 .607 -.071 .035<br />

Ni_b .013 .858 .138 -.191<br />

Pb_b .516 .195 .353 .080<br />

Zn_b .370 .522 .202 .395<br />

Al_s .315 -.007 .761 .215<br />

As_s .234 .220 .856 .041<br />

Cd_s .849 .202 .033 .113<br />

Cr_s .728 .015 .525 -.192<br />

Cu_s .050 -.232 .568 -.084<br />

Hg_s .464 -.417 -.650 -.111<br />

Ni_s .709 .040 .529 -.208<br />

Pb_s .930 .030 -.034 -.061<br />

Zn_s .702 -.164 .431 .047<br />

describe and expla<strong>in</strong> 70% of the total variance.<br />

of the <strong>elem<strong>en</strong>ts</strong> <strong>in</strong>vestigated. A k<strong>in</strong>d of association<br />

can only be se<strong>en</strong> for alum<strong>in</strong>ium and lead. The<br />

rema<strong>in</strong><strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> g<strong>en</strong>erally show far from<br />

uniform distributions. For cadmium the highest<br />

levels (390 mg/kg) were found betwe<strong>en</strong> Ligonchio<br />

and Collagna, while <strong>in</strong> two areas (Casalgrande and<br />

Ligonchio-Collagna) the highest conc<strong>en</strong>tration<br />

level (19.2 mg/kg) was recorded for mercury.. For<br />

chromium, the distribution was fairly uniform<br />

throughout the area: the highest levels (10.9 mg/kg)<br />

were se<strong>en</strong> <strong>in</strong> the c<strong>en</strong>tral Ap<strong>en</strong>n<strong>in</strong>es. The maximum<br />

conc<strong>en</strong>tration level for copper (1.41 mg/kg), was<br />

recorded <strong>in</strong> the city of Reggio Emilia, where<br />

anthropog<strong>en</strong>ic activity is of considerable<br />

importance, and to a lesser ext<strong>en</strong>t, on the border of<br />

the Ap<strong>en</strong>n<strong>in</strong>es. Z<strong>in</strong>c and nickel were recorded as<br />

hav<strong>in</strong>g their maximum levels, respectively, <strong>in</strong><br />

Montecchio-Cavriago (361 mg/kg) and Quattro<br />

Castella (14.3 mg/kg).<br />

Ars<strong>en</strong>ic: Fig 60 shows the distribution of ars<strong>en</strong>ic <strong>in</strong><br />

the Reggio Emilia area. The maximum<br />

conc<strong>en</strong>tration of 21 mg/kg was reported <strong>in</strong> Villa<br />

M<strong>in</strong>ozzo. Other areas of high conc<strong>en</strong>tration were


observed, while the average level of 1.49 mg/kg<br />

was recorded over the majority of the territory.<br />

Cocchi et al. (2006) reported levels of 1.06 and<br />

1.52 mg/kg <strong>in</strong> Ag. arv<strong>en</strong>sis and Ag. silvicola<br />

respectively. In samples from some European<br />

countries and Brazil, Slejkovec et al. (1977) found<br />

6.24 and 3.32 mg/kg <strong>in</strong> Ag. silvicola and Ag.<br />

Macro-carpus, levels significantly higher than<br />

those observed <strong>in</strong> our study.<br />

Fig. 60. Spatial distribution of cadmium for section Arv<strong>en</strong>ses of g<strong>en</strong>us Agaricus.<br />

Lead: Fig. 61 shows that the maximum level (22.7<br />

mg/kg), can be found <strong>in</strong> the vic<strong>in</strong>ity of the city of<br />

In the region of Paris (France), Michelot et al.<br />

(1998) analysed 92 species of mushroom <strong>in</strong>clud<strong>in</strong>g<br />

Fig. 61. Spatial distribution of lead for section Arv<strong>en</strong>ses of g<strong>en</strong>us Agaricus.<br />

Reggio Emilia. The average conc<strong>en</strong>tration level of<br />

2.52 mg/kg was found across most of the territory.<br />

Ag. arv<strong>en</strong>sis, Ag. silvicola, Ag. altipes, f<strong>in</strong>d<strong>in</strong>g<br />

levels of 22, 31 and 33.4 mg/kg respectively.<br />

91


Demirbaş (2001) reported an average level of 0.92<br />

mg/kg <strong>in</strong> Ag. silvicola, to the east of the Black Sea.<br />

In the prov<strong>in</strong>ce of Lugo (Spa<strong>in</strong>), Garcia et al.<br />

(2009) found the same level (1.4 mg/kg) <strong>in</strong> both the<br />

cap and the stem of Ag. silvicola. Cocchi et al.<br />

(2006) reported 1.78 and 3.08 mg/kg <strong>in</strong> Ag.<br />

arv<strong>en</strong>sis and Ag. silvicola respectively <strong>in</strong> Reggio<br />

Emilia.<br />

For the section Arv<strong>en</strong>ses, as well as for the other<br />

taxa pres<strong>en</strong>ted here, the <strong>elem<strong>en</strong>ts</strong> ars<strong>en</strong>ic,<br />

chromium, nickel and lead t<strong>en</strong>d not to accumulate<br />

<strong>in</strong> the fruit<strong>in</strong>g bodies, while cadmium, mercury,<br />

copper and z<strong>in</strong>c, <strong>in</strong> desc<strong>en</strong>d<strong>in</strong>g order, do, despite<br />

low conc<strong>en</strong>trations of these <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> the soil.<br />

4.3.9 Group Boletus edulis (Subdivision<br />

Basidiomycot<strong>in</strong>a – Subclass<br />

Agaricomycetideae - Order Boletales)<br />

For the group Boletus edulis (B. aereus, B.<br />

reticulatus, B. edulis, B. p<strong>in</strong>ophilus), <strong>in</strong> addition to<br />

ars<strong>en</strong>ic, cadmium, chromium, copper, mercury,<br />

nickel, lead and z<strong>in</strong>c, sel<strong>en</strong>ium was also tak<strong>en</strong> <strong>in</strong>to<br />

consideration. An overview and a comparison of<br />

the spatial maps show<strong>in</strong>g the distribution of the<br />

92<br />

Table 13. Rresults of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

The results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis are<br />

pres<strong>en</strong>ted <strong>in</strong> Table 13. The first three compon<strong>en</strong>ts<br />

describe and expla<strong>in</strong> 44% of the total variance.<br />

The first compon<strong>en</strong>t compreh<strong>en</strong>sively describes the<br />

aggregation of cadmium, mercury, copper and z<strong>in</strong>c<br />

which run <strong>in</strong> countert<strong>en</strong>d<strong>en</strong>cy to the other <strong>elem<strong>en</strong>ts</strong><br />

<strong>in</strong> the soil and soil acidity. The second compon<strong>en</strong>t<br />

associates with ars<strong>en</strong>ic and lead, while the third is<br />

<strong>in</strong>flu<strong>en</strong>ced by chromium and nickel, and is opposed<br />

to soil acidity and other <strong>elem<strong>en</strong>ts</strong>. It seems clear<br />

how these two groups of <strong>elem<strong>en</strong>ts</strong>, hav<strong>in</strong>g a totally<br />

differ<strong>en</strong>t behaviour <strong>in</strong> bioaccumulation, were<br />

separated dur<strong>in</strong>g the analysis of the ma<strong>in</strong><br />

constitu<strong>en</strong>ts.<br />

Compon<strong>en</strong>ts<br />

1 2 3<br />

As_FA .168 .703 .022<br />

Cd_FA .978 .048 .026<br />

Cr_FA .271 .033 .427<br />

Cu_FA .937 .225 .160<br />

Hg_FA .928 .093 .074<br />

Ni_FA -.121 .204 .827<br />

Pb_FA .137 .891 -.047<br />

Zn_FA .784 .512 .107<br />

pH_s -.119 .314 -.741<br />

elem<strong>en</strong>t conc<strong>en</strong>trations, highlights four types of<br />

"associations." The first is repres<strong>en</strong>ted by<br />

alum<strong>in</strong>ium, chromium, nickel and lead (figs. 62 →<br />

65). The maximum conc<strong>en</strong>tration levels are located<br />

<strong>in</strong> the hilly areas of Cas<strong>in</strong>a and Canossa. As for the<br />

similarities with the soil, there are only aff<strong>in</strong>ities<br />

for chromium and nickel, as also ev<strong>in</strong>ced by other<br />

species of fungi.


Average conc<strong>en</strong>tration levels are respectively 252<br />

mg/kg for alum<strong>in</strong>ium; 1.52 for chromium, 2.49 for<br />

nickel and 0.8 mg/kg for lead. A second group is<br />

composed of copper, mercury and z<strong>in</strong>c, the average<br />

levels of which are respectively 37, 3.52 and 138<br />

mg/kg. The third group is composed of cadmium<br />

and sel<strong>en</strong>ium, with maximum levels (15.7 and 223<br />

mg/kg, respectively) found at the border with<br />

Tuscany. The fourth group is formed by ars<strong>en</strong>ic<br />

Fig. 62. Spatial distribution of alum<strong>in</strong>ium for the group Boletus edulis.<br />

Fig. 63. Spatial distribution of chromium for the group Boletus edulis.<br />

only: its maximum level of 3 mg/kg was observed<br />

near Quattro Castella.<br />

Similar conc<strong>en</strong>tration levels of almost all <strong>elem<strong>en</strong>ts</strong><br />

analysed were found <strong>in</strong> samples of B. edulis <strong>in</strong><br />

F<strong>in</strong>land (Nikkar<strong>in</strong><strong>en</strong> and Mertan<strong>en</strong>, 2004). We<br />

found lead, sel<strong>en</strong>ium and z<strong>in</strong>c to have lower levels,<br />

however at: 0.18, 18.5 and 91 mg/kg. Falandysz et<br />

al. (2008) found sel<strong>en</strong>ium at lower amounts still,<br />

rang<strong>in</strong>g betwe<strong>en</strong> 8.7 and 32 mg/kg <strong>in</strong> the<br />

mounta<strong>in</strong>ous regions of Poland.<br />

93


In Greece Ouzoun et al. (2009) observed lower<br />

conc<strong>en</strong>tration levels for cadmium (0.23 mg/kg),<br />

chromium (0.86 mg/kg), nickel (1.61 mg/kg), lead<br />

0.09 mg/kg) and z<strong>in</strong>c (89 mg/kg), and an almost<br />

id<strong>en</strong>tical level to copper (41 mg/kg) <strong>in</strong> B. aereus.<br />

Higher conc<strong>en</strong>tration values <strong>in</strong> the Boletaceae were<br />

found by Demirbaş (2001) <strong>in</strong> an area east of the<br />

Black Sea for ars<strong>en</strong>ic (1.41 mg/kg), nickel (65<br />

mg/kg) and lead (6.9 mg/kg). Lower levels were<br />

found by the same author for cadmium (1.36<br />

94<br />

Fig. 64. Spatial distribution of nickel for the group Boletus edulis.<br />

Fig. 65. Spatial distribution of lead for the group Boletus edulis.<br />

mg/kg), chromium (0.86 mg/kg), copper (11.5<br />

mg/kg), mercury (0.48 mg/kg) and z<strong>in</strong>c (19.6<br />

mg/kg).<br />

In the region of Paris (France), Michelot et al.<br />

(1998) analysed 92 species of mushroom <strong>in</strong>clud<strong>in</strong>g<br />

B. edulis and found 5.35 mg/kg for nickel and 21.2<br />

mg/kg for lead. Smaller amounts were found for<br />

cadmium (1.39 mg/kg), chromium (1.34 mg/kg),<br />

copper (14.9 mg/kg), mercury (40.6 mg/kg) and<br />

z<strong>in</strong>c (55.4 mg/kg). In a rec<strong>en</strong>t paper by Frankowski


et al. (2010), the conc<strong>en</strong>tration levels of heavy<br />

metals <strong>in</strong> specim<strong>en</strong>s of B. edulis collected <strong>in</strong><br />

Poland are reported. The conc<strong>en</strong>trations <strong>in</strong> the<br />

mushroom caps are significantly higher (Cd 5.5; Cu<br />

47; Hg 4.9 and Zn 190 mg/kg). Similar levels were<br />

observed <strong>in</strong> the mounta<strong>in</strong>s <strong>in</strong> Poland (Falandysz et<br />

al., 2008); the follow<strong>in</strong>g conc<strong>en</strong>tration <strong>in</strong>tervals<br />

have be<strong>en</strong> proposed: Cd (4-18 mg/kg), Cu (26-57<br />

mg/kg), Hg (0.95-2.39 mg/kg) and Zn (150-210<br />

mg/kg).<br />

Enrichm<strong>en</strong>t factors confirm the t<strong>en</strong>d<strong>en</strong>cy of<br />

ars<strong>en</strong>ic, chromium, nickel and lead to not<br />

bioaccumulate, ev<strong>en</strong> <strong>in</strong> soils with high<br />

conc<strong>en</strong>trations of the same <strong>elem<strong>en</strong>ts</strong>. This is <strong>in</strong><br />

strong contrast to copper, z<strong>in</strong>c and especially<br />

cadmium, mercury and sel<strong>en</strong>ium, which have a<br />

pronounced ability to bioaccumulate <strong>in</strong> the fruit<strong>in</strong>g<br />

The results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis,<br />

which relate the conc<strong>en</strong>trations of heavy metals <strong>in</strong><br />

<strong>mushrooms</strong> and the soil as well as pH levels, are<br />

pres<strong>en</strong>ted <strong>in</strong> Table 14. The first four compon<strong>en</strong>ts<br />

describe and expla<strong>in</strong> 84% of the total variance.<br />

Table 14. Results of pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

Compon<strong>en</strong>ts<br />

1 2 3 4<br />

Al_b .918 .020 -.042 -.202<br />

Cd_b -.153 -.086 .394 .436<br />

Cr_b .952 .064 .054 -.222<br />

Cu_b -.037 -.048 .731 .160<br />

Hg_b .195 .007 .418 .141<br />

Ni_b .936 -.052 -.005 -.199<br />

Pb_b .939 -.001 -.069 -.171<br />

Se_b -.022 -.251 .157 .483<br />

Zn_b -.321 .113 .692 -.030<br />

pH_s .130 .398 -.401 -.621<br />

Al_s -.353 -.056 -.027 .682<br />

As_s -.200 .211 -.281 .751<br />

Cd_s .140 .476 -.689 .169<br />

Cr_s .790 .322 -.029 .204<br />

Cu_s .070 .876 -.037 .041<br />

Hg_s .229 -.095 .808 -.237<br />

Ni_s .825 .339 .037 -.132<br />

Pb_s .080 .667 -.157 -.369<br />

Se_s .076 .576 -.423 .640<br />

Zn_s .166 .917 .062 -.078<br />

bodies of fungi ev<strong>en</strong> at low conc<strong>en</strong>trations of<br />

metals <strong>in</strong> the soil. This has be<strong>en</strong> confirmed by<br />

García et al. (2009); Falandysz et al. (2002) Jorhem<br />

and Sundström (1995), Kalač et al. (1989b) and<br />

Cocchi et al. (2006). In particular, the last group of<br />

researchers has shown that the species of the<br />

Boletus edulis are able to accumulate large<br />

quantities of sel<strong>en</strong>ium. A further confirmation<br />

comes from a study by Frankowski et al. (2010)<br />

who also analysed the soil collected <strong>in</strong> the vic<strong>in</strong>ity<br />

of the fungi. The <strong>en</strong>richm<strong>en</strong>t factors were higher<br />

for Zn, Cd, Cu and Hg, <strong>in</strong> asc<strong>en</strong>d<strong>in</strong>g order,<br />

demonstrat<strong>in</strong>g the ability of Boletus edulis to<br />

bioaccumulate these four <strong>elem<strong>en</strong>ts</strong>, ev<strong>en</strong> if the soil<br />

has low conc<strong>en</strong>trations of them (Zn 22; Cd 0.35,<br />

Cu 2.8 and Hg 0.04 mg/kg).<br />

In compon<strong>en</strong>t one, it is clear that the pH does not<br />

affect and is not l<strong>in</strong>ked to any <strong>elem<strong>en</strong>ts</strong> either <strong>in</strong> the<br />

fungi or <strong>in</strong> the soil, while chromium and nickel <strong>in</strong><br />

soil have a similar qualitative behaviour as they do<br />

<strong>in</strong> fungi <strong>in</strong> addition to lead and alum<strong>in</strong>ium. Z<strong>in</strong>c <strong>in</strong><br />

95


species of Boletus edulis and alum<strong>in</strong>ium <strong>in</strong> soils<br />

exist <strong>in</strong> countert<strong>en</strong>d<strong>en</strong>cy.<br />

Compon<strong>en</strong>t two shows that, as Cocchi et al. (2006)<br />

observed, sel<strong>en</strong>ium <strong>in</strong> the species of the Boletus<br />

edulis is not related to the conc<strong>en</strong>tration of the<br />

same elem<strong>en</strong>t <strong>in</strong> the soil. Copper, lead and z<strong>in</strong>c are<br />

l<strong>in</strong>ked and t<strong>en</strong>d to <strong>in</strong>crease regardless of the levels<br />

<strong>in</strong> the soil. The third constitu<strong>en</strong>t demonstrates that<br />

soil pH, sel<strong>en</strong>ium and cadmium <strong>in</strong> the soil are<br />

l<strong>in</strong>ked together and <strong>in</strong> countert<strong>en</strong>d<strong>en</strong>cy to copper,<br />

z<strong>in</strong>c and mercury <strong>in</strong> fungi, and to the latter elem<strong>en</strong>t<br />

<strong>in</strong> the soil. This highlights the bioaccumulat<strong>in</strong>g<br />

properties of mercury (Falandysz et al., 2002). The<br />

fourth constitu<strong>en</strong>t b<strong>in</strong>ds cadmium and sel<strong>en</strong>ium <strong>in</strong><br />

4.3.10 G<strong>en</strong>us Cantharellus (Subdivision<br />

Basidiomycot<strong>in</strong>a – Subclass<br />

Aphyllophoromycetideae – Order<br />

Cantharellales)<br />

The maps show a similarity betwe<strong>en</strong> the couples of<br />

cadmium/mercury and chromium/nickel (Figs. 66<br />

→ 69). The rema<strong>in</strong><strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> (ars<strong>en</strong>ic, copper,<br />

lead and z<strong>in</strong>c) have very heterog<strong>en</strong>eous<br />

conc<strong>en</strong>tration distributions.<br />

Cadmium and mercury: these have average levels<br />

of 0.49 and 12.23 mg/kg respectively, while their<br />

highest levels are found <strong>in</strong> hilly areas of Cas<strong>in</strong>a and<br />

96<br />

Table 15. Rresults of pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

the species of the Boletus edulis to ars<strong>en</strong>ic and<br />

sel<strong>en</strong>ium <strong>in</strong> the soils and <strong>in</strong> countert<strong>en</strong>d<strong>en</strong>cy to lead<br />

<strong>in</strong> soils, thereby confirm<strong>in</strong>g the strong capacity for<br />

bioaccumulation of sel<strong>en</strong>ium (Cocchi et al., 2006).<br />

Enrichm<strong>en</strong>t factors (Table 15) show that the pH is<br />

unconnected to most <strong>elem<strong>en</strong>ts</strong>. Compon<strong>en</strong>t two<br />

clarifies that high acidity levels are <strong>in</strong>versely<br />

proportional to high conc<strong>en</strong>tration levels of<br />

chromium, mercury, and sel<strong>en</strong>ium, themselves<br />

runn<strong>in</strong>g <strong>in</strong> countert<strong>en</strong>d<strong>en</strong>cy to lead. This is<br />

illustrated by the values of ma<strong>in</strong> compon<strong>en</strong>t three.<br />

Compon<strong>en</strong>ts<br />

1 2 3<br />

pH_s .055 -.428 -.769<br />

As_FA .915 .361 -.042<br />

Cd_FA .686 .003 .212<br />

Cr_FA .419 .869 -.047<br />

Cu_FA .922 .317 -.012<br />

Hg_FA .179 .946 .019<br />

Ni_FA .833 .306 .236<br />

Pb_FA .301 -.244 .677<br />

Se_FA .436 .835 .183<br />

Zn_FA .857 .435 .099<br />

Baiso and <strong>in</strong> the mounta<strong>in</strong> range betwe<strong>en</strong> Busana<br />

and Villa M<strong>in</strong>ozzo. In the area of Epirus and<br />

Macedonia, Ouzoun et al. (2009) rec<strong>en</strong>tly reported<br />

cadmium conc<strong>en</strong>trations of 0.38 mg/kg, <strong>in</strong> perfect<br />

agreem<strong>en</strong>t with those observed <strong>in</strong> this study. Also<br />

<strong>in</strong> Greece (Ouzoun et al. (2007) 0.41 mg/kg of<br />

cadmium was found <strong>in</strong> Ca. cibarius. For mercury,<br />

<strong>in</strong> the Czech Republic, <strong>in</strong> an area with many silver<br />

m<strong>in</strong>es, the average level was 0.25 mg/kg (Svoboda<br />

et al., 2006). In Svoboda et al. (2000), reported<br />

mercury conc<strong>en</strong>trations were similar to those<br />

observed by us <strong>in</strong> the Reggio Emilia Ap<strong>en</strong>n<strong>in</strong>es.


Chromium and nickel: these <strong>elem<strong>en</strong>ts</strong> (Figs. 68<br />

and 69) have average levels of 2.9 and 2.3 mg/kg<br />

respectively, while their maximum levels are 57<br />

and 29 mg/kg. These levels were found <strong>in</strong> the<br />

mounta<strong>in</strong>s betwe<strong>en</strong> Vetto and Ramiseto. There<br />

seems to be no l<strong>in</strong>k betwe<strong>en</strong> these and soil acidity,<br />

although conc<strong>en</strong>tration levels <strong>in</strong> the soil do<br />

correlate to mushroom conc<strong>en</strong>tration levels. In<br />

Greece, lower conc<strong>en</strong>tration levels of chromium<br />

Fig. 66. Spatial distribution of cadmium for the g<strong>en</strong>us Cantharellus.<br />

Fig. 67. Spatial distribution of mercury for the g<strong>en</strong>us Cantharellus.<br />

(1.6 mg/kg) and nickel (1.1 mg/kg) were observed<br />

(Ouzoun et al., 2009).<br />

Enrichm<strong>en</strong>t Factor values showed, like the g<strong>en</strong>us<br />

Russula, little t<strong>en</strong>d<strong>en</strong>cy for ars<strong>en</strong>ic, chromium,<br />

nickel and lead to bioaccumulate <strong>in</strong> these<br />

<strong>mushrooms</strong> despite the soil be<strong>in</strong>g rich <strong>in</strong> the same<br />

<strong>elem<strong>en</strong>ts</strong>. On the other hand, cadmium, copper,<br />

mercury and z<strong>in</strong>c were able to bioaccumulate <strong>in</strong><br />

carpophores ev<strong>en</strong> where lower conc<strong>en</strong>trations of<br />

these metals were found <strong>in</strong> the soil.<br />

97


The results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis are<br />

pres<strong>en</strong>ted <strong>in</strong> Table 16. The first three compon<strong>en</strong>ts<br />

describe and expla<strong>in</strong> 79% of the total variance. In<br />

compon<strong>en</strong>t one the acidity of the soil is<br />

disconnected from all the <strong>elem<strong>en</strong>ts</strong>. While amounts<br />

of ars<strong>en</strong>ic, copper, mercury, lead, z<strong>in</strong>c and, to a<br />

lesser ext<strong>en</strong>t, cadmium <strong>in</strong>crease, those of nickel<br />

and chromium t<strong>en</strong>d to decrease. In compon<strong>en</strong>t two,<br />

as nickel and chromium <strong>in</strong>crease, a decrease <strong>in</strong><br />

98<br />

Fig. 68. Spatial distribution of chromium for the g<strong>en</strong>us Cantharellus.<br />

Fig. 69. Spatial distribution of nickel for the g<strong>en</strong>us Cantharellus.<br />

mercury and lead can be se<strong>en</strong>; this fact could be<br />

l<strong>in</strong>ked to the orig<strong>in</strong> of these two <strong>elem<strong>en</strong>ts</strong>, both<br />

notoriously <strong>in</strong>flu<strong>en</strong>ced by human activities. The<br />

third constitu<strong>en</strong>t shows that basic soil corresponds<br />

to a reduction <strong>in</strong> cadmium conc<strong>en</strong>trations, while<br />

other <strong>elem<strong>en</strong>ts</strong> rema<strong>in</strong> unchanged. This aspect of<br />

reduced bioaccumulation for cadmium has be<strong>en</strong><br />

shown <strong>in</strong> Ca. cibarius (Jorhem and Sundström,<br />

1995).


4.3.11 G<strong>en</strong>us Ramaria (Subdivision<br />

Basidiomycot<strong>in</strong>a - Subclass Aphyllophoromycetideae<br />

– Order Clavariales)<br />

Comparison of the maps show<strong>in</strong>g the spatial<br />

distribution of elem<strong>en</strong>t conc<strong>en</strong>trations reveals three<br />

Table 16. Results of pr<strong>in</strong>cipal compon<strong>en</strong>ts analysis.<br />

Constitu<strong>en</strong>ts<br />

1 2 3<br />

pH_s .076 .072 .860<br />

As_FA .963 .040 -.037<br />

Cd_FA .421 .149 -.708<br />

Cr_FA .227 .811 .034<br />

Cu_FA .935 .081 -.244<br />

Hg_FA .499 -.652 .177<br />

Ni_FA -.119 .760 .020<br />

Pb_FA .796 -.468 .215<br />

Zn_FA .919 -.093 -.153<br />

Fig. 70. Spatial distribution of alum<strong>in</strong>ium for the g<strong>en</strong>us Ramaria.<br />

types of "associations." The first is repres<strong>en</strong>ted by<br />

four <strong>elem<strong>en</strong>ts</strong>, namely alum<strong>in</strong>ium, lead, z<strong>in</strong>c and,<br />

to a lesser ext<strong>en</strong>t, copper (Figs. 70 → 72). The<br />

maximum conc<strong>en</strong>tration levels are observed <strong>in</strong> flat<br />

areas and those <strong>in</strong> the Ap<strong>en</strong>n<strong>in</strong>e border.<br />

99


The second group <strong>in</strong>cludes ars<strong>en</strong>ic, nickel and<br />

chromium (Fig. 73.) The areas with the highest<br />

conc<strong>en</strong>trations are found <strong>in</strong> Ramiseto, Vetto and <strong>in</strong><br />

Castelnovo nei Monti. The third group is composed<br />

of cadmium and mercury: the areas with the<br />

greatest conc<strong>en</strong>trations were located betwe<strong>en</strong> San<br />

100<br />

Fig. 71. Spatial distribution of z<strong>in</strong>c for the g<strong>en</strong>us Ramaria.<br />

Fig. 72. Spatial distribution of copper for the g<strong>en</strong>us Ramaria.<br />

Polo, Bibbiano and Montecchio. The<br />

conc<strong>en</strong>trations of alum<strong>in</strong>ium and chromium <strong>in</strong> the<br />

soil overlap with their distribution maps <strong>in</strong><br />

<strong>mushrooms</strong>, while the rema<strong>in</strong><strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> only<br />

display a superposition of levels <strong>in</strong> some areas.


Figs. 74, 75 and 76 illustrate the distribution of the<br />

conc<strong>en</strong>tration levels of ars<strong>en</strong>ic, cadmium and lead.<br />

The average levels were 8.72, 5.74 and 0.98 mg/kg<br />

respectively. In Turkey, <strong>in</strong> Ra. Flava, ars<strong>en</strong>ic<br />

conc<strong>en</strong>trations of 0.02 mg/kg were observed<br />

(Konuk et al., 2007); this level is quite differ<strong>en</strong>t to<br />

Cadmium: as for cadmium, very low levels (1.13<br />

mg/kg) were reported <strong>in</strong> the area of Epirus and<br />

Macedonia <strong>in</strong> samples of Ra. Larg<strong>en</strong>tii by Ouzoun<br />

Fig. 73. Spatial distribution of chromium for the g<strong>en</strong>us Ramaria.<br />

Fig. 74. Spatial distribution of ars<strong>en</strong>ic for the g<strong>en</strong>us Ramaria.<br />

that se<strong>en</strong> <strong>in</strong> the prov<strong>in</strong>ce of Reggio Emilia. A more<br />

comparable level (3.7 mg/kg) was reported by<br />

Slejkovec et al. (1977) who analysed samples of<br />

<strong>mushrooms</strong> from several European countries and<br />

Brazil.<br />

et al. (2009). The value observed by Konuk et al.<br />

(2007) <strong>in</strong> samples of Ra. flava collected <strong>in</strong> Turkey<br />

(0.01 mg/kg) was 50 times lower than the<br />

101


m<strong>in</strong>imum we recorded (0.52 mg/kg). In the region<br />

of Paris (France), Michelot et al. (1998) analyzed<br />

Lead: the average conc<strong>en</strong>tration levels we<br />

observed were significantly higher than those<br />

reported <strong>in</strong> previous literature [0.12 mg/kg<br />

Enrichm<strong>en</strong>t Factor values showed that cadmium,<br />

mercury, copper, z<strong>in</strong>c, ars<strong>en</strong>ic and nickel, <strong>in</strong><br />

desc<strong>en</strong>d<strong>in</strong>g order, accumulate <strong>in</strong> Ramaria<br />

102<br />

Fig. 75. Spatial distribution of cadmium for the g<strong>en</strong>us Ramaria.<br />

Fig. 76. Spatial distribution of lead for the g<strong>en</strong>us Ramaria.<br />

92 species of fungi, <strong>in</strong>clud<strong>in</strong>g Ramaria sp., and<br />

found levels of 4.32 mg/kg.<br />

(Ouzouni et al., 2009) and 0.018 mg/kg (Konuk et<br />

al., 2007)].<br />

carpophores <strong>in</strong> the pres<strong>en</strong>ce of small conc<strong>en</strong>trations<br />

of these metals <strong>in</strong> the soil, while lead and, to a<br />

lesser degree, chromium, do not t<strong>en</strong>d to accumulate


<strong>in</strong> <strong>mushrooms</strong> ev<strong>en</strong> if the soil is rich <strong>in</strong> these<br />

<strong>elem<strong>en</strong>ts</strong>.<br />

The results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis are<br />

pres<strong>en</strong>ted <strong>in</strong> Table 17. The first three compon<strong>en</strong>ts<br />

describe and expla<strong>in</strong> 92% of the total variance.<br />

The first compon<strong>en</strong>t expla<strong>in</strong>s how the acidity of the<br />

soil is not related to bioaccumulation of the<br />

<strong>elem<strong>en</strong>ts</strong> we tested: all <strong>elem<strong>en</strong>ts</strong> except lead t<strong>en</strong>d to<br />

4.3.12 G<strong>en</strong>us Morchella (Subdivision<br />

Ascomycot<strong>in</strong>a - Subclass Pezizomycetideae<br />

– Order Pezizales)<br />

One type of distribution is able to repres<strong>en</strong>t the<br />

conc<strong>en</strong>tration levels of alum<strong>in</strong>ium, mercury, nickel,<br />

z<strong>in</strong>c and to a lesser ext<strong>en</strong>t chromium and lead. The<br />

rema<strong>in</strong><strong>in</strong>g <strong>elem<strong>en</strong>ts</strong> ars<strong>en</strong>ic, cadmium and copper<br />

show differ<strong>en</strong>t types of "associations" for each of<br />

the six metals listed above. For alum<strong>in</strong>ium and<br />

other, more “associated”, <strong>elem<strong>en</strong>ts</strong>, the areas with<br />

the greatest conc<strong>en</strong>trations were Casalgrande and<br />

San Polo, and exclud<strong>in</strong>g chromium and lead, also<br />

the hilly areas. Ars<strong>en</strong>ic values reach their<br />

maximum near Reggio Emilia, cadmium <strong>in</strong> the<br />

areas of Toano, Villa M<strong>in</strong>ozzo and Quattro<br />

Castella, while copper is found <strong>in</strong> high<br />

conc<strong>en</strong>trations near Castellarano and Castelnovo<br />

Monti.<br />

Consider<strong>in</strong>g a quantitative overlap with soil<br />

conc<strong>en</strong>trations, lead showed the greatest aff<strong>in</strong>ity,<br />

Tabella17. results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis.<br />

1<br />

Compon<strong>en</strong>t<br />

2 3<br />

pH_s .129 .011 .985<br />

As_FA .909 .187 .090<br />

Cd_FA .960 .040 .060<br />

Cr_FA .757 .549 .216<br />

Cu_FA .927 .047 .061<br />

Hg_FA .819 .380 .308<br />

Ni_FA .952 .280 .073<br />

Pb_FA .063 .956 -.020<br />

Zn_FA .950 -.079 .141<br />

<strong>in</strong>crease their conc<strong>en</strong>tration <strong>in</strong> the fruit<strong>in</strong>g bodies of<br />

fungi.<br />

The second compon<strong>en</strong>t confirms no relation to<br />

other <strong>elem<strong>en</strong>ts</strong> or pH levels for the<br />

bioaccumulation of lead and chromium. The third<br />

confirms the <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>ce of the acidity of the soil<br />

from all <strong>elem<strong>en</strong>ts</strong> considered.<br />

but to a lesser ext<strong>en</strong>t also chromium and copper.<br />

Cadmium: the distribution of cadmium<br />

conc<strong>en</strong>trations is shown <strong>in</strong> Fig. 77, the average<br />

level is 0.94 mg/kg and covers much of the<br />

territory. The highest levels (4.12 mg/kg) were<br />

observed betwe<strong>en</strong> Toano and Villa M<strong>in</strong>ozzo and <strong>in</strong><br />

the area of Canossa. In the same area Cocchi et al.<br />

(2006) observed 12.55 mg/kg <strong>in</strong> Mo. escul<strong>en</strong>ta. In<br />

Turkey (Tüz<strong>en</strong>, 2003) Mo. escul<strong>en</strong>ta conta<strong>in</strong>ed 1.43<br />

mg/kg. Also <strong>in</strong> Turkey, <strong>in</strong> Mo. escul<strong>en</strong>ta, Mo.<br />

escul<strong>en</strong>ta var. umbr<strong>in</strong>a, Mo. vulgaris, Mo. costata,<br />

Mo. deliciosa, and Mo. rigida cadmium<br />

conc<strong>en</strong>trations were 0.031, 0.002, 0.036, 0.024,<br />

0.029, 0.007 mg/kg respectively (Konuk et al.,<br />

2007). These levels are 20-200 times lower than<br />

those reported <strong>in</strong> this paper and giv<strong>en</strong> <strong>in</strong> literature.<br />

In France, <strong>in</strong> samples of Mo. escul<strong>en</strong>ta, a<br />

conc<strong>en</strong>tration of 3.6 mg/kg was observed (Michelot<br />

et al., 1998).<br />

103


Nickel: Fig. 78 repres<strong>en</strong>ts the conc<strong>en</strong>tration of<br />

nickel <strong>in</strong> the Reggio Emilia area. The maximum<br />

level of 12.2 mg/kg was observed <strong>in</strong> the lowlands<br />

near Scandiano. The average level of 2.4 mg/kg is<br />

commonly found all over the area. In France a<br />

conc<strong>en</strong>tration of 15.4 mg/kg, higher than the<br />

maximum level we measured, was found <strong>in</strong> a<br />

sample of Mo. escul<strong>en</strong>ta (Michelot et al., 1998).<br />

Tüz<strong>en</strong> (2003) <strong>in</strong> Turkey recorded 1.18 mg/kg <strong>in</strong><br />

104<br />

Fig. 77. Spatial distribution of cadmium for the g<strong>en</strong>us Morchella.<br />

Fig. 78. Spatial distribution of nickel for the g<strong>en</strong>us Morchella.<br />

Mo. escul<strong>en</strong>ta; a value <strong>in</strong> l<strong>in</strong>e with the data<br />

pres<strong>en</strong>ted here. In Turkey Mo. escul<strong>en</strong>ta, Mo.<br />

escul<strong>en</strong>ta var. umbr<strong>in</strong>a, Mo. vulgaris, Mo costata,<br />

Mo. deliciosa, and Mo. rigida were found to<br />

conta<strong>in</strong> nickel conc<strong>en</strong>trations of 0.07; 0.68; 0.04;<br />

0.4; 0.23; 0.41 mg/kg, respecitvely (Konuk et al.,<br />

2007); these levels are at least an order of<br />

magnitude lower than those we recorded.


For complet<strong>en</strong>ess, we provide here several data for<br />

two species of the g<strong>en</strong>us Helvella (order Pezizales):<br />

Cadmium: 1.97 mg/kg <strong>in</strong> Helvella crispa (Scop.)<br />

Fr. (Cocchi et al., 2006) and 0.033 mg/kg <strong>in</strong><br />

Helvella leucopus Pers. (Konuk et al., 2007);<br />

Nickel: 0.3 mg/kg <strong>in</strong> Helvella leucopus Pers.<br />

(Konuk et al., 2007)<br />

For the g<strong>en</strong>us Morchella as it was for other taxa,<br />

ars<strong>en</strong>ic, chromium, nickel and lead do not t<strong>en</strong>d to<br />

In the first compon<strong>en</strong>t soil acidity and copper are<br />

l<strong>in</strong>ked but at the same time <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>t of other<br />

<strong>elem<strong>en</strong>ts</strong>, <strong>in</strong>stead, <strong>in</strong> the second copper and z<strong>in</strong>c<br />

move <strong>in</strong> the same direction and are differ<strong>en</strong>tiated<br />

from both the pH and from almost all other<br />

<strong>elem<strong>en</strong>ts</strong>. The third re<strong>in</strong>forces the neutrality<br />

towards soil acidity for all <strong>elem<strong>en</strong>ts</strong>, except, <strong>in</strong> part,<br />

for mercury that t<strong>en</strong>ds to <strong>in</strong>crease with <strong>in</strong>creas<strong>in</strong>g<br />

pH, while the lead does the opposite and t<strong>en</strong>ds to<br />

decrease as soil pH rises.<br />

4.3.13 Conclusions<br />

The analytical results obta<strong>in</strong>ed by analys<strong>in</strong>g<br />

thousands of differ<strong>en</strong>t fungi belong<strong>in</strong>g to hundreds<br />

of species have yielded distribution maps of heavy<br />

metals <strong>in</strong> an area with diverse geomorphological<br />

features rang<strong>in</strong>g from lowland areas to the<br />

Ap<strong>en</strong>n<strong>in</strong>e peaks. The land use <strong>in</strong>cludes resid<strong>en</strong>tial<br />

zones such as the city of Reggio Emilia and other<br />

major urban c<strong>en</strong>tres, busy ma<strong>in</strong> roads, <strong>in</strong>dustrial<br />

areas, agricultural areas and other <strong>in</strong>t<strong>en</strong>sively<br />

farmed pasture, and woods and forests. There is a<br />

rich diversity of flora, fauna and countryside where<br />

many daily activities are carried out, leav<strong>in</strong>g<br />

"footpr<strong>in</strong>ts" that comb<strong>in</strong>e to change the very nature<br />

of the <strong>en</strong>vironm<strong>en</strong>t.<br />

Table 18. Analysis of ma<strong>in</strong> constitu<strong>en</strong>ts.<br />

1<br />

Constitu<strong>en</strong>ts<br />

2 3<br />

pH_s -.043 .120 .964<br />

As_FA .934 .307 -.029<br />

Cd_FA .976 .142 -.014<br />

Cr_FA .966 -.154 .032<br />

Cu_FA .140 .954 .174<br />

Hg_FA .816 .161 .329<br />

Ni_FA .957 .140 -.131<br />

Pb_FA .802 .377 -.206<br />

Zn_FA .797 .502 -.091<br />

accumulate <strong>in</strong> the fruit<strong>in</strong>g bodies. In contrast, and<br />

<strong>in</strong> desc<strong>en</strong>d<strong>in</strong>g order, the <strong>elem<strong>en</strong>ts</strong> z<strong>in</strong>c, cadmium,<br />

mercury and copper (Falandysz et al., 2002) t<strong>en</strong>d to<br />

accumulate <strong>in</strong> the fruit<strong>in</strong>g bodies (though not <strong>in</strong> a<br />

marked manner) ev<strong>en</strong> if the soil has low<br />

conc<strong>en</strong>trations.<br />

The results of the pr<strong>in</strong>cipal compon<strong>en</strong>t analysis are<br />

pres<strong>en</strong>ted <strong>in</strong> Table 18. The first three compon<strong>en</strong>ts<br />

describe and expla<strong>in</strong> 94% of the total variance.<br />

The results obta<strong>in</strong>ed from analys<strong>in</strong>g <strong>mushrooms</strong><br />

cannot tell us how we should behave as regards the<br />

chemical <strong>elem<strong>en</strong>ts</strong> conta<strong>in</strong>ed <strong>in</strong>side them, <strong>in</strong><br />

particular heavy metals. The results of the spatial<br />

conc<strong>en</strong>tration distributions are quite differ<strong>en</strong>t from<br />

each other and "dom<strong>in</strong>ated" by species-specific<br />

factors for each fungus such as the l<strong>en</strong>gth, depth<br />

and age of the mycelium, the type of elem<strong>en</strong>t under<br />

<strong>in</strong>vestigation, its chemical form and its availability<br />

<strong>in</strong> the soil substrate, the type of soil-substrate, the<br />

organic matter <strong>in</strong> the soil substrate, vegetation, the<br />

degree of humidity, and many other unknown<br />

factors, some of which are still unknown.<br />

One important aspect that should perhaps be<br />

<strong>in</strong>vestigated further is the ability of fungi to<br />

accumulate heavy metals, ev<strong>en</strong> if the soil has no<br />

high conc<strong>en</strong>trations of these. In this study we have<br />

se<strong>en</strong> that some <strong>elem<strong>en</strong>ts</strong>, such as cadmium, copper,<br />

mercury and z<strong>in</strong>c t<strong>en</strong>d to accumulate <strong>in</strong> differ<strong>en</strong>t<br />

fungal species regardless of the nature and<br />

conc<strong>en</strong>trations of <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> the soil-substrate.<br />

Such has be<strong>en</strong> confirmed for mercury (Falandysz et<br />

al., 2002) and for mercury, and cadmium (Vetter,<br />

1994, Kalac and Svobova, 2000). It has also be<strong>en</strong><br />

observed that, <strong>in</strong> g<strong>en</strong>eral, ars<strong>en</strong>ic, chromium, nickel<br />

and lead do not t<strong>en</strong>d to accumulate <strong>in</strong> fungi, ev<strong>en</strong> if<br />

the soil is rich <strong>in</strong> these <strong>elem<strong>en</strong>ts</strong>, a fact confirmed<br />

105


for lead (Kalac and Svobova, 2000, García et al.,<br />

2009).<br />

Giv<strong>in</strong>g "guidel<strong>in</strong>es" at pres<strong>en</strong>t is rather difficult and<br />

premature. In the light of curr<strong>en</strong>t knowledge, the<br />

use of <strong>mushrooms</strong> as bio<strong>in</strong>dicators of soil quality<br />

and the <strong>en</strong>vironm<strong>en</strong>t, is still <strong>in</strong> the embryonic<br />

stages and not yet viable, ev<strong>en</strong> if some fungal<br />

species could be used as “warn<strong>in</strong>g <strong>mushrooms</strong>”.<br />

Future <strong>in</strong>vestigations <strong>in</strong> the same area could expand<br />

the <strong>in</strong>formation available for one or more species of<br />

mushroom, allow<strong>in</strong>g some to be def<strong>in</strong>ed and used<br />

as <strong>en</strong>vironm<strong>en</strong>tal bio<strong>in</strong>dicators.<br />

Based on the wealth of data and considerations<br />

pres<strong>en</strong>ted here, we th<strong>in</strong>k it is feasible to claim that,<br />

giv<strong>en</strong> the conc<strong>en</strong>tration levels of chemical <strong>elem<strong>en</strong>ts</strong><br />

<strong>in</strong> <strong>mushrooms</strong> <strong>in</strong> conjunction with the<br />

conc<strong>en</strong>trations of these metals <strong>in</strong> soils, this study<br />

could facilitate the id<strong>en</strong>tification of "threshold<br />

limits" for these heavy metal conc<strong>en</strong>trations,<br />

bear<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d their impact on human health,<br />

which would apply to the sale of certa<strong>in</strong> species of<br />

edible <strong>mushrooms</strong>.<br />

The names of the fungal species considered <strong>in</strong> this<br />

chapter have be<strong>en</strong> writt<strong>en</strong> <strong>in</strong> an abbreviated form to<br />

make the text more readable,. The species are now<br />

listed here alphabetically, alongside with their full<br />

names, <strong>in</strong> accordance with the taxonomy specified<br />

<strong>in</strong> paragraph 2.1.4.<br />

• Ag. altipes = Agaricus altipes (F. H. Møller)<br />

F. H. Møller<br />

• Ag. arv<strong>en</strong>sis = Agaricus arv<strong>en</strong>sis Schaeff.<br />

• Ag. bernardii = Agaricus bernardii Quél.<br />

• Ag. bisporus = Agaricus bisporus (J.E. Lange)<br />

Imbach<br />

• Ag. bitorquis = Agaricus bitorquis (Quél.)<br />

Sacc.<br />

• Ag. campestris = Agaricus campestris L.<br />

• Ag. cupreobrunneus = Agaricus cupreobruneus<br />

(Jul. Schäff. & Steer) Pilát.<br />

• Ag. macrocarpus = Agaricus macrocarpus<br />

(F.H. Møller) F.H. Møller<br />

• Ag. silvaticus = Agaricus silvaticus Schaeff.<br />

• Ag. silvicola = Agaricus silvicola (Vittad.)<br />

Peck.<br />

• Ag. ur<strong>in</strong>asc<strong>en</strong>s = Agaricus ur<strong>in</strong>asc<strong>en</strong>s (Jul.<br />

Schäff. & F.H. Møller) S<strong>in</strong>ger<br />

• Am. caesarea = Amanita caesarea (Scop.)<br />

Pers.<br />

106<br />

• Am. excelsa var. excelsa = Amanita excelsa<br />

var. excelsa (Fr.) P. Kumm.<br />

• Am. excelsa var. spissa = Amanita excelsa var.<br />

spissa (Fr.) Neville & Poumarat<br />

• Am. gemmata = Amanita gemmata (Fr.)<br />

Bertill.<br />

• Am. muscaria = Amanita muscaria (L.) Lam.<br />

• Am. ovoidea = Amanita ovoidea (Bull.) L<strong>in</strong>k<br />

• Am. panther<strong>in</strong>a = Amanita panther<strong>in</strong>a (DC.)<br />

Krombh.<br />

• Am. phalloides = Amanita phalloides (Vaill.<br />

ex Fr.) L<strong>in</strong>k<br />

• Am. rubesc<strong>en</strong>s = Amanita rubesc<strong>en</strong>s var.<br />

rubesc<strong>en</strong>s Pers.<br />

• Am. solitaria = Amanita solitaria (Bull.) Fr.<br />

• Am. vag<strong>in</strong>ata = Amanita vag<strong>in</strong>ata (Bull.)<br />

Lam.<br />

• Ar. mellea = Armillaria mellea (Vahl) P.<br />

Kumm.<br />

• Ar. tabesc<strong>en</strong>s = Armillaria tabesc<strong>en</strong>s (Scop.)<br />

Emel<br />

• B. aereus = Boletus aereus Bull.<br />

• B. reticulatus = Boletus reticulatus Schaeff.<br />

• B. edulis = Boletus edulis Bull.<br />

• B. p<strong>in</strong>ophilus = Boletus p<strong>in</strong>ophilus Pilát &<br />

Dermek<br />

• Ca. cibarius = Cantharellus cibarius Fr.<br />

• Cl. gibba = Clitocybe gibba (Pers.) P. Kumm.<br />

• Cl. nebularis = Clitocybe nebularis (Batsch)<br />

P. Kumm.<br />

• He. crispa = Helvella crispa (Scop.) Fr.<br />

• He. leucopus = Helvella leucopus Pers.<br />

• Hy. chrysodon = Hygrophorus chrysodon<br />

(Batsch) Fr.<br />

• Hy. eburneus = Hygrophorus eburneus (Bull.)<br />

Fr.<br />

• Hy. p<strong>en</strong>arius = Hygrophorus p<strong>en</strong>arius Fr.<br />

• Hy. russula = Hygrophorus russula (Schaeff.)<br />

Kauffman<br />

• geotropa = Infundibulicybe geotropa (Bull.)<br />

Harmaja<br />

• La. amethyst<strong>in</strong>a = Laccaria amethyst<strong>in</strong>a<br />

Cooke<br />

• La. fraterna = Laccaria fraterna (Sacc.)<br />

Pegler<br />

• La. laccata = Laccaria laccata (Scop.) Cooke<br />

• Le. nuda = Lepista nuda (Bull.) Cooke<br />

• Ly. decastes = Lyophyllum decastes (Fr.)<br />

S<strong>in</strong>ger<br />

• Ma. oreades = Marasmius oreades (Bolton)<br />

Fr.


• Mo. costata = Morchella costata (V<strong>en</strong>t.) Pers.<br />

• Mo. deliciosa = Morchella deliciosa Fr.<br />

• Mo. escul<strong>en</strong>ta = Morchella escul<strong>en</strong>ta (L.)<br />

Pers.<br />

• Mo. escul<strong>en</strong>ta var. umbr<strong>in</strong>a = Morchella<br />

escul<strong>en</strong>ta var. umbr<strong>in</strong>a (Boud.) S. Imai<br />

• Mo. rigida = Morchella rigida (Krombh.)<br />

Boud.<br />

• Mo. vulgaris = Morchella vulgaris (Pers.)<br />

Boud.<br />

• Ru. cyanoxantha = Russula cyanoxantha<br />

(Schaeff.) Fr.<br />

• Ru. delica = Russula delica Fr.<br />

• Ru. emetica = Russula emetica (Schaeff.)<br />

Pers.<br />

4.4 Sampl<strong>in</strong>g: a data sheet<br />

example<br />

Each sampl<strong>in</strong>g site, where both soil and fungal<br />

samples were collected, is described <strong>in</strong> detail and<br />

• Ra. flava = Ramaria flava (Schaeff.)<br />

• Ra. larg<strong>en</strong>tii = Ramaria larg<strong>en</strong>tii Marr & D.E.<br />

Stuntz<br />

• T. argyraceum = Tricholoma argyraceum<br />

(Bull.) Gillet<br />

• T. equestre = Tricholoma equestre (L.) P.<br />

Kumm.<br />

• T. terreum = Tricholoma terreum var terreum<br />

(Schaeff.) P. Kumm.<br />

• T. rutilans = Tricholomopsis rutilans<br />

(Schaeff.) S<strong>in</strong>ger<br />

• T. ustaloides = Tricholoma ustaloides<br />

Romagn.<br />

correctly georefer<strong>en</strong>ced, so that the analytical data<br />

of the samples can th<strong>en</strong> be used to create<br />

geostatistical maps.<br />

Here follows an example of one sample data sheet<br />

used <strong>in</strong> this study to describe the sample sites.<br />

107


Area and sample description<br />

108<br />

Sheet 1<br />

Map 1 Map 2<br />

Photo nr.1 Photo nr.2<br />

ID Toponym - Location: Fonte dell’Anatella<br />

Municipality: Rocca di Mezzo<br />

Geographic area: Abruzzo, Prov<strong>in</strong>cia dell’Aquila, Parco del Sir<strong>en</strong>te, Vel<strong>in</strong>o<br />

Sampl<strong>in</strong>g date: 7 Settembre 2005<br />

Coord<strong>in</strong>ates: Geographic coord<strong>in</strong>ate system: UTM/UPS Map Datum: WGS 84<br />

33T Long. 0379918 Lat. 4671322<br />

Altitude and <strong>in</strong>cl<strong>in</strong>ation: 1400 m; 5%<br />

Area description: Specim<strong>en</strong> found <strong>in</strong> the city of Fonte Anatella, on the basal portion of a beech<br />

(Fagus sylvatica L.) <strong>in</strong> the municipality of Rocca di Mezzo, <strong>in</strong> a beech forest on<br />

limestone matrix on the slopes of Mount Sir<strong>en</strong>te. Wooded slopes, d<strong>en</strong>se<br />

vegetation, steep terra<strong>in</strong>


Habitat: natural woodlands<br />

Substrate: Woody matrix<br />

Phylum: Basidiomycota<br />

Class: Basidiomycetes<br />

Order: Polyporales<br />

Family: Meripilaceae<br />

Fungus<br />

Specim<strong>en</strong> name: basidiocarp of Meripilus giganteus (Pers. : Fr.) P. Karst<strong>en</strong><br />

leg. Fabio S<strong>in</strong>iscalco, det. Carm<strong>in</strong>e S<strong>in</strong>iscalco<br />

Height: 94.5 cm (highest po<strong>in</strong>t of basidiocarp complex)<br />

Width: 139.5 cm (widest po<strong>in</strong>t of basidiocarp complex)<br />

Weight: 142.68 kg (total basidiocarp weight)<br />

Note: basidioma grow<strong>in</strong>g at the base of a<br />

beech tree betwe<strong>en</strong> the collar and large<br />

emerg<strong>in</strong>g roots.<br />

elem<strong>en</strong>t<br />

conc<strong>en</strong>tration<br />

mg/kg<br />

Analytical results<br />

elem<strong>en</strong>t<br />

conc<strong>en</strong>tration<br />

mg/kg<br />

Meripilus giganteus (Pers.) P. Karst.,<br />

elem<strong>en</strong>t<br />

conc<strong>en</strong>tration<br />

mg/kg<br />

Ag 1.11 Ge 0.001 Se 0.1<br />

Al 115 Hg 0.05 Sr 0.62<br />

As 0.2 K 27900 Ti 9.37<br />

Ba 1.18 La n.d. V 0.11<br />

Be 0.01 Li 0.13 Y n.d.<br />

B 10.4 Mg 1910 Zn 50.8<br />

Cd 2.25 Mn 4.67 Zr 0.18<br />

Ca 185 Mo 0.11 Cl n.d.<br />

Cs 0.06 Na 80.0 P 6270<br />

Cr 3.34 Ni 2.02 S 1310<br />

Co n.d. Pb 9.13<br />

Cu 107 Rb 23.4<br />

Fe 216 Sc n.d.<br />

134 Cs n.d.<br />

137 Cs n.d.<br />

40 K n.d.<br />

109


110<br />

Location of sample area<br />

Start<strong>in</strong>g from the macroarea,<br />

the three figures on<br />

the left describe the exact<br />

spot where the discovery<br />

and the collection of the<br />

fungus took place.


Bio<strong>in</strong>dication allows evaluat<strong>in</strong>g the effects of<br />

anthropic activity on the <strong>en</strong>vironm<strong>en</strong>t through the<br />

observation of liv<strong>in</strong>g organisms. The widespread<br />

use of macromycetes for bio<strong>in</strong>dication is oft<strong>en</strong><br />

limited by taxonomic difficulties, by <strong>in</strong>complete<br />

knowledge of fungal metabolism and physiology,<br />

and by the lack of data on the quality and<br />

characteristics of the substrate.<br />

Further obstacles to the correct <strong>in</strong>terpretation of<br />

<strong>en</strong>vironm<strong>en</strong>tal data through fungi are the lack of<br />

precision and accuracy <strong>in</strong> describ<strong>in</strong>g their habitat.<br />

This EUR report aims to help develop a work<strong>in</strong>g<br />

methodology and to show applicable concrete<br />

examples of the paths to take <strong>in</strong> the future.<br />

The first aspect which was studied here<strong>in</strong> was the<br />

measure of chemical substances conta<strong>in</strong>ed <strong>in</strong> the<br />

carpophores of spontaneous macromycetes.<br />

The second aspect considered was the “refer<strong>en</strong>ce<br />

mushroom”, a tool already <strong>in</strong> use for other<br />

organisms, and which could prove to be a key<br />

elem<strong>en</strong>t <strong>in</strong> unravell<strong>in</strong>g the issues surround<strong>in</strong>g<br />

chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> macromycete carpophores.<br />

We arrived at this by attempt<strong>in</strong>g to overcome the<br />

<strong>in</strong>itial difficulties of <strong>in</strong>terpret<strong>in</strong>g, with no available<br />

parameters, the significance of the pres<strong>en</strong>ce of<br />

differ<strong>en</strong>t chemical <strong>elem<strong>en</strong>ts</strong> (heavy metals <strong>in</strong><br />

particular) <strong>in</strong> fungi. The pres<strong>en</strong>ce of these <strong>elem<strong>en</strong>ts</strong><br />

was oft<strong>en</strong> surpris<strong>in</strong>g due to unexpected<br />

conc<strong>en</strong>tration levels and large differ<strong>en</strong>ces betwe<strong>en</strong><br />

very closely-related taxonomic species.<br />

The third aspect dealt with <strong>in</strong> this work was l<strong>in</strong>k<strong>in</strong>g<br />

fungal species with their habitats. This allowed us<br />

to observe important biodiversities which might be<br />

further <strong>in</strong>vestigated and studied <strong>in</strong> future work,<br />

with the aid of new technologies and with the help<br />

of <strong>en</strong>vironm<strong>en</strong>tal cod<strong>in</strong>g carried out by the<br />

CORINE programme and the European system of<br />

natural <strong>in</strong>formation, EUNIS. Follow<strong>in</strong>g this it will<br />

Chapter V<br />

Conclusions<br />

be possible to be guided by objective criteria wh<strong>en</strong><br />

describ<strong>in</strong>g habitats with specific macromycetes<br />

growth.<br />

We hope that our work may sparkle new ideas for<br />

study and research that could help support the use<br />

of these organisms <strong>in</strong> <strong>en</strong>vironm<strong>en</strong>tal assessm<strong>en</strong>ts.<br />

Such a feature will be important wh<strong>en</strong> consider<strong>in</strong>g<br />

the mycological compon<strong>en</strong>ts of terrestrial<br />

ecosystems, which is becom<strong>in</strong>g an <strong>in</strong>creas<strong>in</strong>gly<br />

important and relevant factor <strong>in</strong> the evaluation of<br />

global ecological balances.<br />

This work aims not to close but to op<strong>en</strong> a new<br />

vision with new opportunities for sci<strong>en</strong>tific<br />

research on the world of higher <strong>mushrooms</strong>, which<br />

is little understood and too oft<strong>en</strong> undervalued. By<br />

mak<strong>in</strong>g available to everyone this volume of data,<br />

that, <strong>in</strong> itself, constitutes an important contribution<br />

to the docum<strong>en</strong>tation of fungal biodiversity, we<br />

have above all aimed to describe a particular<br />

work<strong>in</strong>g methodology and some practical<br />

applications. We are conv<strong>in</strong>ced that it can be used<br />

to produce new research <strong>in</strong> this field.<br />

For example, we are conv<strong>in</strong>ced that taxonomic<br />

research should be based on a polyphasic approach<br />

that <strong>in</strong>cludes the collection and analysis of macro<br />

and microscopic data, <strong>in</strong>clud<strong>in</strong>g morphological,<br />

physiological, and biochemical features; further,<br />

the most accurate possible def<strong>in</strong>ition of each<br />

macromycete’s habitat; we believe that <strong>in</strong> this<br />

context the measurem<strong>en</strong>t of conc<strong>en</strong>trations of<br />

differ<strong>en</strong>t chemicals <strong>in</strong> and molecular characteristics<br />

of that habitat should be analysed.<br />

Last but not least we hope that our work will prove<br />

useful to all those who have differ<strong>en</strong>t levels of<br />

political and adm<strong>in</strong>istrative responsibility of the<br />

territories, especially regard<strong>in</strong>g the use of<br />

<strong>mushrooms</strong> as food.<br />

.<br />

111


112


AAVV (1991): CORINE Biotopes Manual. Habitats of<br />

European Community. Office for Official<br />

<strong>Publications</strong> of the European Communities,<br />

Luxembourg.<br />

AAVV (2004): “Carta della Natura alla scala 1:50.000 -<br />

Metodologia di realizzazione”. APAT,<br />

Manuali e L<strong>in</strong>ee Guida n. 30/2004.<br />

AAVV (2009a): Il progetto Carta della Natura alla scala<br />

1:50.000. L<strong>in</strong>ee guida per la cartografia e la<br />

valutazione degli habitat. ISPRA, Manuali e<br />

L<strong>in</strong>ee Guida n. 48/2009.<br />

AAVV (2009b): Gli habitat <strong>in</strong> Carta della Natura. Schede<br />

descrittive degli habitat per la cartografia alla<br />

scala 1:50.000. ISPRA, Manuali e L<strong>in</strong>ee Guida<br />

n. 49/2009.<br />

Abuz<strong>in</strong>adah R. A., Read D. J. (1989): “The role of<br />

prote<strong>in</strong>s <strong>in</strong> the nitrose nutrition of<br />

ectomycorrhizal plants. V. Nitrog<strong>en</strong> transfer <strong>in</strong><br />

birch, Betula p<strong>en</strong>dula L. grown <strong>in</strong> association<br />

with mycorrhizal and non mycorrhizal fungi”.<br />

New Phytologist, n.112, pp. 61-68.<br />

APAT (2005): La realizzazione <strong>in</strong> Italia del progetto<br />

europeo CORINE Land Cover 2000. Rapporti<br />

APAT, 61/2005.<br />

Bed<strong>in</strong>i S., Avio L., Argese E., Giovannetti M. (2007):<br />

“Effects of long-term land use on arbuscular<br />

mycorrhizal fungi and glomal<strong>in</strong>-related soil<br />

prote<strong>in</strong>”. Agriculture Ecosystems and<br />

Environm<strong>en</strong>t, n. 120, pp. 463-466.<br />

Bed<strong>in</strong>i S., Pellegr<strong>in</strong>o E., Avio L., Pellegr<strong>in</strong>i S., Bazzoffi<br />

P., Argese E., Giovannetti M. (2009):<br />

“Changes <strong>in</strong> soil aggregation and glomal<strong>in</strong>related<br />

soil prote<strong>in</strong> cont<strong>en</strong>t as affected by the<br />

arbuscular mycorrhizal fungal species Glomus<br />

mosseae and Glomus <strong>in</strong>traradices”. Soil<br />

Biology and Biochemistry, n. 41, pp. 1491-<br />

1496.<br />

B<strong>en</strong>civ<strong>en</strong>ga M., Calandra R., Granetti B. (1990):<br />

“Ricerche sui terr<strong>en</strong>i e sulla flora delle<br />

tartufaie naturali di T. melanosporum Vitt.<br />

dell’Italia c<strong>en</strong>trale”. Atti del 2° Congresso<br />

Internazionale sul Tartufo, Spoleto, 24-27<br />

novembre 1988, pp. 337-374.<br />

VI Bibliography<br />

B<strong>en</strong>civ<strong>en</strong>ga M., Calandra R., Giovagnotti E., Russi L.<br />

(1996): “Aspetti pedologici e vegetazionali<br />

delle tartufaie di alcune specie di “tartufi<br />

m<strong>in</strong>ori””. Annali della Facoltà di Agraria<br />

dell’Università di Perugia, n. 50, pp. 7-45.<br />

B<strong>en</strong>civ<strong>en</strong>ga M., Granetti B. (1990): “Flora, vegetazione<br />

e natura dei terr<strong>en</strong>i di alcune tartufaie<br />

naturali di Tuber magnatum Pico dell’Italia<br />

c<strong>en</strong>trale”. “Atti del 2° Congresso<br />

Internazionale sul Tartufo”, Spoleto 24-27<br />

novembre 1988, pp. 433-434.<br />

B<strong>en</strong>edetti A., Francaviglia R., Marchionni M.,<br />

Tr<strong>in</strong>chera A. (2006): “Soil Biodiversity<br />

Concepts and a case study at a Mediterranean<br />

Natural Ecosystem”. Accademia Nazionale<br />

delle Sci<strong>en</strong>ze detta dei XL. Scritti e docum<strong>en</strong>ti<br />

n. XXXVII, pp. 209-224.<br />

B<strong>en</strong>edetti A., Brookes P. C., Lynch J. (2006):<br />

Conclud<strong>in</strong>g remarks. In: Bloem J., Hopk<strong>in</strong>s D.<br />

and B<strong>en</strong>edetti A. (Eds.): “Microbial Methods<br />

for assess<strong>in</strong>g soil quality”. CABI Publish<strong>in</strong>g,<br />

pp. 63-70.<br />

B<strong>en</strong>edetti A., Gianfreda C. (2004): “Metodi di analisi<br />

biochimica del suolo”. Franco Angeli Ed.<br />

Bersan F. (2002): “Studio prelim<strong>in</strong>are per un t<strong>en</strong>tativo di<br />

dare un valore bio<strong>in</strong>dicatore a specie banali di<br />

funghi saprofiti <strong>in</strong> querceti mediterranei<br />

caducifolii”. Associazione Micologica<br />

Bresadola – Fondazione C<strong>en</strong>tro Studi<br />

Micologici, Tr<strong>en</strong>to – Vic<strong>en</strong>za. Pag<strong>in</strong>e di<br />

Micologia, n. 18, pp. 13-20.<br />

Bianco P. M., S<strong>in</strong>iscalco C. (2009): “Primo contributo<br />

all’abb<strong>in</strong>am<strong>en</strong>to della compon<strong>en</strong>te micologica<br />

agli habitat dunali”. In: Onori L. (Ed.): Il<br />

riprist<strong>in</strong>o degli ecosistemi mar<strong>in</strong>o-costieri e la<br />

difesa delle coste sabbiose nelle aree protette.<br />

ISPRA, Roma, Rapporti 100/2009, pp. 149-<br />

158.<br />

Bizio E. and Campo E. (1999): Funghi alp<strong>in</strong>i d’alta<br />

quota. “I funghi dove... quando”, n.<br />

61/62/63/64/65.<br />

Blaschke H. (1994): “Decl<strong>in</strong>e symptoms on roots of<br />

Quercus robur”. European Journal of Forest<br />

Pathology, n. 24, pp. 386-398.<br />

113


Bloem J., Hopk<strong>in</strong>s D. and B<strong>en</strong>edetti A. (Eds.) (2006):<br />

“Microbial Methods for Assess<strong>in</strong>g Soil<br />

Quality”. CABI Publish<strong>in</strong>g.<br />

Bosco M., Giovannetti L., Giovannetti M., Viti C.<br />

(2008a): “Ruolo dei microrganismi nei cicli<br />

biogeochimici”. In Biavati B., Sorl<strong>in</strong>i C. Eds.<br />

(2008): “Microbiologia Agroambi<strong>en</strong>tale”,<br />

Casa Editrice Ambrosiana, pp. 1-37.<br />

Bosco M., Giovannetti L., Giovannetti M., Viti C.<br />

(2008b): “La rizosfera e le associazioni<br />

microrganismi-piante”. In Biavati B., Sorl<strong>in</strong>i<br />

C. Eds. (2008): “Microbiologia<br />

Agroambi<strong>en</strong>tale”, Casa Editrice Ambrosiana,<br />

pp. 195-228.<br />

Brasier C. (1992): “A champion thallus”. Nature n. 356,<br />

pp. 382–383.<br />

Brookes P.C. (1994): “The use of microbial parameters<br />

<strong>in</strong> monitor<strong>in</strong>g soil pollution by heavy metal”.<br />

Biology and Fertility of Soils, n. 19, pp. 143-<br />

149.<br />

Callot G., Bye P., Raymond M., Fernandez D.,<br />

Pargney J. C., Parguey-Le Duc A., Janex-<br />

Favre M. C., Moussa R., Pages L. (1999):<br />

“La truffe, la terre, la vie“. Ed. INRA, Paris.<br />

Campos J. A., Tejera N. A. and Sánchez C. J. (2009):<br />

“Substrate role <strong>in</strong> the accumulatio of heavy<br />

metals <strong>in</strong> sporocarpus of wild fungi”.<br />

Biometals, Volume 22, pp. 835-841.<br />

Carlile M. J., Watk<strong>in</strong>son S. C., Gooday G. W. (2001):<br />

“The Fungi”. Academic Press, San Diego, pp.<br />

1-588.<br />

Carlon C., Critto A., Nathanail P., Marcom<strong>in</strong>i A.<br />

(2000): “Risk based characterisation of a<br />

contam<strong>in</strong>ated <strong>in</strong>dustrial site us<strong>in</strong>g multivariate<br />

and geostatistical tools”. Environm<strong>en</strong>tal<br />

Pollution. 111, 3, pp. 417-427.<br />

Caus<strong>in</strong> R., Montecchio L., Mutto Accordi S. (1996):<br />

“Probability of ectomycorrhizal <strong>in</strong>fection <strong>in</strong> a<br />

decl<strong>in</strong><strong>in</strong>g stand of common oak”. Annales des<br />

Sci<strong>en</strong>ces Forestières, n. 53, pp. 743-752.<br />

Cavalier-Smith, T. (1981): "Eukaryote k<strong>in</strong>gdoms: sev<strong>en</strong><br />

or n<strong>in</strong>e?" Biosystems 14, n. 3-4, pp. 461-81.<br />

Cavalier-Smith, T. (1993): "K<strong>in</strong>gdom protozoa and its<br />

18 phyla." Microbiol Rev 57, n. 4, pp. 953-94.<br />

Cavalier-Smith, T. (1998): "A revised six-k<strong>in</strong>gdom<br />

system of life." Biol Rev Camb Philos Soc 73,<br />

n. 3, pp. 203-66.<br />

114<br />

Cavalier-Smith, T. (2004): "Only six k<strong>in</strong>gdoms of life."<br />

Proc Biol Sci 271, n. 1545, pp. 1251-62.<br />

Cavalier-Smith, T. (2006): "Root<strong>in</strong>g the tree of life by<br />

transition analyses." Biol Direct 1, n. 19.<br />

C<strong>en</strong>ci R. M., Bergonzoni M., Bo F., Canovi L., Cont<strong>in</strong>i<br />

S., Guberti V., Locoro G., Meglioli E.,<br />

Musmeci L., Paracch<strong>in</strong>i B., Pedroni V.,<br />

Privitera M., Puglisi M., Roncari L., S<strong>en</strong>a<br />

F., Simonazzi N. e Tr<strong>in</strong>cher<strong>in</strong>i P. (2005):<br />

”Monitoraggio ambi<strong>en</strong>tale mediante l’impiego<br />

di suoli e di muschi per le discariche di Rio<br />

Riazzone, Rio Vigne e Poiatica di Reggio<br />

Emilia”. EUR 21561 IT. ISBN 92-894-9183-<br />

3.<br />

C<strong>en</strong>ci R. M., Dabergami D., Beccaloni E., Ziemacki<br />

G., B<strong>en</strong>edetti A., Pompili L., Mell<strong>in</strong>a A.S.,<br />

Bianchi M. (2008): "Bio<strong>in</strong>dicatori per<br />

valutare la qualità dei suoli di alcuni parchi<br />

della città di Roma" EUR 23567 IT ISSN<br />

1018-5593 ISBN: 978-92-79-10648-4<br />

Chiari M, Dogali D., Restelli V. (2008): “Funghi della<br />

Franciacorta (III contributo)”. Bollett<strong>in</strong>o del<br />

Circolo Micologico Car<strong>in</strong>i, n. 55, pp. 3-16.<br />

Clark I. and Harper W. V. (2004): “Practical<br />

Geostatistics”. Geostokos Ltd, Scotland.<br />

Cocchi L., Vescovi L., Petr<strong>in</strong>i O. (2006): “Il fungo di<br />

riferim<strong>en</strong>to: un nuovo strum<strong>en</strong>to nella ricerca<br />

micologica”. Atti del 3° Convegno<br />

Internazionale di Micotossicologia (Reggio<br />

Emilia, 6-7 dicembre 2004). Pag<strong>in</strong>e di<br />

Micologia, n. 25, pp. 51-66.<br />

Cocchi L., Vescovi L., Petr<strong>in</strong>i L. E., Petr<strong>in</strong>i O. (2006):<br />

“Heavy metals <strong>in</strong> edible <strong>mushrooms</strong> <strong>in</strong> Italy”.<br />

Food Chemistry, Volume 98, Issue 2, pp. 277-<br />

284.<br />

Cocchi L. (2009): “Radioattività e metalli pesanti, gli<br />

Chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> higher <strong>mushrooms</strong>”. In<br />

P. Follesa: Manuale tecnico-pratico per<br />

<strong>in</strong>dag<strong>in</strong>i su campioni fung<strong>in</strong>i. Campioni<br />

ufficiali e non ufficiali. Intossicazione da<br />

funghi. Associazione Micologica Bresadola-<br />

Fondazione C<strong>en</strong>tro Studi Micologici, Tr<strong>en</strong>to-<br />

Vic<strong>en</strong>za.<br />

Commissione Europea: Decisione 82/72/CEE del<br />

Consiglio, del 3 dicembre 1981, concern<strong>en</strong>te la<br />

conclusione della conv<strong>en</strong>zione relativa alla<br />

conservazione della vita selvatica e<br />

dell’ambi<strong>en</strong>te naturale <strong>in</strong> Europa. GUCE n. 38<br />

del 10.2.1982.


Commissione Europea: Direttiva 92/43/CEE del<br />

Consiglio del 21 maggio 1992, relativa alla<br />

conservazione degli habitat naturali e<br />

sem<strong>in</strong>aturali e della flora e della fauna<br />

selvatiche. GUCE n. 206 del 22.07.1992.<br />

Dahlberg A. and Croneborg H. (2003): “The 33<br />

Threat<strong>en</strong>ed Fungi <strong>in</strong> Europe”. Nature and<br />

Environm<strong>en</strong>t, n. 136.<br />

Davies C.E., Moss D., Hill MO. (2004): EUNIS Habitat<br />

Classification Revised. Report to: European<br />

Environm<strong>en</strong>t Ag<strong>en</strong>cy - European Topic C<strong>en</strong>tre<br />

on Nature Protection and Biodiversity.<br />

Demirbaş A. (2000): “Accumulation of heavy metals <strong>in</strong><br />

some edible <strong>mushrooms</strong> from Turkey”. Food<br />

Chemistry, Volume 68, Issue 4, pp. 415-419.<br />

Demirbaş A. (2001): “Conc<strong>en</strong>trations of 21 metals <strong>in</strong> 18<br />

Species of <strong>mushrooms</strong> grow<strong>in</strong>g <strong>in</strong> the East<br />

Black Sea region”. Food Chemistry, Volume<br />

75, Issue 4, pp. 453-457.<br />

Doran J. W. and Park<strong>in</strong> T.B. (1994): “Def<strong>in</strong><strong>in</strong>g and<br />

assess<strong>in</strong>g soil quality”. In: Doran JW,<br />

Coleman DC, Bezdicek DF and Stewart BA<br />

(Eds.): “Def<strong>in</strong><strong>in</strong>g Soil Quality for a<br />

Susta<strong>in</strong>able Environm<strong>en</strong>t”, 35. American<br />

Society of Agronomy Special Publication,<br />

Madison, WI, 1994, pp. 3-21.<br />

European Commission (2007): Interpretation manual of<br />

european union habitats - EUR 27. DG<br />

Environm<strong>en</strong>t, Nature and biodiversity,<br />

Bruxelles.<br />

Falandysz J., Kunito T., Kubota R., Bielawski L.,<br />

Frankowska A., Falandysz J. J. and Tanabe<br />

S. (2008): “Multivariate characterization of<br />

<strong>elem<strong>en</strong>ts</strong> accumulated <strong>in</strong> k<strong>in</strong>g Bolete Boletus<br />

edulis mushroom at lowland and high<br />

mounta<strong>in</strong> regions”. Journal of Environm<strong>en</strong>tal<br />

Sci<strong>en</strong>ce and Health, Part A, Volume 4, pp.<br />

1692-1699.<br />

Falandysz J., Lipka K., Gucia M., Kawano M.,<br />

Strumnik K., Kannan K. (2002):<br />

“Accumulation factors of mercury <strong>in</strong><br />

<strong>mushrooms</strong> from Zaborski Landscape Park,<br />

Poland”. Environm<strong>en</strong>t International, Volume<br />

28, Issue 5, pp. 421-427.<br />

Frankowska A., Ziolkowska J., Bielawski L. and<br />

Falandysz J. (2010): “Food additives and<br />

contam<strong>in</strong>ants”. Part B, Volume 3, Issues 1,<br />

pp. 1-6.<br />

Gall<strong>in</strong>i L. (2001): “Comportam<strong>en</strong>to chimico e mobilità di<br />

alcuni metalli pesanti <strong>in</strong> un’area circostante<br />

una fonderia”. Tesi di Dottorato di Ricerca <strong>in</strong><br />

Chimica Agraria. Dipartim<strong>en</strong>to di Sci<strong>en</strong>ze<br />

M<strong>in</strong>eralogiche e Petrologiche – Dipartim<strong>en</strong>to<br />

di valorizzazione e Protezione delle Risorse<br />

Agroforestali, Università degli Studi di Tor<strong>in</strong>o.<br />

Departm<strong>en</strong>t of Chemistry and Chemical<br />

Eng<strong>in</strong>eer<strong>in</strong>g, University of Paisley, Glasgow.<br />

García M. Á., Alonso J., Melgar M. J. (2009): “Lead <strong>in</strong><br />

edible <strong>mushrooms</strong>: Levels and<br />

bioaccumulation factors”. Journal of<br />

Hazardous Materials, Volume 167, Issues 1-3,<br />

pp. 777-783.<br />

Giovagnotti E., Di Massimo G., B<strong>en</strong>civ<strong>en</strong>ga M. (1999):<br />

“Prove di coltivazione di Tuber borchii Vittad.<br />

<strong>in</strong> Italia”. Atti del 5ème Congrès International<br />

Sci<strong>en</strong>ce et Culture de la Truffe, 4-6 mars 1999,<br />

Aix-<strong>en</strong>-Prov<strong>en</strong>ce, France, pp. 260-264.<br />

Giovannetti M., Avio L. (2002): “Biotechnology of<br />

Arbuscular Mycorrhizas”. In Khachatourians<br />

G. G. and Arora D. K. Eds. Applied Mycology<br />

and Biotechnology, Vol. 2 Agriculture and<br />

Food Production”, pp. 275-310.<br />

Giovannetti M., Azzol<strong>in</strong>i D., Citernesi A. S. (1999):<br />

“Anastomosis and nuclear and protoplasmic<br />

exchange <strong>in</strong> arbuscular mycorrhizal fungi”.<br />

Applied and Environm<strong>en</strong>tal Microbiology 65,<br />

pp. 5571-5575.<br />

Giovannetti M., Avio L., Fortuna P., Pellegr<strong>in</strong>o E.,<br />

Sbrana C., Strani P. (2006): “At the root of<br />

the wood wide web: self recognition and nonself<br />

<strong>in</strong>compatibility <strong>in</strong> mycorrhizal networks”.<br />

Plant Signal<strong>in</strong>g and Behavior 1, pp. 1-5.<br />

Giovannetti M., Fortuna P., Citernesi A. S., Mor<strong>in</strong>i S.,<br />

Nuti M. P. (2001): “The occurr<strong>en</strong>ce of<br />

anastomosis formation and nuclear exchange<br />

<strong>in</strong> <strong>in</strong>tact arbuscular mycorrhizal networks”.<br />

New Phytologist, 151, pp. 717-724.<br />

Giovannetti M., Sbrana C., Avio L., Strani P. (2004):<br />

“Patterns of below-ground plant<br />

<strong>in</strong>terconnections established by means of<br />

arbuscular mycorrhizal networks”. New<br />

Phytologist 164, pp. 175-181.<br />

Glass N. L., Rasmuss<strong>en</strong> C., Roca M. G., Read N. D.<br />

(2004): “Hyphal hom<strong>in</strong>g, fusion and mycelial<br />

<strong>in</strong>terconnectedness”. Tr<strong>en</strong>ds <strong>in</strong> Microbiology<br />

12, pp. 135-141.<br />

Goovaerts P. (1997): “Geostatistics for natural<br />

resources evaluation”. Oxford University<br />

Press, New York.<br />

115


Granetti B., De Angelis A., Materozzi G. (2005):<br />

“Umbria terra di tartufi”. Gruppo Micologico<br />

Ternano, Regione dell’Umbria, Assessorato<br />

all’Agricoltura e Foreste, Perugia.<br />

Granetti B. (1994): “I tartufi: biologia e tecniche di<br />

coltivazione”. Micologia Italiana, n. 2; pp. 63-<br />

68.<br />

Gregory P. H. (1984): “The fungal mycelium: an<br />

historical perspective”. Transactions of the<br />

British Mycological Society 82, pp. 1-11.<br />

Hawksworth, D. L. (1991): "The fungal dim<strong>en</strong>sion of<br />

biodiversity: magnitude, significance, and<br />

conservation." Mycological Research 95, no.<br />

6, pp. 641-655.<br />

Hibbett, D. S. and B<strong>in</strong>der M., (2007): "A higher-level<br />

phylog<strong>en</strong>etic classification of the Fungi."<br />

Mycol Res 111, no. Pt. 5, pp. 509-547.<br />

Holmer L. and St<strong>en</strong>lid J. (1997): “Competitive<br />

hierarchies of wood decompos<strong>in</strong>g<br />

basidiomycetes <strong>in</strong> artificial systems based on<br />

variable <strong>in</strong>oculum sizes”. Oikos, n. 79, pp. 77-<br />

84.<br />

ICRP (International Commission on Radiological<br />

Protection) Publication 23: Refer<strong>en</strong>ce Man:<br />

Anatomical, Physiological and Metabolic<br />

Characteristics.<br />

Isaaks E. H., Srivastava R. M. (1989): “An <strong>in</strong>troduction<br />

to Applied Geostatistics”. Oxford press, New<br />

York.<br />

ISPRA (2009): “Indicatori di Biodiversità per la<br />

sost<strong>en</strong>ibilità <strong>in</strong> Agricoltura. L<strong>in</strong>ee guida,<br />

strum<strong>en</strong>ti e metodi per la valutazione della<br />

qualità degli agroecosistemi”. ISPRA, Roma,<br />

Manuali e L<strong>in</strong>ee Guida 47/2008.<br />

Jamoni P. (2008): “Funghi alp<strong>in</strong>i delle zone alp<strong>in</strong>e<br />

superiori e <strong>in</strong>feriori”. Associazione<br />

Micologica Bresadola, Tr<strong>en</strong>to.<br />

Jorhem L. and Sundström B. (1995): “Levels of some<br />

trace <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> edible fungi”. Zeitschrift für<br />

leb<strong>en</strong>smittel-untersuchung und forschung.<br />

Volume 201, pp. 311-316.<br />

Kalač P., Witt<strong>in</strong>gerová M., Stašková I., Šimák M. and<br />

Bastì J (1989b): “Cont<strong>en</strong>ts of mercury, lead<br />

and cadmium <strong>in</strong> <strong>mushrooms</strong>”. Českoslov<strong>en</strong>ská<br />

Hygi<strong>en</strong>a. Volume 34, pp. 568-576.<br />

Kalač P. and Svoboda L. (2000): “A review of trace<br />

elem<strong>en</strong>t conc<strong>en</strong>trations <strong>in</strong> edible <strong>mushrooms</strong>”.<br />

Food Chemistry, Volume 69, pp. 273-281.<br />

116<br />

K<strong>en</strong>drick, B. (1992): "The Fifth k<strong>in</strong>gdom." Ontario,<br />

Mycologic Publication.<br />

Koide R. T., Goff M. D., Dickie I. A. (2005):<br />

“Compon<strong>en</strong>t growth effici<strong>en</strong>cies of<br />

mycorrhizal and non mycorrhizal plants”.<br />

New Phytologist, n. 148, pp. 1563-1568.<br />

Konuk M., Afyon A. and Yagizv D. (2007): “M<strong>in</strong>or<br />

elem<strong>en</strong>t and heavy metal cont<strong>en</strong>ts of wild<br />

grow<strong>in</strong>g and edible <strong>mushrooms</strong> from western<br />

Black Sea region of Turkey”. Fres<strong>en</strong>ius<br />

Environm<strong>en</strong>tal Bullet<strong>in</strong>. Volume 16, n.11a, pp.<br />

1359-1362.<br />

Lantieri A. (2003): “Micoc<strong>en</strong>osi degli Ambi<strong>en</strong>ti Dunali<br />

della Sicilia Sud-Ori<strong>en</strong>tale”. Tesi di dottorato,<br />

Università degli Studi di Catania.<br />

Lavelle P. and Spa<strong>in</strong> A.V. (2001): “Soil Ecology”.<br />

Kluwer Academic Publishers, the Netherlands.<br />

Lavelle P. (1997): “Faunal activities and soil processes:<br />

adaptive strategies that determ<strong>in</strong>e ecosystem<br />

function”. Advances <strong>in</strong> Ecological Research,<br />

n. 27, pp. 93-132.<br />

Lilleskov E.A., Bruns T. D. (2001): “Nitrog<strong>en</strong> and<br />

ectomycorrhizal fungal communities: what we<br />

know, what we need to know”. New<br />

Phytologist, n. 149, pp. 154-158.<br />

L<strong>in</strong>naeus, C. (1753): "Species plantarum, exhib<strong>en</strong>tes<br />

plantas rite cognitas, ad g<strong>en</strong>era relatas, cum<br />

differ<strong>en</strong>tiis specificis, nom<strong>in</strong>ibus trivialibus,<br />

synonymis selectis, locis natalibus, secundum<br />

systema sexuale digestas." Stockholm, L.<br />

Salvius.<br />

Loreau M., Naeem S., Inchausti P., B<strong>en</strong>gtsson J.,<br />

Grime J. P., Hector A., Hooper D. U.,<br />

Huston M. A., Raffaelli D., Schmid B.,<br />

Tilman D., Wardle D. A. (2001):<br />

“Biodiversity and ecosystem function<strong>in</strong>g:<br />

curr<strong>en</strong>t knowledge and future chall<strong>en</strong>ges”.<br />

Sci<strong>en</strong>ce, n. 294, pp. 804-808.<br />

Maddison, D. R. and Schulz K. S. (2007): "The Tree of<br />

Life Web Project." last accessed: 2008,<br />

http://tolweb.org.<br />

Manion D., Lachance D. (1992): “Forest Decl<strong>in</strong>e<br />

Concepts”. APS Press, St. Paul, M<strong>in</strong>nesota,<br />

MN, USA.<br />

Marchi N., Sammart<strong>in</strong>o I., Amorosi A. and<br />

Guermandi M. (2009). “The pedogeochemical<br />

map as a support for <strong>en</strong>vironm<strong>en</strong>t<br />

plann<strong>in</strong>g strategies <strong>in</strong> Emilia-Romagna”.<br />

RemTech. Session 3: Remediation Techn.


Markert, B. (1992): “Establish<strong>in</strong>g of ‘Refer<strong>en</strong>ce Plant’<br />

for <strong>in</strong>organic characterization of differ<strong>en</strong>t<br />

plant species by chemical f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g”.<br />

Water Air Soil Pollution. 64 (3), pp. 533-538.<br />

McBratney A. B., Webster R., Burgess T. M. (1981):<br />

“The design of optimal sampl<strong>in</strong>g schemes for<br />

local estimation and mapp<strong>in</strong>g of regionalized<br />

variables - I. Theory and method”. Computers<br />

& Geosci<strong>en</strong>ces, 7 (4), pp. 331-334.<br />

M<strong>en</strong>dil D., Uluözlü Ö. D., Hasdemir E., Çağlar A.<br />

(2004): “Determ<strong>in</strong>ation of trace <strong>elem<strong>en</strong>ts</strong> on<br />

some wild edible mushroom samples from<br />

Kastamonu, Turkey”. Food Chemistry,<br />

Volume 88, Issue 2, pp. 281-285.<br />

M<strong>en</strong>ta C. (2008): “Guida alla conosc<strong>en</strong>za della biologia<br />

e dell’ecologia del suolo. Funzionalità,<br />

diversità biologica, <strong>in</strong>dicatori”. Oasi Alberto<br />

Perdisa Editore, Bologna.<br />

Michelot D., Siobud E., Doré J.-C., Viel C. and Poirier<br />

F. (1998): “Update on metal cont<strong>en</strong>t profiles<br />

<strong>in</strong> mushroom-toxicological implications and<br />

t<strong>en</strong>tative apprach to the mechanisms of bioaccumulation”.<br />

Toxicon, Volume 16, n. 12,<br />

pp. 1997-2012.<br />

Montecchi A, Saras<strong>in</strong>i M (2000): "Funghi ipogei<br />

d’Europa". Ed. Associazione Micologica<br />

Bresadola - Fondazione C<strong>en</strong>tro Studi<br />

Micologici, Tr<strong>en</strong>to-Vic<strong>en</strong>za, p. 714.<br />

Montecchio L. (2008): “Simbionti ectomicorrizici come<br />

<strong>in</strong>dicatori della salute delle piante forestali”.<br />

Atti del Ciclo di Sem<strong>in</strong>ari “I macromiceti<br />

come <strong>in</strong>dicatori biologici della qualità del<br />

territorio”, ISPRA, Dipartim<strong>en</strong>to Difesa della<br />

Natura, Progetto Speciale Funghi, Roma, 8<br />

aprile 2008,<br />

http://www.isprambi<strong>en</strong>te.it/Archivio/2008/Apr<br />

ile/.<br />

Monti G., Marchetti M., Gorreri L., Franchi P. (2000):<br />

“Funghi di ambi<strong>en</strong>ti dunali”. Pac<strong>in</strong>i Editore,<br />

Pisa.<br />

Mosca E., Montecchio L., Sella L., Garbaye J. (2007):<br />

“Short-term effect of remov<strong>in</strong>g tree<br />

competition on the ectomycorrhizal status of a<br />

decl<strong>in</strong><strong>in</strong>g pedunculate oak forest (Quercus<br />

robur L.)”. Forest Ecology and Managem<strong>en</strong>t,<br />

n. 244, pp. 129-140.<br />

Müller, E., Loeffler W. (1976): "Mycology: An Outl<strong>in</strong>e<br />

for Sci<strong>en</strong>ce and Medical Stud<strong>en</strong>ts" Thieme.<br />

Nees von Es<strong>en</strong>beck, C. G. D. (1816 - 1817): "Das<br />

System der Pilze und Schwämme (The<br />

Taxonomy of Mushrooms and Toadstools)."<br />

Würzburg.<br />

Nikkar<strong>in</strong><strong>en</strong> M. and Mertan<strong>en</strong> E. (2004): “Impact of<br />

geological orig<strong>in</strong> on trace elem<strong>en</strong>t<br />

composition of edible <strong>mushrooms</strong>”. Journal of<br />

Food Composition and Analysis, Volume 17,<br />

Issues 3-4, pp. 301-310.<br />

OECD (1999): “Environm<strong>en</strong>tal <strong>in</strong>dicators for<br />

Agriculture”, vol. II, Issues and Design. The<br />

York Workshop. OECD, Paris.<br />

Onofri S., Zucconi L. (1999): “Funghi e metalli pesanti:<br />

bio<strong>in</strong>dicazione, bioaccumulo e<br />

biorisanam<strong>en</strong>to”. Atti del Workshop<br />

Biomonitoraggio della qualità dell’aria sul<br />

territorio nazionale. ANPA, Serie Atti 2/1999,<br />

Roma, pp.155-170.<br />

Ouzouni P. K., Veltsistas P. G., Paleologos E. K.,<br />

Riganakos K. A. (2009): “Determ<strong>in</strong>ation of<br />

metal cont<strong>en</strong>t <strong>in</strong> wild edible mushroom Species<br />

from regions of Greece”. Journal of Food<br />

Composition and Analysis, Volume 20, Issue<br />

6, pp. 480-486.<br />

Ouzouni P. K., Petridis D., Koller W.-D., Riganakos<br />

K. A. (2007): “Nutritional value and metal<br />

cont<strong>en</strong>t of wild edible <strong>mushrooms</strong> collected<br />

from West Macedonia and Epirus, Greece”.<br />

Food Chemistry, Volume 115, Issue 4, pp.<br />

1575-1580.<br />

Pal<strong>en</strong>zona M., Curto A., Mond<strong>in</strong>o GP., Saqland<strong>in</strong> R.<br />

(1976): “Il tartufo di Bagnoli Tuber<br />

mes<strong>en</strong>tericum Vitt. : ambi<strong>en</strong>te di produzione e<br />

prospettive di conservazione e diffusione <strong>in</strong><br />

Irp<strong>in</strong>ia”. Ed. C.C.A.A., Avell<strong>in</strong>o.<br />

Parke J. L., L<strong>in</strong>derman R. G., Black C. H. (1983):<br />

“The role of ectomycorrhizas <strong>in</strong> drought<br />

tolerance of douglas fir seedl<strong>in</strong>gs”. New<br />

Phytologist, n. 95, pp. 83-95.<br />

Petr<strong>in</strong>i O., Cocchi L., Vescovi L., Petr<strong>in</strong>i L. (2009):<br />

“Chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> <strong>mushrooms</strong>: their<br />

pot<strong>en</strong>tial taxonomic significance”. Mycol<br />

Progress. 8, pp.171-80.<br />

Petr<strong>in</strong>i O., Sieber T. N. (2000): ”Computer assisted<br />

taxonomy and docum<strong>en</strong>tation”. Chapter 8 <strong>in</strong>:<br />

McLaughl<strong>in</strong>, D. J., Mclaughl<strong>in</strong> E. G. &<br />

Lemke, P. A. (Eds.). The Mycota VII.<br />

Spr<strong>in</strong>ger-Verlag Berl<strong>in</strong> Heidelberg, pp. 203-<br />

215.<br />

117


Ravera O. (1981): “Necessità e limiti degli <strong>in</strong>dici e degli<br />

<strong>in</strong>dicatori biologici”. In: Onnis A and Ferrara<br />

R (Eds.): Colloquio su: Inqu<strong>in</strong>am<strong>en</strong>to e<br />

Indicatori Biologici. Roma, 3-4 giugno 1980.<br />

CNR, Collana del Programma F<strong>in</strong>alizzato<br />

“Promozione della Qualità dell’Ambi<strong>en</strong>te”<br />

AC/1/130-148. Arti Grafiche Pac<strong>in</strong>i Mariotti,<br />

Pisa, pp. 11-20.<br />

Rillig M. C., Hernandez G. Y., Newton P. C. D. (2000):<br />

“Arbuscular mycorrhizae respond to elevated<br />

atmospheric CO2 after long-term exposure:<br />

evid<strong>en</strong>ce from a CO2 spr<strong>in</strong>g <strong>in</strong> New Zealand<br />

supports the resource-balance model”.<br />

Ecology Letters 3, pp. 475-478.<br />

Robich G. (2003): “Myc<strong>en</strong>a d’Europa”. Ed.<br />

Associazione Micologica Bresadola, Fondazione<br />

C<strong>en</strong>tro Studi Micologici, Tr<strong>en</strong>to-<br />

Vic<strong>en</strong>za, p. 728<br />

Rousseau J.V.D., Sylvia D.M., Fox A.J. (1994):<br />

“Contribution of ectomycorrhizae to the<br />

pot<strong>en</strong>tial nutri<strong>en</strong>t-absorb<strong>in</strong>g surface of p<strong>in</strong>e”.<br />

New Phytologist, n.128, pp. 639-644.<br />

Saccardo, P. A. (1882-1931): "Sylloge fungorum omnium<br />

hucusque cognitorum." Patavii, sumptibus<br />

auctoris.<br />

Saras<strong>in</strong>i M. (2005): “Gasteromiceti epigei”. Ed. AMB,<br />

Fondazione C<strong>en</strong>tro Studi Micologici, Tr<strong>en</strong>to -<br />

Vic<strong>en</strong>za, p. 406.<br />

Sarnari M. (2000): “Monografia illustrata del g<strong>en</strong>ere<br />

Russula <strong>in</strong> Europa”. 2 Vol., AMB, Tr<strong>en</strong>to.<br />

Schütt P., Cowl<strong>in</strong>g E. B. (1985): “Waldsterb<strong>en</strong>, a<br />

g<strong>en</strong>eral decl<strong>in</strong>e of forests <strong>in</strong> c<strong>en</strong>tral Europe:<br />

symptoms, developm<strong>en</strong>t and possible causes”.<br />

Tree Disease, n. 69, pp. 548-558.<br />

S<strong>en</strong>n-Irlet B., Bieri G., Egli S. (2007): “Lista rossa delle<br />

specie m<strong>in</strong>acciate <strong>in</strong> Svizzera”. Ufficio<br />

federale dell’ambi<strong>en</strong>te UFAM, Birm<strong>en</strong>sdorf,<br />

Istituto federale di ricerca per la foresta, la<br />

neve e il paesaggio, Berna.<br />

Sequi P. (1981): “Il punto di vista di un chimico agrario<br />

sugli <strong>in</strong>dicatori biologici”. In: Onnis A and<br />

Ferrara R. (Eds.): Colloquio su: Inqu<strong>in</strong>am<strong>en</strong>to<br />

e Indicatori Biologici. Roma, 3-4 giugno 1980.<br />

CNR, Collana del Programma F<strong>in</strong>alizzato<br />

“Promozione della Qualità dell’Ambi<strong>en</strong>te”<br />

AC/1/130-148. Arti Grafiche Pac<strong>in</strong>i Mariotti,<br />

Pisa. pp. 21-28.<br />

118<br />

Sesli E., Tuz<strong>en</strong> M., Soylak M. (2008): “Evaluation of<br />

trace metal cont<strong>en</strong>ts of some wild edible<br />

<strong>mushrooms</strong> from Black sea region, Turkey”.<br />

Journal of Hazardous Materials, Volume 160,<br />

Issues 2-3, pp. 462-467.<br />

Shi L. B., Gutt<strong>en</strong>berger M., Kottke I., Hampp R.<br />

(2002): “The effect of drought on mycorrhizas<br />

of beech (Fagus sylvatica L.): changes <strong>in</strong><br />

community structure, and the cont<strong>en</strong>t of<br />

carbohydrates and nitrog<strong>en</strong> storage bodies of<br />

the fungi”. Mycorrhiza, n.12, pp. 303-311.<br />

Sieber T. N., Petr<strong>in</strong>i O., Gre<strong>en</strong>acre M. (1998):<br />

“Correspond<strong>en</strong>ce analysis as a tool <strong>in</strong> fungal<br />

taxonomy”. Syst. Appl. Microbiol., 21, pp.<br />

433–441.<br />

Siepel H. (1994): “Life-history tactics of soil<br />

microarthropods”. Biology and Fertility of<br />

Soils, n.18, pp. 263-278.<br />

Simard S. W., Perry D. A., Jones M. D., Myrold D. D.,<br />

Durall D. M., Mol<strong>in</strong>a R. (1997): “Net<br />

transfer of carbon betwe<strong>en</strong> ectomycorrhizal<br />

tree species <strong>in</strong> the field”. Nature 388, pp. 579-<br />

582.<br />

S<strong>in</strong>iscalco C. (<strong>in</strong> press): “I funghi come bio<strong>in</strong>dicatori<br />

della qualità del territorio”. Atti del<br />

Workshop Biodiversità dei suoli italiani: verso<br />

una normativa ambi<strong>en</strong>tale. Roma, 22 maggio<br />

2008. ISPRA, Roma.<br />

S<strong>in</strong>iscalco C. (2005): “Il ruolo della compon<strong>en</strong>te<br />

micologica negli ecosistemi dunali”. In: Onori<br />

L. (Ed.): Il riprist<strong>in</strong>o degli ecosistemi mar<strong>in</strong>ocostieri<br />

e la difesa delle coste sabbiose nelle<br />

aree protette. ISPRA, Roma, Rapporti<br />

100/2009, pp. 140-176.<br />

S<strong>in</strong>iscalco C., Tornambè A. (2002): “Considerazioni sul<br />

f<strong>en</strong>om<strong>en</strong>o di assorbim<strong>en</strong>to e accumulo di<br />

metalli pesanti nei funghi”. Atti del 2°<br />

Convegno Internazionale di Micotossicologia.<br />

Associazione Micologica Bresadola, C<strong>en</strong>tro<br />

Studi Micologici, Pag<strong>in</strong>e di Micologia, n. 17,<br />

pp. 191-226.<br />

Slejkovec Z., Byrne A. R., Stijve T., Goessler W. and<br />

Irgolic K. J. (1977): “Ars<strong>en</strong>ic compounds <strong>in</strong><br />

higher fungi”. Applied organometallic<br />

Chemistry, Volume 11, pp. 673-682.<br />

Smith M. L., Bruhn J. N., Anderson J. B. (1992): “The<br />

fungus Armillaria bulbosa is among the<br />

largest and oldest liv<strong>in</strong>g organisms”. Nature<br />

356, pp. 428–431.


Sova Z., Cibulka J., Száková J., Miholová D., Mader<br />

P. and Reisnerová H. (1991): “Cont<strong>en</strong>t of<br />

cadmium, mercury and lead <strong>in</strong> <strong>mushrooms</strong><br />

from two areas <strong>in</strong> Bohemia”. Sbornik<br />

Agronomické Fakulty. Volume 8, Issue 1, pp.<br />

13-29.<br />

Soylak M., Saraçoğlu S., Tüz<strong>en</strong> M., M<strong>en</strong>dil D. (2005):<br />

“Determ<strong>in</strong>ation of trace metals <strong>in</strong> mushroom<br />

samples from Kayseri, Turkey”. Food<br />

Chemistry, Volume 92, Issue 4, pp. 649-652.<br />

Ste<strong>in</strong>aker D. F. and Wilson S. D. (2008): “Scale and<br />

d<strong>en</strong>sity dep<strong>en</strong>d<strong>en</strong>t relationships among roots,<br />

mycorrhizal fungi and collembola <strong>in</strong> grassland<br />

and forest”. Oikos, n. 117, Issue 5, pp. 703-<br />

710.<br />

Stijve T., Besson R. (1976): “Mercury, cadmium, lead<br />

and sel<strong>en</strong>ium cont<strong>en</strong>t of mushroom species<br />

belong<strong>in</strong>g to the G<strong>en</strong>us Agaricus”.<br />

Chemosphere, Issue 2, pp. 151-158<br />

Stijve T., Vell<strong>in</strong>ga E., Hermann A. (1990): “Ars<strong>en</strong>ic<br />

accumulation <strong>in</strong> some higher fungi”.<br />

Persoonia, Volume 14, Issue 2, pp. 161-166<br />

Stijve T., Goessler W., Dupuy G. (2004): “Influ<strong>en</strong>ce of<br />

soil particles on conc<strong>en</strong>trations of alum<strong>in</strong>ium,<br />

iron, calcium and other metals <strong>in</strong><br />

<strong>mushrooms</strong>”. Dtsch leb<strong>en</strong>smitt Rundsch,<br />

Volume 100, Issue 1, pp. 10-13<br />

Svoboda L., Havlíčková B., Kalač P. (2006): “Cont<strong>en</strong>ts<br />

of cadmium, mercury and lead <strong>in</strong> edible<br />

<strong>mushrooms</strong> grow<strong>in</strong>g <strong>in</strong> a historical silverm<strong>in</strong><strong>in</strong>g<br />

area”. Food Chemistry, Volume 96,<br />

Issue 4, pp. 580-585.<br />

Tüz<strong>en</strong> M. (2003): “Determ<strong>in</strong>ation of heavy metals <strong>in</strong> soil,<br />

mushroom and plant samples by atomic<br />

absorption spectrometry”. Microchemical<br />

Journal, Volume 74, Issue 3, pp. 289-297.<br />

Tyler G., Balsberg Påhlsson A. M., B<strong>en</strong>gtsson G.,<br />

Bååth E., Tranvik L. (1989): “Heavy metal<br />

ecology of terrestrial plants, microorganism<br />

and <strong>in</strong>vertebrates”. A review. Water, Air, and<br />

Soil Pollution, n. 47, pp. 189-215.<br />

Vetter J. (1994): “Data on ars<strong>en</strong>ic and cadmium<br />

cont<strong>en</strong>ts of some common <strong>mushrooms</strong>”.<br />

Toxicon, Volume 32, pp. 11-15.<br />

Vizz<strong>in</strong>i A., Mello A., Ghignone S., Sechi C., Ruiu P.,<br />

Bonfante P. (2008): “Boletus edulis complex:<br />

from phylog<strong>en</strong>etic relationships to specific<br />

primers”. Pag<strong>in</strong>e di Micologia, (30), pp. 49-<br />

52.<br />

Whittaker R. H. (1969): “New Concepts of K<strong>in</strong>gdoms of<br />

Organisms”. Sci<strong>en</strong>ce 163, pp. 150-160.<br />

Woese C. R., Kandler O., Wheelis M. L. (1990):<br />

“Towards a natural system of organisms:<br />

Proposal for the doma<strong>in</strong>s Archaea, Bacteria,<br />

and Eucarya”. Proceed<strong>in</strong>gs of the National<br />

Academy of Sci<strong>en</strong>ce USA, 87, pp. 4576-4579.<br />

Wright S. F., Upadhyaya A. (1996): “Extraction of an<br />

abundant and unusual prote<strong>in</strong> from soil and<br />

comparison with hyphal prote<strong>in</strong> from<br />

arbuscular mycorrhizal fungi”. Soil Sci<strong>en</strong>ce,<br />

n. 161, pp. 575-586.<br />

Yamaç M., Yıldız D., Sarıkürkcü C., Çelikkollu M.,<br />

Solak M. H. (2007): “Heavy metals <strong>in</strong> some<br />

edible <strong>mushrooms</strong> from the C<strong>en</strong>tral Anatolia,<br />

Turkey”. Food Chemistry, Volume 103, Issue<br />

2, pp. 263-267.<br />

Zanella A., Tomasi M., De Si<strong>en</strong>a C., Frizzera L.,<br />

Jabiol B., Nicol<strong>in</strong>i G., Sartori G., Calabrese<br />

M. S., Mancabelli A., Nardi S., Pizzeghello<br />

D., Odasso M. (2001): “Humus Forestali”.<br />

Edizioni del C<strong>en</strong>tro di Ecologia Alp<strong>in</strong>a Tr<strong>en</strong>to.<br />

Zimmermannová K., Kalač P. (2000): “Conc<strong>en</strong>trations<br />

of mercury, cadmium, lead and copper <strong>in</strong><br />

fruit<strong>in</strong>g bodies of edible <strong>mushrooms</strong> <strong>in</strong> an<br />

emission area of a copper smelter and a<br />

mercury smelter”. The Sci<strong>en</strong>ce of The Total<br />

Environm<strong>en</strong>t, Volume 246, Issue 1, pp. 61-67.<br />

119


120


For a better understand<strong>in</strong>g of the book, we have<br />

decided to <strong>in</strong>clude descriptions and pictures of<br />

some fungal species studied, as well as some of the<br />

most <strong>in</strong>terest<strong>in</strong>g and commonly known fungal<br />

species. Pictures and descriptions are tak<strong>en</strong> from<br />

Volumes I (1999), II (2001) and III (2009) of the<br />

series “Atlante Photografico dei Funghi d’Italia”<br />

("Photographic Atlas of Italian Mushrooms"),<br />

published by the Fondazione C<strong>en</strong>tro Studi<br />

Micologici of the Associazione Micologica<br />

Bresadola, edited by Giovanni Consiglio, Carlo<br />

Papetti and, only for Vol. 1, Giampaolo Simon<strong>in</strong>i.<br />

In some casees the names of the species used by<br />

these authors are differ<strong>en</strong>t from those used here, for<br />

the reasons described <strong>in</strong> paragraph 2.1.4(page 20).<br />

As already expla<strong>in</strong>ed, the nom<strong>en</strong>clature follows<br />

www.<strong>in</strong>dexfungorum.org; synonyms are giv<strong>en</strong> <strong>in</strong><br />

square brackets.<br />

VII App<strong>en</strong>dix<br />

The descriptions also provide <strong>in</strong>formation on the<br />

edibility of each species (please note: “edible” is<br />

appropriate only if the mushroom is thoroughly<br />

cooked!)..<br />

The number of images pres<strong>en</strong>ted here is limited,<br />

compared to the number of fungal species<br />

occurr<strong>in</strong>g <strong>in</strong> nature; we believe, however, that it<br />

repres<strong>en</strong>ts appropriately the considerable pot<strong>en</strong>tial<br />

for biodiversity possible <strong>in</strong> the fungal k<strong>in</strong>gdom.<br />

Species are listed <strong>in</strong> alphabetical order for purely<br />

practical reasons and not accord<strong>in</strong>g to rigorous<br />

systematic criteria.<br />

The photographers are credited <strong>in</strong> “Atlante<br />

Photografico dei Funghi d’Italia”, with the sole<br />

exception of the image show<strong>in</strong>g Agaricus<br />

ur<strong>in</strong>asc<strong>en</strong>s, which was tak<strong>en</strong> by Ennio Carassai.<br />

121


122


CAP 80-140 mm, hemispheric, th<strong>en</strong> convex-flat, hairless,<br />

white, border<strong>in</strong>g on a silky sh<strong>in</strong>e, at maturity yellowish on<br />

circumfer<strong>en</strong>ce, f<strong>in</strong>ally, from yellow-citr<strong>in</strong>a to vivid ochre<br />

all over; edges hang<strong>in</strong>g with residues of veil.<br />

GILLS at the extremes from whitish to pale grey-p<strong>in</strong>k,<br />

th<strong>en</strong> p<strong>in</strong>k-grey<strong>in</strong>g and only with age from brown-purple<br />

to brown-black, crowded, free, width of 6-8 mm, with<br />

pale gill edge.<br />

STIPE 80-120 × 12-25 mm, cyl<strong>in</strong>drical, wid<strong>en</strong><strong>in</strong>g towards<br />

base but not bulbous, white, to the touch yellow-citr<strong>in</strong>a,<br />

annulus white, persist<strong>en</strong>t, high, broad, flar<strong>in</strong>g, yellow<br />

wh<strong>en</strong> handled, <strong>in</strong> two layers, lower layer has coarse<br />

white-ochre-ish scales , with appearance of a gear wheel.<br />

FLESH white, with age light h<strong>in</strong>t of ochre, thick <strong>in</strong> the<br />

c<strong>en</strong>tre, strong smell of aniseed, flavour of hazelnut.<br />

MICROSCOPY: ellipsoidal spores, smooth, under<br />

microscope dark brown, dim<strong>en</strong>sions 6.5-8 × 4.2-5.4 µm;<br />

tetrasporophyte basidia; marg<strong>in</strong>al cells from clavate to<br />

vescicle. Brown-black spores.<br />

Agaricus arv<strong>en</strong>sis Schaeff. : Fr.<br />

HABITAT: oft<strong>en</strong> gregarious, rarely isolated, from the<br />

spr<strong>in</strong>g to autumn, <strong>in</strong> meadows, <strong>in</strong> pastures, around the<br />

edges of woods. Infrequ<strong>en</strong>t.<br />

EDIBILITY: edible<br />

NOTE – Good to eat. The species of the subsection<br />

Flavesc<strong>en</strong>tes are however, natural conc<strong>en</strong>trators of silver,<br />

cadmium and mercury. The Flavesc<strong>en</strong>tes produce<br />

carpophores with an anise or hazelnut odour and are<br />

weakly yellow at the extremities. The caps t<strong>en</strong>d to be<br />

quite large, the gills at the extremes are a very pale fleshy<br />

grey, there will usually be evid<strong>en</strong>t yellow<strong>in</strong>g, the base of<br />

the stipe is large but not bulbous, all factors which<br />

facilitate the id<strong>en</strong>tification of this lovely species. It could<br />

be confused with Agaricus nivesc<strong>en</strong>s, which, however<br />

differs by hav<strong>in</strong>g a more modest yellow<strong>in</strong>g, and smaller<br />

and rounder spores. Another similar species is Agaricus<br />

xanthodermus, which has a slight odour of ph<strong>en</strong>ol,<br />

marg<strong>in</strong>ally bulbous stipe and on scratch<strong>in</strong>g shows a<br />

gold<strong>en</strong> yellow colour which is particularly evid<strong>en</strong>t at the<br />

base of the stipe and to a lesser degree <strong>in</strong> the flesh.<br />

123


CAP 60-160 mm, fleshy, <strong>in</strong>itially globular, th<strong>en</strong><br />

hemispheric or hemispheric-truncated, th<strong>en</strong> flat-convex<br />

with slight c<strong>en</strong>tral depression; edges convoluted ev<strong>en</strong> <strong>in</strong><br />

mature examples, striated on lower parts; cap cover<strong>in</strong>g<br />

white, white-grey<strong>in</strong>g, ochre-ish or ev<strong>en</strong> brownish, <strong>in</strong> the<br />

wide c<strong>en</strong>tral part, oft<strong>en</strong> dissociated <strong>in</strong> large irregular<br />

scales on a light background.<br />

GILLS free, crowded, wide, <strong>in</strong>itially whitish, th<strong>en</strong><br />

progressively dirty p<strong>in</strong>k, brown, dark brown, blackishbrown;<br />

sterile surface, light, m<strong>in</strong>utely d<strong>en</strong>ticulate.<br />

STIPE 40-80 × 20-35 mm, cyl<strong>in</strong>drical or v<strong>en</strong>tricular with<br />

po<strong>in</strong>ted base, robust, has a small annulus, simple and f<strong>in</strong>e<br />

towards the middle; above the annulus white and smooth,<br />

under the annulus whitish or grey-ochre-ish, smooth or<br />

with transversal bands concolour with the cap.<br />

FLESH firm white, reddish to gill edge. Odour normally<br />

strong and unpleasant of fish or of fish-eat<strong>in</strong>g birds. Cross<br />

reaction with Schäffer’s reag<strong>en</strong>t, negative.<br />

124<br />

Agaricus bernardii Quél. <strong>in</strong> Cooke & Quél.<br />

MICROSCOPY: spore mostly ellipsoidal to subglobose,<br />

mono- or biguttulate, more rarely multiguttulate, 6-8 ×<br />

4.5-6.5 µm. basidia clavate, tetrasporic. Cheilocystidia<br />

very numerous, multiform, usually cyl<strong>in</strong>drical, fusiform<br />

or clavate. Spores blackish-brown.<br />

HABITAT: gregarious, <strong>in</strong> small group<strong>in</strong>gs or <strong>in</strong> “witches’<br />

circles”, both <strong>in</strong> dune or <strong>in</strong> coastal areas, also <strong>in</strong> urban<br />

areas (for example under Cedrus) or <strong>in</strong> mounta<strong>in</strong>ous<br />

zones, but never <strong>in</strong>side woods; from the <strong>en</strong>d of spr<strong>in</strong>g to<br />

autumn.<br />

EDIBILITY: of no value<br />

NOTE - Is oft<strong>en</strong> confused, due to its similar appearance,<br />

with A. litoralis (Wakef. & A. Pearson) Pilát, which,<br />

however has a flar<strong>in</strong>g annulus, or with A. bitorquis<br />

(Quél.) Sacc., which, however has two lower annuli.


CAP 50-130 mm, fleshy, <strong>in</strong>itially hemispheric, th<strong>en</strong> flatconvex,<br />

f<strong>in</strong>ally flat; edges curv<strong>in</strong>g at the extremes; cap<br />

cover<strong>in</strong>g variable from white to ochre, up until brownish,<br />

outside the disc a little dissociated <strong>in</strong> triangulated<br />

fibrillated scales, adpressed, on a lighter background.<br />

GILLS free, fairly crowded, wide, <strong>in</strong>itially whitish, but<br />

soon p<strong>in</strong>k th<strong>en</strong> brown-reddish, f<strong>in</strong>ally brown-blackish,<br />

with light surface.<br />

STIPE 40-90 × 10-25 mm, cyl<strong>in</strong>drical or progressively<br />

wid<strong>en</strong>ed towards base, which is oft<strong>en</strong> a little bulbous,<br />

straight, tightly fistular, white, under the annulus f<strong>in</strong>ely<br />

fibrillated oft<strong>en</strong> with white mycelial cords. Annulus thick,<br />

normally triangular at division; due to its complex<br />

structure, to be considered <strong>in</strong>termediate (neither grow<strong>in</strong>g<br />

upwards nor downwards), ev<strong>en</strong> though it can be p<strong>en</strong>dant<br />

(droop<strong>in</strong>g or skirt-like) and more rarely, sheath<strong>in</strong>g<br />

(op<strong>en</strong><strong>in</strong>g upwards around the stipe).<br />

Agaricus bisporus (J.E. Lange) Imbach<br />

FLESH firm white, weakly p<strong>in</strong>k-reddish to gill edge.<br />

Odour weak, fungal. Cross reaction with Schäffer’s<br />

reag<strong>en</strong>t, negative.<br />

MICROSCOPY: spores mostly ellipsoidal, g<strong>en</strong>erally<br />

multiguttulate, 6.5-7.5 × 5-6 µm. basidia bisporic, but also<br />

monosporic (oft<strong>en</strong> very numerous) and more rarely<br />

trisporic or tetrasporic (these last most common <strong>in</strong> var.<br />

eurotetrasporus). Very numerous Cheilocystidia, clavate<br />

or a little fusiform, spores brown-blackish .<br />

HABITAT: gregarious, <strong>in</strong> small group<strong>in</strong>gs with isolated<br />

or clustered examples; common to fertilised ground or<br />

close to livestock <strong>en</strong>closures, rare <strong>in</strong> “wild” areas,<br />

g<strong>en</strong>erally under Cupressaceae. Spr<strong>in</strong>g and late autumn.<br />

EDIBILITY: edible<br />

NOTE – This is the only Agaricus with a great deal of<br />

bisporic basidia. It is good to eat and particularly suited to<br />

cultivation. It is produced <strong>in</strong>dustrially and sold almost all<br />

around the world.<br />

125


CAP 50-120 mm, first hemispheric, th<strong>en</strong> convex-flat,<br />

fleshy, firm, from pure white to dirty whitish, sometimes<br />

pale ochre-ish, smooth or with some under developed<br />

fibrils oft<strong>en</strong> covered by earth; edges convoluted and only<br />

with age dist<strong>en</strong>ded.<br />

GILLS from free to lightly adnate, close (4-6 mm),<br />

crowded, <strong>in</strong>itially pale p<strong>in</strong>k, soon becom<strong>in</strong>g full and dirty<br />

flesh p<strong>in</strong>k, and with age purple-black; gill edge whitish.<br />

STIPE 40-80 × 20-40 mm, cyl<strong>in</strong>drical, att<strong>en</strong>uated at base,<br />

full, rigid, from whitish to dirty p<strong>in</strong>k, at tip smooth or<br />

white and floccul<strong>en</strong>t; bear<strong>in</strong>g two membranous, white<br />

annuli, situated <strong>in</strong> the medial and basal zones of the stipe.<br />

FLESH thick, almost hard, gill edge, pale hazelnut, th<strong>en</strong><br />

tak<strong>in</strong>g tones of p<strong>in</strong>k, red w<strong>in</strong>e; sweet flavour, odour<br />

pronounced and pleasant.<br />

MICROSCOPY: spore mostly ellipsoidal, almost<br />

rounded, smooth, under microscope brown to yellowish<br />

126<br />

Agaricus bitorquis (Quélet) Saccardo<br />

shades; dim<strong>en</strong>sions 4.5-6 × 4-5.5 µm; tetrasporic basidia;<br />

clavate cells. Brown-purple spores.<br />

HABITAT: oft<strong>en</strong> gregarious on bare, sandy or compact<br />

soil at roadsides, <strong>in</strong> parks, riverside areas and streams,<br />

ev<strong>en</strong> under asphalt, from late spr<strong>in</strong>g to late autumn.<br />

EDIBILITY: edible<br />

NOTE - Good to eat. The species is recognisable among<br />

other taxa from the section Bitorques by the clear set of<br />

double annuli, pleasant odour and the short stipe wh<strong>en</strong><br />

compared to the diameter of the cap. The validus variety<br />

grows <strong>in</strong> clusters, has more compact and more heavily<br />

redd<strong>en</strong>ed flesh. It can be confused with the more fragile<br />

A. campestris, which has an ephemeral annulus and more<br />

brightly-coloured gills, and A. bisporus, which has a<br />

simple annulus and bisporic basidia.


CAP 50-120 mm, <strong>in</strong>itially globular, soon convex-flat,<br />

fleshy, white to whitish, sometimes suffused with p<strong>in</strong>k,<br />

silky-fibrillated, under developed fibrils more or less<br />

conc<strong>en</strong>tric, scales turn brown with age; at the extremes<br />

convoluted, rarely dist<strong>en</strong>ded oft<strong>en</strong> bear<strong>in</strong>g remnants of<br />

veil.<br />

GILLS free, close, with lamellule, p<strong>in</strong>k while still young<br />

concolour with gill edge, th<strong>en</strong> purple-black <strong>in</strong> maturity.<br />

STIPE 50-80 × 10-18 mm, more or less cyl<strong>in</strong>drical, but<br />

oft<strong>en</strong> att<strong>en</strong>uated at base, full, rigid white, bear<strong>in</strong>g f<strong>in</strong>e<br />

white dirty fibrils, brown<strong>in</strong>g with age; annulus tight and<br />

fragile, flar<strong>in</strong>g, of cottony consist<strong>en</strong>cy, white, just<br />

redd<strong>en</strong><strong>in</strong>g especially <strong>in</strong> the stipe-cap jo<strong>in</strong>, thick c<strong>en</strong>trally,<br />

with pleasant odour and sweet flavour.<br />

MICROSCOPY: oval spores, under microscope pale<br />

grey-brown, with just visible germ<strong>in</strong>at<strong>in</strong>g pores,<br />

dim<strong>en</strong>sions 6.5-8 × 4.5-5.5 µm; tetrasporophyte basidia.<br />

HABITAT: <strong>in</strong> fertilised meadows, <strong>in</strong> wheel tracks, <strong>in</strong> city<br />

parks, <strong>in</strong> small group<strong>in</strong>gs or <strong>in</strong> circles of many<br />

<strong>in</strong>dividuals; from the start of summer to late autumn.<br />

Agaricus campestris L. : Fr.<br />

EDIBILITY: edible<br />

NOTE - Good to eat. It is one of most r<strong>en</strong>own and<br />

gathered edible Agaricus species, and is well known<br />

everywhere. It is easily recognisable by its shape, its<br />

odour, which is neither anise nor of almonds, the flesh,<br />

which wh<strong>en</strong> bruised assumes a shade of red, the fugacious<br />

annulus and the stipe, which is oft<strong>en</strong> po<strong>in</strong>ted at its base. It<br />

belongs to the g<strong>en</strong>us Agaricus characterised by their<br />

fragile carpophores, flar<strong>in</strong>g annuli and gills which t<strong>en</strong>d to<br />

red at the extremes. There are many forms and varieties<br />

about which the Authors do not agree; the var.<br />

squamulosus, <strong>in</strong> particular, which displays brownish<br />

conc<strong>en</strong>tric scales on its cap. Confusable with the Agaricus<br />

species <strong>in</strong> the section Xanthodermatei, which are<br />

poisonous, but which have yellow<strong>in</strong>g flesh and an <strong>in</strong>ky<br />

smell.<br />

127


128<br />

Agaricus cupreobrunneus (Jul. Schäff. & Steer ex F.H. Möller) Pilát<br />

CAP 30-90 mm, <strong>in</strong>itially globular, th<strong>en</strong> hemispheric with<br />

truncated edges and with flatt<strong>en</strong>ed c<strong>en</strong>tre, f<strong>in</strong>ally flatconvex<br />

with slight c<strong>en</strong>tral depression; cap cover<strong>in</strong>g<br />

brownish copper, or ev<strong>en</strong> of vary<strong>in</strong>g tones of brown, <strong>in</strong><br />

adulthood whitish silky-fibrillated edges; oft<strong>en</strong> the cap<br />

can be completely white with brown scales towards the<br />

c<strong>en</strong>tre.<br />

GILLS free, fairly crowded, wide, with lamellule, from<br />

light p<strong>in</strong>k to vivid p<strong>in</strong>k up until brown-reddish, at<br />

maturity brown-blackish; edges concolour with surface.<br />

STIPE 20-70 × 8-20 mm, clavate-v<strong>en</strong>tricular oft<strong>en</strong> with<br />

po<strong>in</strong>ted base, but also cyl<strong>in</strong>drical, from full to tightly<br />

fistular, white, under the annulus smooth or f<strong>in</strong>ely<br />

fibrillated but bear<strong>in</strong>g several more or less complete labra<br />

of the same colour as the cap.<br />

FLESH white, uniform to gill edge, or just p<strong>in</strong>k <strong>in</strong> the top<br />

part of the stipe and close to the gills. Light odour, fungal.<br />

Cross reaction with Schäffer’s reag<strong>en</strong>t, negative.<br />

MICROSCOPY: ellipsoidal spores, g<strong>en</strong>erally mono- and<br />

biguttulate or with granular cont<strong>en</strong>t, 7-9 × 4.5-6 µm.<br />

basidia clavate, tetrasporic. Cheilocystidia isolated,<br />

almost abs<strong>en</strong>t. Spores brown-dark purple.<br />

HABITAT: gregarious <strong>in</strong> small group<strong>in</strong>gs or <strong>in</strong> “witches’<br />

circles” <strong>in</strong> large grassy areas, both <strong>in</strong> the mounta<strong>in</strong>s and<br />

near coastal and urban areas; autumn.<br />

EDIBILITY: edible<br />

NOTE - Fairly rare but quite widespread, <strong>in</strong> its place of<br />

growth it is prized as a delicacy, considered superior to A.<br />

campestris L. : Fr. for its firmer flesh. A similar species is<br />

A. porphyrocephalus F.H. Møller, and it is oft<strong>en</strong> difficult<br />

to dist<strong>in</strong>guish them macroscopically, but the latter has<br />

decidedly smaller spores. Its shape, with a white cap and<br />

brown scales <strong>in</strong> the c<strong>en</strong>tre, is similar to A. campestris var.<br />

squamulosus (Rea) Pilát, which is today considered<br />

synonymous with A. cupreobrunneus.


CAP 80-150 (180) mm, hemispheric, th<strong>en</strong> for a long<br />

while convex, f<strong>in</strong>ally dist<strong>en</strong>ded, dry and silky, fairly<br />

regular lip, with hang<strong>in</strong>g-floccules from remnants of veil;<br />

white, th<strong>en</strong> irregularly suffused with yellowish tones,<br />

more ochre-ish and <strong>in</strong>t<strong>en</strong>se around circumfer<strong>en</strong>ce.<br />

GILLS highly crowded, free from stipe, <strong>in</strong>tercalated with<br />

lamellule; <strong>in</strong>itially whitish, th<strong>en</strong> grey-p<strong>in</strong>k, p<strong>in</strong>k, and<br />

f<strong>in</strong>ally brown- dark purple-ish, keep<strong>in</strong>g a (sterile) whitish<br />

surface.<br />

STIPE 80-130 (150) × 20-30 mm, robust, cyl<strong>in</strong>drical,<br />

sometimes a little att<strong>en</strong>uated at tip, with a very squashed<br />

basal bulb, typically <strong>in</strong> the shape of elephant feet; white,<br />

sta<strong>in</strong>ed yellow-ochre-ish at base, <strong>in</strong> some adult<br />

specim<strong>en</strong>s, more or less flocular fibrils under the annulus.<br />

ANNULUS broad, thick, fairly persist<strong>en</strong>t, flar<strong>in</strong>g,<br />

coarsely decorated with the shape of a gear wheel on the<br />

lower surface; white.<br />

Agaricus macrocarpus (F.H. Møller) F.H. Møller<br />

FLESH white, nearly uniform <strong>in</strong> cap, t<strong>en</strong>d<strong>en</strong>cy to turn<br />

yellow on stipe, compact, t<strong>en</strong>der; weak odour of bitter<br />

almonds, mild, pleasant flavour.<br />

MICROSCOPY: ellipsoidal spores, smooth, 7.2-8.6 ×<br />

4.6-5.2 µm. Cheilocystidia clavate-obese, oft<strong>en</strong> with<br />

apical app<strong>en</strong>dage.<br />

HABITAT: grows <strong>in</strong> meadows and <strong>in</strong> pastures or <strong>in</strong><br />

sparse, grassy conifer woods; first appears <strong>in</strong> late spr<strong>in</strong>g,<br />

and th<strong>en</strong> fruits <strong>in</strong> autumn; <strong>in</strong>frequ<strong>en</strong>t.<br />

EDIBILITY: edible<br />

NOTE - A large mushroom which morphologically<br />

evokes the better-known and more common A. arv<strong>en</strong>sis<br />

Schaeff. : Fr. from which, however, it differs ma<strong>in</strong>ly <strong>in</strong> its<br />

larger size, stipe base with a squashed bulb, its coarse<br />

irregular cog-like pattern on the surface just under the<br />

annulus and for its slightly smaller spores.<br />

129


CAP 50-100 mm, <strong>in</strong>itially hemispheric or campanulate,<br />

th<strong>en</strong> convex or a little flatt<strong>en</strong>ed, sometimes umbonate,<br />

with the edges convoluted, th<strong>en</strong> straight, the cap cover<strong>in</strong>g<br />

brown-ochre-ish, more or less reddish, dissociated outside<br />

disc <strong>in</strong> fibrillated scales on lighter background.<br />

GILLS free, crowded, close, grey<strong>in</strong>g-brownish, h<strong>in</strong>t of<br />

p<strong>in</strong>k, ev<strong>en</strong>tually brown dark, with the sterile surface,<br />

more or less pale.<br />

STIPE 60-150 × 7-15 mm, cyl<strong>in</strong>drical, sometimes a little<br />

b<strong>en</strong>t, with bulbous base, firm th<strong>en</strong> fistular, <strong>in</strong>itially white<br />

th<strong>en</strong> grey<strong>in</strong>g, bear<strong>in</strong>g f<strong>in</strong>e flakes or scales under the<br />

annulus. Annulus flar<strong>in</strong>g, simple, f<strong>in</strong>e, the upper part<br />

whitish, the lower concoloured with the cap, sometimes<br />

evanesc<strong>en</strong>t.<br />

FLESH white, to gill edge turn<strong>in</strong>g to fairly <strong>in</strong>t<strong>en</strong>se blood<br />

red, with a sour odour and sweetish flavour. Cross<br />

reaction with Schäffer’s reag<strong>en</strong>t, negative.<br />

130<br />

Agaricus silvaticus Schaeff. : Fr.<br />

MICROSCOPY: spore from oval to ovoid-ellipsoidal,<br />

monoguttulate, 5.4-6 × 3.6-4 µm. clavate tetrasporic<br />

basidia. Cheilocystidia very numerous, from clavate to<br />

mostly clavate, with brownish cont<strong>en</strong>t. Brown-purple<br />

spores.<br />

HABITAT: isolated or gregarious, <strong>in</strong> hardwood and<br />

coniferous areas; summer-autumn.<br />

EDIBILITY: edible<br />

NOTE - A. silvaticus belongs to a group of species<br />

characterised by their slightly redd<strong>en</strong><strong>in</strong>g flesh towards<br />

their gill edges and by their predom<strong>in</strong>antly woodland<br />

habitat. It is dist<strong>in</strong>guishable from other, similar species by<br />

the colour, shape and ornam<strong>en</strong>tation of its cap, its flesh,<br />

which strongly redd<strong>en</strong>s towards the gill edge and by its<br />

pleasant odour. Accord<strong>in</strong>g to several authors, A. silvaticus<br />

is a very variable, collective species,, and <strong>in</strong>cludes, among<br />

others, A. haemorrhoidarius and A. langei.


CAP 50-90 mm, ovoid or hemispheric, th<strong>en</strong> convex-flat,<br />

with the edges convoluted, th<strong>en</strong> straight and wavy, white<br />

cap cover<strong>in</strong>g, whitish cream, hairless, fibrillated, yellow<br />

on rubb<strong>in</strong>g.<br />

GILLS free, fairly crowded, pale at the extremes, with a<br />

slight reddish shade, f<strong>in</strong>ally brown dark, with pale sterile<br />

surface.<br />

STIPE 60-90 × 10-15 mm, cyl<strong>in</strong>drical, wid<strong>en</strong>ed at base,<br />

fistular, white, silky under the annulus, oft<strong>en</strong> lightly p<strong>in</strong>k<br />

th<strong>en</strong> black<strong>en</strong>ed above the annulus, yellowed by rubb<strong>in</strong>g.<br />

Annulus flar<strong>in</strong>g, simple, broad, white, upper part smooth,<br />

lower part with a flaky yellow bloom towards the edges .<br />

FLESH white, p<strong>in</strong>k or reddish wh<strong>en</strong> exposed to air, with<br />

odour of anise and sour flavour. Cross reaction with<br />

Schäffer’s reag<strong>en</strong>t, positive.<br />

MICROSCOPY: spore oval with one or two guttules,<br />

(5.4) 5.8-6.6 × 3.8-4.2 (4.4) µm. clavate basidia,<br />

tetrasporic. Cheilocystidia subglobular, obpiriform,<br />

Agaricus silvicola (Vittad<strong>in</strong>i) Saccardo<br />

ellipsoidal, ev<strong>en</strong> <strong>in</strong> cheilocat<strong>en</strong>ule, with brownish cont<strong>en</strong>t.<br />

Spores purplish-brown <strong>in</strong> mass.<br />

HABITAT: gregarious, <strong>in</strong> large groups, <strong>in</strong> conifer woods.<br />

Summer to autumn, fairly frequ<strong>en</strong>t and common.<br />

EDIBILITY: edible<br />

NOTE - A. sylvicola belongs to a group of species which<br />

also <strong>in</strong>cludes A. essettei, A. t<strong>en</strong>uivolvatus and A.<br />

macrocarpus, where one can oft<strong>en</strong> f<strong>in</strong>d "family<br />

resemblances" betwe<strong>en</strong> one species and another. The<br />

differ<strong>en</strong>ces betwe<strong>en</strong> them lie <strong>in</strong> characteristics such as<br />

size, degree of robustness, developm<strong>en</strong>t of a universal veil<br />

and spore size, but <strong>in</strong> the abs<strong>en</strong>ce of reliable studies on<br />

ph<strong>en</strong>otypic variability such dist<strong>in</strong>ctions are only relatively<br />

valid. For example, A. syilvicola, of medium size and<br />

typically sl<strong>en</strong>der, has a stipe with a bulbous and welldef<strong>in</strong>ed<br />

base as, <strong>in</strong>deed have A. macrocarpus and A.<br />

essettei, but it has the smallest spore size of the group.<br />

131


132<br />

Agaricus ur<strong>in</strong>asc<strong>en</strong>s var. ur<strong>in</strong>asc<strong>en</strong>s<br />

(Jul. Schäff. & F.H. Möller) S<strong>in</strong>ger<br />

[= A. macrosporus (Jul. Schäff. & F.H. Möller) Pilát; A. alberti Bon;<br />

A. stram<strong>in</strong>eus (Jul. Schäff. & F.H. Möller) S<strong>in</strong>ger]<br />

CAP 100-200 mm (sometimes up to 350-400 mm),<br />

fleshy, hemispheric or campanulate, th<strong>en</strong> convex oft<strong>en</strong><br />

with flatt<strong>en</strong>ed c<strong>en</strong>tre, f<strong>in</strong>ally flat; curv<strong>in</strong>g edge at the<br />

extremes; white cap cover<strong>in</strong>g, alutaceous or ochre-ish,<br />

usually dissociated outside disc, adpressed or ev<strong>en</strong> clearly<br />

cracked scales.<br />

GILLS free, crowded, close, light at the extremes, th<strong>en</strong><br />

flesh coloured, f<strong>in</strong>ally brown-blackish with light surface.<br />

STIPE 50-100 × 25-35 mm, usually short and thick,<br />

frequ<strong>en</strong>tly with po<strong>in</strong>ted root<strong>in</strong>g base, but oft<strong>en</strong> elongated,<br />

tight, medullar or ev<strong>en</strong> a little hollow, white or whitish,<br />

completely floccul<strong>en</strong>t-scaly under the annulus; annulus<br />

flar<strong>in</strong>g, broad, smooth above, irregularly serrated to edges<br />

on the lower face and floccul<strong>en</strong>t-scaly elsewhere, white.<br />

FLESH firm white, flesh coloured on stem to gill edge.<br />

Odour of bitter almonds wh<strong>en</strong> fresh, th<strong>en</strong> of mouldy straw<br />

or ur<strong>in</strong>e.<br />

MICROSCOPY: spores ovoid-ellipsoidal, multiguttulate,<br />

8.5-12 × 5.5-6.5 µm. Tetrasporophyte basidia, clavate.<br />

Cheilocystidia very numerous, mostly clavate. Spores<br />

brown-blackish.<br />

HABITAT: gregarious or <strong>in</strong> “witches’ circles” <strong>in</strong><br />

meadows and hilly pastures and mounta<strong>in</strong>s, at high<br />

altitude, rarely <strong>in</strong> woods; start of summer-autumn.<br />

EDIBILITY: edible<br />

NOTE - A. excell<strong>en</strong>s (F.H. Møller) F.H. Møller and A.<br />

stram<strong>in</strong>eus (Jul. Schäff. & F.H. Møller) S<strong>in</strong>ger, were<br />

orig<strong>in</strong>ally recorded as two dist<strong>in</strong>ct species, vary<strong>in</strong>g only<br />

<strong>in</strong> stipe l<strong>en</strong>gth and the straw yellow colour of the surface<br />

respectively. They are now unanimously considered as<br />

varieties of A. ur<strong>in</strong>asc<strong>en</strong>s.


CAP 80-150 mm, from hemispheric to convex, sometimes<br />

conical typically flatt<strong>en</strong>ed at tip, f<strong>in</strong>ally flat; convoluted<br />

edges, th<strong>en</strong> curv<strong>in</strong>g towards the bottom, dist<strong>en</strong>ds acutely<br />

late on, with partial remnants of veil; white colour,<br />

smooth and hairless, rarely lightly scaled, sometimes<br />

brown <strong>in</strong> the c<strong>en</strong>tre, <strong>in</strong>t<strong>en</strong>se chrome yellow on surface<br />

after m<strong>in</strong>imal contact or rubb<strong>in</strong>g.<br />

GILLS free, close, quite crowded, with lamellule; <strong>in</strong>itially<br />

whitish, th<strong>en</strong> p<strong>in</strong>k, p<strong>in</strong>k becom<strong>in</strong>g darker until chocolate<br />

brown; sterile gill edge.<br />

STIPE:50-150 × 8-25 mm, slim and cyl<strong>in</strong>drical, oft<strong>en</strong><br />

curv<strong>in</strong>g, with t<strong>en</strong>d<strong>en</strong>cy to broad<strong>en</strong> at base form<strong>in</strong>g a<br />

roundish and sometimes non-marg<strong>in</strong>ated bulb, up to 35<br />

mm <strong>in</strong> width; white, yellow<strong>in</strong>g if touched or upset; clear<br />

and broad annulus, fairly thick, separates late from edges<br />

of cap, flar<strong>in</strong>g, sometimes appears dissociated from teeth<br />

<strong>in</strong> the lower face, yellow<strong>in</strong>g if touched.<br />

FLESH whitish, sta<strong>in</strong>ed chrome yellow at base of stipe to<br />

gill edge. Odour characteristic of ph<strong>en</strong>ol or <strong>in</strong>k.<br />

Agaricus xanthodermus G<strong>en</strong>evier<br />

MICROSCOPY: spore ovoid, dim<strong>en</strong>sions 5-6.5 × 3.5-4<br />

µm; spores brown with violet shades.<br />

HABITAT: grassy areas, parks, roadsides, meadows,<br />

under trees. Summer to late autumn.<br />

EDIBILITY: toxic<br />

NOTE - May cause gastro<strong>in</strong>test<strong>in</strong>al disturbances. The<br />

clear yellow<strong>in</strong>g of the flesh and <strong>in</strong>ky or ph<strong>en</strong>ol odour are<br />

important features clearly dist<strong>in</strong>guish<strong>in</strong>g it from other<br />

Agaricus species of the arv<strong>en</strong>ses (e.g. A. arv<strong>en</strong>sis, A.<br />

essettei). A. campestris can also be similar, but has<br />

slightly red flesh near gill edge. A. xanthodermus due to<br />

the variability <strong>in</strong> the appearance of its cap cover<strong>in</strong>g,<br />

should be dist<strong>in</strong>guished from the follow<strong>in</strong>g varieties: var.<br />

griseus, from its scaly grey ochre-ish cap, var. lepiotoides,<br />

from its cracked cap with large grey-brown scales. A.<br />

praeclaresquamosus has a cap covered with conc<strong>en</strong>tric<br />

dark grey scales, while its c<strong>en</strong>tre is of a blackish colour.<br />

133


CAP up until 150 mm, from hemispheric to convex, th<strong>en</strong><br />

almost flat, sometimes fairly umbonate, smooth or more<br />

oft<strong>en</strong> m<strong>in</strong>utely corrugated surface, dry and t<strong>en</strong>ds to crack<br />

coarsely <strong>in</strong> dry weather or becomes slightly greasy <strong>in</strong> wet<br />

weather; colour white cream, chamois, breadcrust, darker<br />

<strong>in</strong> the c<strong>en</strong>tre, sometimes, uniformly dark brown especially<br />

<strong>in</strong> smaller specim<strong>en</strong>s.<br />

GILLS adnate or just start<strong>in</strong>g to form a tooth, curved,<br />

very tall (up to 13 mm) and crowded, with numerous<br />

lamellule; from milk white to grey-ochre-ish, f<strong>in</strong>ally<br />

tobacco colour at spore maturation.<br />

STIPE full, dim<strong>en</strong>sions extremely variable <strong>in</strong> both l<strong>en</strong>gth<br />

and diameter dep<strong>en</strong>d<strong>in</strong>g on grow<strong>in</strong>g conditions: oft<strong>en</strong><br />

thick and short, more oft<strong>en</strong> f<strong>in</strong>e and slim, longer than<br />

diameter of cap, supple, curv<strong>in</strong>g, white th<strong>en</strong> ochrebrownish.<br />

Surface smooth or fibrillated l<strong>en</strong>gthwise<br />

sometimes f<strong>in</strong>ely scaled <strong>in</strong> dry weather. Annulus high,<br />

broad, membranous, persist<strong>en</strong>t, white and th<strong>en</strong> brown<br />

tobacco due to deposition of spores.<br />

134<br />

Agrocybe aegerita (Briganti) Fayod<br />

[= Agrocybe cyl<strong>in</strong>dracea (De Cand. : Fr.) Maire]<br />

FLESH white, a little brown at base of stipe <strong>in</strong> mature<br />

examples, t<strong>en</strong>acious, elastic. Odour characteristic and<br />

<strong>in</strong>def<strong>in</strong>able, acidic, like w<strong>in</strong>e.<br />

MICROSCOPY: ellipsoidal spores, light brown under<br />

microscope, dim<strong>en</strong>sions 8.4-9.5 × 5.0-6.0 µm;<br />

tetrasporophyte basidia. Brown spores.<br />

HABITAT: <strong>in</strong> numerous groups, cespitose, on live or<br />

dead trunks of broad-leaved trees, with prefer<strong>en</strong>ce for<br />

Populus, Ulmus, Acer. Fruits several times a year. From<br />

spr<strong>in</strong>g to late autumn.<br />

EDIBILITY: edible<br />

NOTE - This unmistakable mushroom is common to<br />

pla<strong>in</strong>s and flatlands, is much sought after and is safe and<br />

very good to eat. Wh<strong>en</strong> giv<strong>en</strong> the right substrate it grows<br />

very well and is a commonly sold species. It, however,<br />

rapidly kills any plant or tree which hosts it, and will<br />

cont<strong>in</strong>ue to grow on the dead tree for many years<br />

afterwards.


CAP 80-120 (180) mm, <strong>in</strong>itially hemispheric, th<strong>en</strong><br />

convex, ev<strong>en</strong>tually flat-dist<strong>en</strong>ded, hairless, occasionally<br />

bear<strong>in</strong>g patches of membrane from veil, f<strong>in</strong>ely striated at<br />

hem; vivid orange colour, a little lighter at edges.<br />

GILLS free, crowded, a little v<strong>en</strong>tricular; uniformly<br />

chrome-yellow colour.<br />

STIPE 80-140 (200) × 18-25 (35) mm; subcyl<strong>in</strong>drical,<br />

att<strong>en</strong>uated at tip, normally straight, hairless; concolour<br />

with gills or of lighter tones; fairly hard and fibrous, fullmedulla,<br />

th<strong>en</strong> fistular. Base area covered with a wide<br />

VOLVA SACK, att<strong>en</strong>uated at base, free and lac<strong>in</strong>iate at<br />

edge, white, soft consist<strong>en</strong>cy, but fairly t<strong>en</strong>acious, thick<br />

up to 3 mm.<br />

ANNULUS membranous, positioned above median zone;<br />

long and d<strong>en</strong>sely striated; yellow.<br />

FLESH abundant and compact on cap, more granularfibrous<br />

on stipe; white or lightly yellow<strong>in</strong>g, more yellow<br />

<strong>in</strong> peripheral area. Little or no significant odour and<br />

pleasant taste.<br />

Amanita caesarea (Scop. : Fr.) Persoon<br />

MICROSCOPY: spore from suboval to fairly regularly<br />

ellipsoidal, 9.4-11 × 6.2-6.8 µm; not amyloid.<br />

HABITAT: loves temperate climates and fruits <strong>in</strong><br />

hardwood areas not rare ev<strong>en</strong> though not widespread.<br />

EDIBILITY: edible<br />

NOTE - Popularly known as Ovolo Buono (the tasty<br />

button), this is certa<strong>in</strong>ly one of the most popular edible<br />

species; appreciated s<strong>in</strong>ce Roman times. It has rec<strong>en</strong>tly<br />

be<strong>en</strong> subjected to unrestricted gather<strong>in</strong>g and moreover,<br />

this has oft<strong>en</strong> <strong>in</strong>cluded specim<strong>en</strong>s which are still closed.<br />

Because of this, <strong>in</strong> several areas A.Caesarea is <strong>in</strong> serious<br />

danger of ext<strong>in</strong>ction. In order to <strong>en</strong>sure its cont<strong>in</strong>ued<br />

ability to sporulate, the law govern<strong>in</strong>g the collection of<br />

epigeal fungi <strong>in</strong> Italy prohibits the collection of these<br />

<strong>mushrooms</strong> dur<strong>in</strong>g their button stage. This restriction can<br />

also be considered a safety measure because it prev<strong>en</strong>ts<br />

confusion with button <strong>mushrooms</strong> of the (very similar at<br />

this stage) deadly Amanita (see A. phalloides and similar<br />

species).<br />

135


CAP 50-90 mm, hemispheric th<strong>en</strong> flat-convex, bear<strong>in</strong>g<br />

fairly weak pyramidal warts. cuticle completely separable,<br />

viscid th<strong>en</strong> dry, smooth, bright, whitish th<strong>en</strong> with gre<strong>en</strong><br />

t<strong>in</strong>ges; smooth edges, display<strong>in</strong>g hang<strong>in</strong>g remnants of<br />

veil.<br />

GILLS sub-free, slightly crowded, whitish with gre<strong>en</strong><br />

shades, with floccose surface.<br />

STIPE 90-120 × 15-30 mm, cyl<strong>in</strong>drical, with bulbousroot<strong>in</strong>g<br />

base, white, sometimes h<strong>in</strong>t of gre<strong>en</strong>, bear<strong>in</strong>g<br />

small sections of more or less erect warts. Annulus:<br />

p<strong>en</strong>dant, membranous, persist<strong>en</strong>t, white, striated, with the<br />

edge bear<strong>in</strong>g small flakes.<br />

FLESH hard white, h<strong>in</strong>ts of gre<strong>en</strong>. Fairly strong,<br />

unpleasant odour and flavour.<br />

136<br />

Amanita ech<strong>in</strong>ocephala (Vittad.) Quél.<br />

MICROSCOPY: spore 10-11 × 7-8 µm, ellipsoidal,<br />

smooth, hyal<strong>in</strong>e, amyloid. basidia 45-60 × 11-13 µm,<br />

tightly clavate, tetrasporic, with jo<strong>in</strong>ts at h<strong>in</strong>ge.<br />

HABITAT: solitary or gregarious, under wide leaved<br />

trees, ma<strong>in</strong>ly beech and oak. Summer-autumn.<br />

EDIBILITY: edible<br />

NOTE - This species is characterised by its whitish<br />

colour, with gre<strong>en</strong>ish t<strong>in</strong>ges here and there, the small,<br />

po<strong>in</strong>ted warts which confer an ech<strong>in</strong>ulate appearance to<br />

the cap (h<strong>en</strong>ce the name), and its membraneous annulus<br />

and bulbous root<strong>in</strong>g stipe.


CAP 80-120 mm, hemispheric th<strong>en</strong> convex, ev<strong>en</strong>tually<br />

flat; smooth edges. Viscous cuticle <strong>in</strong> wet weather, greybrownish<br />

or lead-grey, bear<strong>in</strong>g floury plates of greybrown<br />

or dirty white veil.<br />

GILLS free, crowded, v<strong>en</strong>tricular, white, sometimes<br />

shaded grey.<br />

STIPE 100-160 × 15-30 mm, robust, cyl<strong>in</strong>drical,<br />

sometimes att<strong>en</strong>uated at tip, very fixed <strong>in</strong> ground, straight,<br />

full and d<strong>en</strong>se, white-grey<strong>in</strong>g. VOLVA whitish,<br />

dissociated <strong>in</strong>to plates at the base of the stipe, evanesc<strong>en</strong>t<br />

on cap, which usually appears bare.<br />

ANNULUS broad and persist<strong>en</strong>t, striated on upper part,<br />

white-grey<strong>in</strong>g.<br />

FLESH firm and compact on cap, fibrous on stipe, whitegrey<strong>in</strong>g,<br />

a little redd<strong>en</strong><strong>in</strong>g-brown<strong>in</strong>g. Root-like odour,<br />

similar flavour.<br />

MICROSCOPY: spore 8.5-9.0 × 5.5-7.5 µm, ovoid or<br />

mostly ellipsoidal, smooth, hyal<strong>in</strong>e, amyloid. basidia 30-<br />

Amanita excelsa var. excelsa (Fr. : Fr.) P. Kumm.<br />

50 × 9.5-11 µm, tetrasporic, tightly clavate, without jo<strong>in</strong>ts<br />

at h<strong>in</strong>ge.<br />

HABITAT: s<strong>in</strong>gle or <strong>in</strong> small groups, <strong>in</strong> hardwood and<br />

coniferous areas. Spr<strong>in</strong>g-autumn.<br />

EDIBILITY: edible<br />

NOTE - the separation of A. excelsa var. excelsa from A.<br />

excelsa var. spissa (Fr.) Neville & Poumarat [<strong>in</strong> this<br />

series, A. spissa (Fr.) P. Kumm.] has caused gallons of <strong>in</strong>k<br />

to be spilt, s<strong>in</strong>ce these are two extremely similar species<br />

whose differ<strong>en</strong>tiat<strong>in</strong>g characteristics oft<strong>en</strong> "cross over". A.<br />

spissa typically has a more robust, “boletoid” form, an<br />

obese-clavate stipe, a veil that breaks down <strong>in</strong>to powdery<br />

plates and adheres to the cap, while A. excelsa is more<br />

sl<strong>en</strong>der (h<strong>en</strong>ce its name) has a nearly cyl<strong>in</strong>drical root<strong>in</strong>g<br />

stipe which holds tightly to the ground and a volva that<br />

dissociates <strong>in</strong>to fairly large flaps, which do not adhere to<br />

the cap.<br />

137


CAP 50-70 (100) mm, hemispheric-glandiform, th<strong>en</strong><br />

convex, only dist<strong>en</strong>ded late on, hairless, regularly bear<strong>in</strong>g<br />

white membranous plates, residues of veil; warm to pale<br />

yellow, primrose yellow, lighter at edge which is f<strong>in</strong>ely<br />

striated.<br />

GILLS FROM free to subfree, v<strong>en</strong>tricular, crowded and<br />

th<strong>in</strong>; white.<br />

STIPE 55-85 × 10-20 mm, progressively att<strong>en</strong>uated at tip,<br />

bulbous-napiform at base where it is covered by a<br />

membranous, f<strong>in</strong>e, adher<strong>en</strong>t VOLVA normally clear-cut<br />

at edge, sometimes also dissociated <strong>in</strong> r<strong>in</strong>gs that persist <strong>in</strong><br />

the lower part of the stipe; white, hairless, full, fistular at<br />

base.<br />

ANNULUS positioned above the medial zone, very f<strong>in</strong>e,<br />

soon becom<strong>in</strong>g dissociated-evanesc<strong>en</strong>t, slightly persist<strong>en</strong>t,<br />

sometimes completely abs<strong>en</strong>t <strong>in</strong> adult examples.<br />

FLESH t<strong>en</strong>der, white, just yellowish under the cuticle;<br />

almost odourless, pleasant taste.<br />

138<br />

Amanita junquillea Quélet<br />

MICROSCOPIA: spore from subglobose to short<br />

ellipsoidal, 9.5-11 × 7.5-8.5 µm; not amyloid.<br />

HABITAT: early, from April to May, <strong>in</strong> hilly woods, a<br />

little later <strong>in</strong> June, <strong>in</strong> mounta<strong>in</strong>s. Common and widespread<br />

both <strong>in</strong> hardwoods and coniferous areas.<br />

EDIBILITY: suspect<br />

NOTE - Thanks to its slop<strong>in</strong>g shape and its decidedly<br />

t<strong>en</strong>der consist<strong>en</strong>cy, A. junquillea rem<strong>in</strong>ds one of the<br />

Amanitopsis, from which it can be dist<strong>in</strong>guished by its<br />

annulus, which is actually rather ephemeral. Its edibility is<br />

a controversial topic. It must always be cooked, but ev<strong>en</strong><br />

th<strong>en</strong> is not tolerated well by all <strong>in</strong>dividuals. Among<br />

related species one should be careful of the decoloured<br />

form of the toxic A. panther<strong>in</strong>a (see below), which is<br />

morphologically similar, but has a brown cap.


CAP 100-150 (250) mm <strong>in</strong>itially hemispheric th<strong>en</strong><br />

convex, ev<strong>en</strong>tually flat-dist<strong>en</strong>ded, with the c<strong>en</strong>tre oft<strong>en</strong><br />

depressed, with smooth cuticle, sticky <strong>in</strong> humid weather,<br />

almost always covered with white pyramidal warts,<br />

raised, conc<strong>en</strong>tric, residues of the veil, whitish, f<strong>in</strong>ely<br />

striated rim, reddish-orange, red, dark red.<br />

GILLS free, d<strong>en</strong>se, v<strong>en</strong>tricular, pure white or slightly<br />

yellow.<br />

STIPE 80-140 (200) × 10-20 (30) mm; cyl<strong>in</strong>drical,<br />

att<strong>en</strong>uated at the apex, straight, hairless or slightly<br />

floccul<strong>en</strong>t, white, rather tough and fibrous, th<strong>en</strong> fistular<br />

and ev<strong>en</strong>tually hollow. The basal zone wid<strong>en</strong>s <strong>in</strong>to a bulb<br />

covered with a th<strong>in</strong> VOLVA, dissociated with conc<strong>en</strong>tric<br />

whitish warts.<br />

ANNULUS membranous, large, located <strong>in</strong> the upper<br />

middle of the stem, striated on the top, rema<strong>in</strong>s of the veil<br />

found at the edge.<br />

FLESH firm <strong>in</strong> the cap, more granular-fibrous on the<br />

stipe; white and faded on the cuticle immediately below.<br />

No odour and a sweet, pleasant taste.<br />

Amanita muscaria (L. : Fr.) Hooker<br />

MICROSCOPY: spore subovoid and roughly ellipsoidal,<br />

9.0-11.2 × 6.5-7.5 µm; not amyloid; white <strong>in</strong> mass.<br />

HABITAT: <strong>in</strong> mounta<strong>in</strong>s, acidic soil, with hardwood and<br />

coniferous trees. Summer-autumn. Widespread.<br />

EDIBILITY: toxic<br />

NOTE - This is without doubt the mushroom which has<br />

most stimulated the imag<strong>in</strong>ations of illustrators over the<br />

years. In fact there are countless repres<strong>en</strong>tations of this<br />

spl<strong>en</strong>did species, both realistic and less so, which are<br />

employed wh<strong>en</strong> depict<strong>in</strong>g the toadstools of mythical and<br />

fantasy worlds. In popular belief, A. muscaria is oft<strong>en</strong><br />

confused with the lethal A. phalloides, a fact which br<strong>in</strong>gs<br />

no shortage of consequ<strong>en</strong>t danger to the <strong>in</strong>expert. From a<br />

taxonomic po<strong>in</strong>t of view, we feel it appropriate to note a<br />

variant with a more brittle volva and, rarely, warts on the<br />

cap: the form aureola.<br />

139


CAP 70-130 (200) mm, hemispherical, th<strong>en</strong> convex,<br />

convex-flatt<strong>en</strong>ed for a long time, ev<strong>en</strong> revolute <strong>in</strong> old age;<br />

edge quite oft<strong>en</strong> jo<strong>in</strong>ed, non-striated, exceed<strong>in</strong>gly<br />

app<strong>en</strong>dicular; silky-sh<strong>in</strong><strong>in</strong>g, white, ivory, cream and ochre<br />

with weak shade <strong>in</strong> the c<strong>en</strong>tre, hairless, sometimes with a<br />

few dissociated strips, remnants of veil.<br />

GILLS free, d<strong>en</strong>se and th<strong>in</strong>, white, creamy p<strong>in</strong>k shade <strong>in</strong><br />

adults, m<strong>in</strong>utely floccul<strong>en</strong>t edge, alternat<strong>in</strong>g with<br />

truncated lamellule.<br />

STIPE 80-170 × 15-25 (35) mm, robust, yet sl<strong>en</strong>der,<br />

gradually expand<strong>in</strong>g towards the sub-bulbous base,<br />

root<strong>in</strong>g at the base, full, firm, white, with concolour, or<br />

coloured, and highly transi<strong>en</strong>t floccules.<br />

VOLVA membranous, thick, fairly high, sheath<strong>in</strong>g at the<br />

base, free at edge; ochre-ish externally, ochre-ish-pale<br />

orange, light clay-coloured, whitish <strong>in</strong>side.<br />

ANNULUS oft<strong>en</strong> situated fairly very high, typically softt<strong>en</strong>der<br />

consist<strong>en</strong>cy (rem<strong>in</strong>isc<strong>en</strong>t of whipped cream),<br />

dissociated-evanesc<strong>en</strong>t, white, striated top.<br />

140<br />

Amanita ovoidea (Bull. : Fr.) L<strong>in</strong>k<br />

FLESH highly abundant, soft<strong>en</strong>ed, white on cap, more<br />

compact on stipe, with ochre-ish shades; salty odour,<br />

fairly pleasant, sweet flavour.<br />

MICROSCOPY: spore l<strong>en</strong>gthwise ellipsoidal-ovoid,<br />

smooth, 9.5-11 × 5.5-7 µm; amyloid.<br />

HABITAT: regarded as a thermophilic species, but also<br />

spreads to subalp<strong>in</strong>e zones, although more rarely. In oak<br />

and coastal p<strong>in</strong>e woods it is very abundant and under<br />

broad leaved trees <strong>in</strong> woods <strong>in</strong> the hills it is rare.<br />

EDIBILITY: edible<br />

NOTE - the size, colours and the downy-t<strong>en</strong>der<br />

consist<strong>en</strong>cy of the annulus of this mushroom constitute<br />

excell<strong>en</strong>t diagnostic <strong>elem<strong>en</strong>ts</strong> which should hopefully<br />

avoid any confusion betwe<strong>en</strong> this species and the similar<br />

lethal white Amanita varieties. In literature we can oft<strong>en</strong><br />

f<strong>in</strong>d it compared to A. proxima, which has a more<br />

colourful (ev<strong>en</strong> tawny) volva, but which may also be<br />

toxic; therefore we recomm<strong>en</strong>d caution be tak<strong>en</strong> <strong>in</strong> its<br />

cul<strong>in</strong>ary use.


CAP 80-100 (150) mm, <strong>in</strong>itially hemispheric, th<strong>en</strong><br />

convex, ev<strong>en</strong>tually flat-dist<strong>en</strong>ded sometimes depressed <strong>in</strong><br />

the c<strong>en</strong>tre, smooth, covered with m<strong>in</strong>ute pure white floury<br />

warts, oft<strong>en</strong> conc<strong>en</strong>tric, remnants of veil; f<strong>in</strong>ely striated to<br />

edge (but smooth <strong>in</strong> var. abietum, which is heavier);<br />

brown-ochre, brown, brown dark.<br />

GILLS free to just non-marg<strong>in</strong>ated, crowded, slightly<br />

v<strong>en</strong>tricular; pure white.<br />

STIPE 10-25 (30) × 80-150 (180) mm; cyl<strong>in</strong>drical,<br />

att<strong>en</strong>uated at tip, straight, hairless; white; firm fibrous,<br />

th<strong>en</strong> fistular and f<strong>in</strong>ally hollow, with base wid<strong>en</strong><strong>in</strong>g <strong>in</strong>to a<br />

broad bulb. Basal zone is covered <strong>in</strong> an adher<strong>en</strong>t VOLVA<br />

and dissociated from annulus, white.<br />

ANNULUS more or less broad, typically low on stipe;<br />

white and striated on the upper part.<br />

FLESH firm on cap, more fibrous on stipe; white. Odour<br />

almost nonexist<strong>en</strong>t or slightly earthy, sweet flavour.<br />

MICROSCOPY: ellipsoidal spores, 9.5-11.5 × 6.5-7.5<br />

µm; not amyloid; white <strong>in</strong> mass.<br />

Amanita panther<strong>in</strong>a (De Cand. : Fr.) Krombholz<br />

HABITAT: <strong>in</strong> mounta<strong>in</strong>s, <strong>in</strong> coniferous and hardwood<br />

areas, oft<strong>en</strong> around the edges of woods. Summer-autumn.<br />

EDIBILITY: toxic<br />

NOTE – Here is another toxic Amanita, whose<br />

dangerousness is without a doubt greater than that of A.<br />

muscaria, of which, at first sight, this might be considered<br />

a brown variant. In reality, A. panther<strong>in</strong>a has an evid<strong>en</strong>t<br />

and sturdy volva and its annulus is dist<strong>in</strong>ctly lower. A.<br />

junquillea, whose edibility is shrouded by serious doubts,<br />

has a similar shape, but its colour is a strong cowslip<br />

yellow. A. franchetii (which is edible cooked) has<br />

colourful forms and these could appear similar were it not<br />

for its yellowish veil, while A. rubesc<strong>en</strong>s (also edible<br />

wh<strong>en</strong> cooked) is of a brown-reddish colour and its flesh<br />

can easily be se<strong>en</strong> to redd<strong>en</strong> wh<strong>en</strong> exposed to the air or <strong>in</strong><br />

the tunnels created by larvae.<br />

141


CAP 60-120 (150) mm, hemispheric, th<strong>en</strong> convex, f<strong>in</strong>ally<br />

dist<strong>en</strong>ded radially from crowded and f<strong>in</strong>e fibrils, oft<strong>en</strong><br />

covered with white membranous strips, residues of veil;<br />

gre<strong>en</strong>ish, gre<strong>en</strong>-olivish, yellow-brown-gre<strong>en</strong>ish, lighter at<br />

edge which is smooth.<br />

GILLS free, v<strong>en</strong>tricular, crowded and th<strong>in</strong>, fairly wide;<br />

white.<br />

STIPE 75-120 (150) × 10-22 mm, progressively<br />

att<strong>en</strong>uated towards apex, typically decorated with yellowolivish<br />

zig-zag bands on a white background; full, th<strong>en</strong><br />

medullar. Bulbous at base where it is covered with a<br />

membranous, fairly f<strong>in</strong>e VOLVA sack, adher<strong>en</strong>t to bulb<br />

but free towards edge where it is usually splits <strong>in</strong>to white<br />

petal shapes.<br />

ANNULUS positioned fairly high, p<strong>en</strong>dant, fairly f<strong>in</strong>e,<br />

white, persist<strong>en</strong>t.<br />

FLESH <strong>in</strong>itially firm soon becom<strong>in</strong>g soft, white, just fa<strong>in</strong>t<br />

gre<strong>en</strong> shades under the cuticle; from odourless to slightly<br />

smelly; older examples smell of putrid water (water from<br />

old flowers); no significant flavour.<br />

142<br />

Amanita phalloides (Vaill. : Fr.) L<strong>in</strong>k<br />

MICROSCOPY: spore from mostly ellipsoidal to<br />

subglobose, 9-11.3 × 7-9 µm; amyloid.<br />

HABITAT: found <strong>in</strong> woods of deciduous trees <strong>in</strong> summer<br />

(rarely <strong>in</strong> conifers?) it seems to prefer oak, chestnut and<br />

beech trees, is also able to grow at high altitudes where it<br />

is regularly associated with hazelnut trees. Very common<br />

and widespread.<br />

EDIBILITY: deadly<br />

NOTE - This mushroom is the primary cause of all deaths<br />

which occur through mushroom poison<strong>in</strong>g. It is<br />

(unbelievably) confused with gre<strong>en</strong> Russule, from which<br />

it differs through a series of primary characteristics: it has<br />

a volva at the base of its stipe, it has an annulus, free gills,<br />

heterog<strong>en</strong>eity betwe<strong>en</strong> cap and stipe, chang<strong>in</strong>g bands of<br />

colour on the stipe, non-chalky flesh. In nature one<br />

<strong>en</strong>counters numerous colour variations, <strong>in</strong>clud<strong>in</strong>g one<br />

which is completely white, the fo. alba.


CAP 80-150 (180) mm, <strong>in</strong>itially hemispheric, th<strong>en</strong><br />

convex, sometimes dist<strong>en</strong>ded, smooth, viscous <strong>in</strong> humid<br />

weather, with m<strong>in</strong>ute remnants of veil <strong>in</strong> the form of<br />

crowded and prom<strong>in</strong><strong>en</strong>t small warts, dirty white, grey<strong>in</strong>g<br />

or sometimes also ochre; with smooth brown, reddish<br />

edges, pal<strong>in</strong>g with age or heavy ra<strong>in</strong>fall with<br />

characteristic v<strong>in</strong>ous patches.<br />

GILLS rounded to stipe, crowded, v<strong>en</strong>tricular and large,<br />

strong; white, sta<strong>in</strong>ed red w<strong>in</strong>e with age or to the touch.<br />

STIPE 12-25 (35) × 90-140 (200) mm; cyl<strong>in</strong>drical,<br />

att<strong>en</strong>uated at tip, normally straight, hairless or sometimes<br />

m<strong>in</strong>utely floccose under the annulus; from whitish to<br />

white p<strong>in</strong>kish and f<strong>in</strong>ally v<strong>in</strong>ous brown; more or less full;<br />

firm th<strong>en</strong> fibrous and fragile. The base wid<strong>en</strong>s <strong>in</strong>to a non<br />

marg<strong>in</strong>ated ovoid bulb covered with an adher<strong>en</strong>t VOLVA,<br />

soon becom<strong>in</strong>g dissociated <strong>in</strong> floccose residues the same<br />

colour as stipe with a t<strong>en</strong>d<strong>en</strong>cy to disperse.<br />

ANNULUS positioned <strong>in</strong> the middle to upper stipe,<br />

membranous, p<strong>en</strong>dant, whitish or p<strong>in</strong>kish, sometimes<br />

ev<strong>en</strong> a little yellow, striated on the upper part.<br />

Amanita rubesc<strong>en</strong>s Pers. : Fr.<br />

FLESH abundant and compact <strong>in</strong> cap more fibrous and<br />

fragile <strong>in</strong> stipe; white th<strong>en</strong> p<strong>in</strong>kish to gill edge; typically<br />

v<strong>in</strong>ous red <strong>in</strong> veiled area, which is almost always visible.<br />

Odour irrelevant, pleasant, slightly salty-sour flavour.<br />

MICROSCOPY: ellipsoidal spores, 7.5-9.6 × 5.6-6.5 µm;<br />

amyloid; white <strong>in</strong> mass<br />

HABITAT: ubiquitous and widespread <strong>in</strong> conifer and<br />

hardwood areas.<br />

EDIBILITY: edible<br />

NOTE - Good to eat; though should be cooked first, as the<br />

flesh conta<strong>in</strong>s thermolabile tox<strong>in</strong>s, and are best used <strong>in</strong><br />

mixes. Confusion with the toxic A. panther<strong>in</strong>a is possible<br />

for the <strong>in</strong>expert; the latter, however, has a very<br />

<strong>in</strong>dividualised volva and always has uniformly white<br />

flesh. The species which it most resembles<br />

morphochromatically is A. franchetii, which has more<br />

uniform flesh and a yellowish veil.<br />

143


CAP (30) 45-70 (95) mm, <strong>in</strong>itially campanulate-parabolic,<br />

th<strong>en</strong> convex, f<strong>in</strong>ally dist<strong>en</strong>ded with broad slightly<br />

emerg<strong>in</strong>g umbo; hairless, rarely with residues of veil <strong>in</strong><br />

shape of large plates, f<strong>in</strong>ely striated to hem; of ash grey,<br />

pearl grey colour, sometimes with a h<strong>in</strong>t of brownish<br />

colour (white <strong>in</strong> var. alba; lead grey <strong>in</strong> var. plumbea),<br />

sometimes h<strong>in</strong>t of ochre <strong>in</strong> disc area.<br />

GILLS free, crowded and th<strong>in</strong>; white, <strong>in</strong>tercalated from<br />

lamellule trunk.<br />

STIPE 65-120 × 10-22 mm, slim, att<strong>en</strong>uated at tip, white,<br />

smooth, or becom<strong>in</strong>g floccul<strong>en</strong>t adnate and coloured;<br />

fully-medullar, f<strong>in</strong>ally fistular.<br />

VOLVA membranous, not very f<strong>in</strong>e but fragile, adher<strong>en</strong>t<br />

<strong>in</strong> basal area, free to hem; from white to whitish.<br />

ANNULUS appar<strong>en</strong>tly abs<strong>en</strong>t (reduced to shreds that<br />

rema<strong>in</strong> at the base of the stipe, <strong>in</strong>side the volva, as <strong>in</strong><br />

other "Amanitopsis” specim<strong>en</strong>s).<br />

FLESH not very abundant, t<strong>en</strong>der, white or whitish; no<br />

particular odour, pleasant flavour.<br />

144<br />

Amanita vag<strong>in</strong>ata (Bull. : Fr.) Vittad<strong>in</strong>i<br />

MICROSCOPY: spore from subglobular to globular, 10-<br />

12.2 × 9.6-11.6 µm; not amyloid.<br />

HABITAT: ubiquitous; found especially <strong>in</strong> hardwood or<br />

coniferous areas, common, from summer to late autumn.<br />

EDIBILITY: edible<br />

NOTE - As is the case for its relatives, this mushroom is<br />

considered an edible delicacy, ideal for fry<strong>in</strong>g (it must be<br />

cooked prior to consumption). The group, A. vag<strong>in</strong>ata is<br />

certa<strong>in</strong>ly the most complex of those <strong>in</strong>side the subg<strong>en</strong>us<br />

Amanitopsis, which <strong>in</strong>cludes many species without<br />

annulus, at least at maturity; and <strong>in</strong> fact, there are many<br />

<strong>en</strong>tities (species, varieties or forms) that are cited <strong>in</strong><br />

literature, with nearly all hav<strong>in</strong>g a greyish colouration <strong>in</strong><br />

common. A. Mairei is a little more stocky and it has no<br />

umbo on its cap; A. nivalis, which is paler and smaller,<br />

can be found on the microsilve Alps. A. lividopallesc<strong>en</strong>s<br />

has more grey tones on its cream-brownish cap. The<br />

varieties plumbea, arg<strong>en</strong>tea, and alba differ only <strong>in</strong> their<br />

colour.


CAP 25-60 (100) mm, hemispheric, th<strong>en</strong> dist<strong>en</strong>ded f<strong>in</strong>ally<br />

flat-umbonate with slight prediscal depression, scattered<br />

with f<strong>in</strong>e erect brownish transi<strong>en</strong>t scales, with f<strong>in</strong>e edge,<br />

<strong>in</strong>itially fr<strong>in</strong>ged with residues of veil, th<strong>en</strong> bare and<br />

slightly striated, becom<strong>in</strong>g undulat<strong>in</strong>g-s<strong>in</strong>uous <strong>in</strong> adults;<br />

variable colour, from yellow<strong>in</strong>g brown to amber, dark<br />

brown, sometimes with olivish h<strong>in</strong>ts rema<strong>in</strong><strong>in</strong>g at the<br />

extremes of the edges, pale, whitish.<br />

GILLS adnate and slightly decurr<strong>en</strong>t l<strong>en</strong>gthwise, fairly<br />

crowded and fairly close; whitish, th<strong>en</strong> weak beige,<br />

f<strong>in</strong>ally bear<strong>in</strong>g brown reddish spots.<br />

STIPE 60-120 (160) × 10-22 (35) mm, cyl<strong>in</strong>drical, oft<strong>en</strong><br />

tapered at base, other times a little dilated, grows<br />

cespitosely, fibrous-woody, full, soon becom<strong>in</strong>g filled<br />

with an evanesc<strong>en</strong>t medulla, exterior is scattered with<br />

floccul<strong>en</strong>t dissociated membrane disorderly arranged<br />

under the annulus; rather transi<strong>en</strong>t, fibrillated at tip; from<br />

cream-flesh coloured to concolour with cap, clearly<br />

brown<strong>in</strong>g at base.<br />

ANNULUS membranous, persist<strong>en</strong>t, striated on lower<br />

face, floccose-cottony at edge; white, sometimes yellow<br />

at extreme edges .<br />

Armillaria mellea (Vahl : Fr.) Kummer<br />

FLESH fairly thick on circumfer<strong>en</strong>ce, whitish, highly<br />

leathery <strong>in</strong> stipe, rather bitter and astr<strong>in</strong>g<strong>en</strong>t to taste,<br />

fungal odour.<br />

MICROSCOPY: spore from ellipsoid to ovoid, smooth,<br />

7-8.6 × 5.4-6 µm; basidia without jo<strong>in</strong>ts on h<strong>in</strong>ge.<br />

HABITAT: parasitic on wood of deciduous trees, oft<strong>en</strong><br />

late, abundant, very common.<br />

EDIBILITY: edible<br />

NOTE - Edible with care (see note to A. ostoyae).<br />

Armillaria tabesc<strong>en</strong>s, which also grows cespitosely on<br />

hardwoods, is very similar but can be recognised by its<br />

lack of a membraneous annulus; A. ostoyae (= A. obdark)<br />

is darker, with persist<strong>en</strong>t erect scales, annulus bordered<br />

with brown and prefers to grow on conifers; A. cepistipes<br />

is more frail and pallid and pallida, fairly hygrophanous;<br />

A. gallica (= A. bulbous, A. lutea) is less cespitose,<br />

usually grows as fairly-isolated specim<strong>en</strong>s, happily on the<br />

ground (on underground woody deposits) and has<br />

residues of veil, as does the border of its annulus, which<br />

are largely yellow.<br />

145


CAP 30-80 (110) mm, hemispheric, th<strong>en</strong> convex or<br />

convex and mostly umbonate, ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a b<strong>en</strong>t edge at<br />

the extremes, f<strong>in</strong>ally dist<strong>en</strong>ded with f<strong>in</strong>e peripheral area,<br />

striated <strong>in</strong> maturity, <strong>in</strong>itially fimbriated due to floccose<br />

remnants of veil, which is brown reddish, brown-tawny,<br />

sometimes paler, becom<strong>in</strong>g brown-grey, paler at edge, up<br />

to cream whitish; scattered with erect scales, d<strong>en</strong>ser on<br />

circumfer<strong>en</strong>ce and dark p<strong>in</strong>k <strong>in</strong> colour.<br />

GILLS adnate, th<strong>en</strong> fairly decurr<strong>en</strong>t, b<strong>en</strong>t, not particularly<br />

close, att<strong>en</strong>uated at edge and jo<strong>in</strong>; whitish, pale yellow,<br />

oft<strong>en</strong> with brownish spots on surface, which ev<strong>en</strong>tually<br />

turns brownish.<br />

STIPE 60-140 × 10-22 mm, slim, cyl<strong>in</strong>drical or a little<br />

tapered at base, up to sub bulbous, clustered-cespitose<br />

growth (g<strong>en</strong>erally few connate specim<strong>en</strong>s), striated at tip,<br />

fibrillated-floccose under the annulus creat<strong>in</strong>g a white<br />

fluff, subcoloured near cap or darker at base, t<strong>en</strong>d<strong>en</strong>cy to<br />

take on brown-olive-blackish tones.<br />

146<br />

Armillaria ostoyae (Romagnesi) Her<strong>in</strong>k<br />

[= A. obdark (Schaeffer) Her<strong>in</strong>k]<br />

ANNULUS membranous-cottony, fairly persist<strong>en</strong>t,<br />

striated, white, oft<strong>en</strong> brown at extreme edges.<br />

FLESH fairly consist<strong>en</strong>t on circumfer<strong>en</strong>ce, very f<strong>in</strong>e<br />

elsewhere, fibrous-leathery <strong>in</strong> stipe, firm wh<strong>en</strong> young,<br />

th<strong>en</strong> soft, whitish th<strong>en</strong> suffused with flesh colour.<br />

MICROSCOPY: ellipsoidal spores, sometimes slightly<br />

compressed, smooth, to thick side, 8-10 × 5-6.6 µm.<br />

basidia with jo<strong>in</strong>ts at h<strong>in</strong>ge.<br />

HABITAT: prefers coniferous woods, but a hardwood<br />

form seems to exist; autumn, abundant and widespread.<br />

EDIBILITY: edible<br />

NOTE - For the differ<strong>en</strong>ces from similar species, see the<br />

notes to A. mellea and A. tabesc<strong>en</strong>s. Edible, but as with<br />

the other Armillaria with annuli, a long cook<strong>in</strong>g time and<br />

elim<strong>in</strong>at<strong>in</strong>g the stipe are necessary to avoid fairly<br />

unpleasant gastro-<strong>in</strong>test<strong>in</strong>al poison<strong>in</strong>g.


CAP 30-70 mm, <strong>in</strong>itially campanulate-convex, th<strong>en</strong><br />

dist<strong>en</strong>ded, f<strong>in</strong>ally flat with broad obtuse umbo, sometimes<br />

rather depressed <strong>in</strong> prediscal area, superimposed with<br />

erect fairly persist<strong>en</strong>t scales; edges curv<strong>in</strong>g at the<br />

extremes, f<strong>in</strong>e, dist<strong>en</strong>ded <strong>in</strong> maturity and a little striated;<br />

brown reddish, brown-beige, pal<strong>in</strong>g to cream ochre-ish.<br />

GILLS b<strong>en</strong>t and decurr<strong>en</strong>t, th<strong>in</strong>ned at the front, not very<br />

crowded, close, fairly thick, whitish, th<strong>en</strong> pale-flesh<br />

coloured, brown<strong>in</strong>g on surface <strong>in</strong> maturity.<br />

STIPE 35-70 × 8-15 mm, slim, cyl<strong>in</strong>drical or subfusiform<br />

fairly b<strong>en</strong>t, d<strong>en</strong>sely connate with other examples, white at<br />

tip, whitish flesh with splashes of colour, th<strong>en</strong> decidedly<br />

and ext<strong>en</strong>sively brown<strong>in</strong>g <strong>in</strong> a smooth cont<strong>in</strong>uum away<br />

from darker fibrils; full-medullar, f<strong>in</strong>ally fistular.<br />

ANNULUS nearly abs<strong>en</strong>t or reduced to transi<strong>en</strong>t residues,<br />

coniform, only visible <strong>in</strong> very young examples.<br />

FLESH compact <strong>in</strong> cap, more fibrous <strong>in</strong> stipe, white,<br />

whitish-beige pale; fungal odour, sweet flavour with<br />

slightly bitter aftertaste.<br />

Armillaria tabesc<strong>en</strong>s (Scop.) Emeland<br />

MICROSCOPY: ellipsoidal spores with thick wall, 9-10.2<br />

× 5.4-6.6 µm. basidia without jo<strong>in</strong>ts at h<strong>in</strong>ge.<br />

HABITAT: cespitose, <strong>in</strong> large groups connate, above all<br />

on logs or at the base of oak trees, th<strong>en</strong> spread<strong>in</strong>g to the<br />

ground. Not very widespread but abundant <strong>in</strong> growth<br />

areas.<br />

EDIBILITY: edible<br />

NOTE - the t<strong>en</strong>der consist<strong>en</strong>cy of the flesh, ev<strong>en</strong> the stipe,<br />

comb<strong>in</strong>ed with a “more traditionally fungal” flavour make<br />

this species an excell<strong>en</strong>t and sought after edible<br />

mushroom, doubtlessly superior to the annuli-bear<strong>in</strong>g<br />

Armillaria. It can sometimes seem like a tw<strong>in</strong> of A. mellea<br />

s.l., but the abs<strong>en</strong>ce of a membraneous annulus makes for<br />

a fairly easy dist<strong>in</strong>ction. A. ectypa has no annulus either,<br />

but grows <strong>in</strong> beds of sphagnum moss or <strong>in</strong> mounta<strong>in</strong><br />

bogs; its size br<strong>in</strong>gs to m<strong>in</strong>d the Laccaria.<br />

147


CAP 80-160 (250) mm, fleshy, from hemispheric to<br />

convex-pulv<strong>in</strong>ate; edge curv<strong>in</strong>g at extremes, th<strong>en</strong><br />

regularly dist<strong>en</strong>ded with white evanesc<strong>en</strong>t bloom; matt<br />

cuticle, f<strong>in</strong>ely tom<strong>en</strong>tose, th<strong>en</strong> hairless, not viscous, ev<strong>en</strong><br />

<strong>in</strong> humid weather; fairly dark, g<strong>en</strong>erally brown-blackish,<br />

typically discoloured to brown-ochre yellowish.<br />

TUBES l<strong>en</strong>gth up to 25 mm, non-marg<strong>in</strong>ated-adnate,<br />

whitish and persist<strong>en</strong>t until maturation is <strong>in</strong>cipi<strong>en</strong>t;<br />

gre<strong>en</strong>ish-yellow late on, f<strong>in</strong>ally olive, uniform to gill<br />

edge, very small pores, concolour with tubes.<br />

STIPE 60-130 × 40-85 (110) mm, oft<strong>en</strong> rounded <strong>in</strong> young<br />

examples, th<strong>en</strong> slimmer, v<strong>en</strong>tricular, or ev<strong>en</strong> cyl<strong>in</strong>drical,<br />

sometimes curv<strong>in</strong>g; ochre-ish, brown-ochre-ish, honey<br />

coloured, light hazelnut, towards the upper part (from 1/3<br />

to 2/3) covered with a f<strong>in</strong>e lattice, g<strong>en</strong>erally the same<br />

colour as the sk<strong>in</strong> of the stipe.<br />

FLESH firm and compact wh<strong>en</strong> young and this rema<strong>in</strong>s<br />

<strong>in</strong> adults, later soft; pure white, uniform, uncoloured<br />

under cuticle of cap. Weak but very pleasant odour,<br />

sweet, hazelnut flavour.<br />

148<br />

Boletus aereus Bull. : Fr.<br />

MICROSCOPY: spore fusiform dim<strong>en</strong>sions 13.5-16 ×<br />

4.0-5.0 µm, pale yellow under microscope; olive-brown<br />

<strong>in</strong> mass.<br />

HABITAT: the most thermophilic of porc<strong>in</strong>i <strong>mushrooms</strong>,<br />

it prefers sparse oak or chestnut woods, <strong>in</strong> which it can be<br />

found from summer’s start till the <strong>en</strong>d of autumn, solitary<br />

or gregarious, not very common <strong>in</strong> the north, the species<br />

is fairly widespread <strong>in</strong> southern areas .<br />

EDIBILITY: edible<br />

NOTE - Commonly known as the “Porc<strong>in</strong>o nero”, after<br />

the colouration of its cap. Its particular biological needs<br />

mean that it is widespread particularly <strong>in</strong> southern areas,<br />

but can also be found <strong>in</strong> northern Italy (though not higher<br />

than 800 m above sea level) <strong>in</strong> hotter periods of the year.<br />

Sometimes the dist<strong>in</strong>ction from darker forms of B.<br />

aestivalis can prove chall<strong>en</strong>g<strong>in</strong>g. In that case the colour of<br />

the flesh, pure white only <strong>in</strong> B. aereus, and the<br />

decolouration of the pileic cuticle are determ<strong>in</strong><strong>in</strong>g factors.


CAP 100-250 mm, fleshy, from hemispheric to convex,<br />

f<strong>in</strong>ally pulv<strong>in</strong>ate-flat; cuticle f<strong>in</strong>ely velvety, never<br />

viscous, oft<strong>en</strong> f<strong>in</strong>ely cracked especially at edges or, <strong>in</strong><br />

very dry weather, ev<strong>en</strong>ly tessellated <strong>in</strong> large areolas<br />

which are barely visible b<strong>en</strong>eath the flesh; uniformly pale<br />

brown, coffee, hazelnut, reddish brown, oft<strong>en</strong> also dark<br />

brown.<br />

TUBES up to 30 mm, depressed-adnate, from white milk<br />

to straw yellow, th<strong>en</strong> yellow-gre<strong>en</strong>ish, f<strong>in</strong>ally olivish,<br />

uniform to gill edge; has very small pores, the same<br />

colour as tubes, unchang<strong>in</strong>g to the touch.<br />

STIPE up to 150 × 80 mm, <strong>in</strong>itially obese th<strong>en</strong> slimmer,<br />

cyl<strong>in</strong>drical, oft<strong>en</strong> curv<strong>in</strong>g, rarely v<strong>en</strong>tricular, rounded at<br />

base and sometimes root<strong>in</strong>g a little; bark coloured wh<strong>en</strong><br />

young, with tones which become <strong>in</strong>t<strong>en</strong>sified and match<br />

those of the cap, or a little paler. F<strong>in</strong>e mesh lattice the<br />

same colour as background, which covers the surface of<br />

the stipe right to the base.<br />

Boletus aestivalis (Paulet) Fries<br />

[= Boletus reticulatus auct. non Schaeff.]<br />

FLESH firm and compact <strong>in</strong> young, soon becom<strong>in</strong>g soft<br />

<strong>in</strong> cap and a little str<strong>in</strong>gy <strong>in</strong> stipe, oft<strong>en</strong> eroded by small<br />

larvae; milk white, just brownish under cuticle; peculiar,<br />

<strong>in</strong>t<strong>en</strong>se and sweet odour; sweet, pleasant hazelnut flavour.<br />

MICROSCOPY: ellipsoidal fusiform spores with weak<br />

elevated depression, 12.8-15.1 × 3.8-4.4 µm, pale yellow<br />

under microscope. Olive brown <strong>in</strong> mass.<br />

HABITAT: warm op<strong>en</strong> woody grassland areas, oft<strong>en</strong><br />

associated with Quercus, Fagus, Castanea, but also to<br />

conifers (Picea) from late spr<strong>in</strong>g to early autumn<br />

EDIBILITY: edible<br />

NOTE - This is the “summer porc<strong>in</strong>e” which appears <strong>in</strong><br />

late spr<strong>in</strong>g <strong>in</strong> the clear<strong>in</strong>gs and glades of woodlands. The<br />

characteristics which can help to dist<strong>in</strong>guish it from other<br />

porc<strong>in</strong>e <strong>mushrooms</strong> are: a dry, oft<strong>en</strong> cracked cuticle; a<br />

stipe which is coloured ev<strong>en</strong> <strong>in</strong> young specim<strong>en</strong>s, the<br />

flesh of the cap, which is usually pliable or saggy to the<br />

touch <strong>in</strong> mature examples.<br />

149


CAP 100-250 mm, fleshy, hemispheric th<strong>en</strong> convexpulv<strong>in</strong>ate,<br />

f<strong>in</strong>ally flat; undulat<strong>in</strong>g edge <strong>in</strong> mature<br />

examples, covered with a whitish bloom wh<strong>en</strong> young<br />

which t<strong>en</strong>ds to disappear. Cuticle <strong>in</strong>itially f<strong>in</strong>ely velvety,<br />

soon becom<strong>in</strong>g viscous, wr<strong>in</strong>kled surface especially <strong>in</strong><br />

marg<strong>in</strong>al zone; chestnut brown, hazelnut, brown dark,<br />

except at the extreme edges which have a perman<strong>en</strong>tly<br />

white surface, discoloured to pale ochre towards the edge.<br />

TUBES up to 30 mm, depressed-adnate, milk white th<strong>en</strong><br />

yellowish, f<strong>in</strong>ally olivish, uniform to gill edge; pores very<br />

small, concolour with the tubes, unchang<strong>in</strong>g to the touch.<br />

STIPE up to 150 × 100 mm, obese, th<strong>en</strong> v<strong>en</strong>tricular or<br />

cyl<strong>in</strong>drical, with rounded base; milk white <strong>in</strong> young, later<br />

hazelnut or pale brown; f<strong>in</strong>e mesh lattice, concolour with<br />

background, spread over most of the surface.<br />

FLESH firm and compact wh<strong>en</strong> young, th<strong>en</strong> a little soft<br />

<strong>in</strong> maturation; white, slightly brown-reddish for a few<br />

millimetres under the cuticle; with typical pleasant odour,<br />

very pleasant flavour, sweet, like hazelnut.<br />

MICROSCOPY: ellipsoidal fusiform-spores with weak<br />

elevated depression, 13.2-15.9 × 4.5-5.1 µm, pale yellow<br />

150<br />

Boletus edulis Bull. : Fr.<br />

under microscope; olive brown <strong>in</strong> mass; basidia mostly<br />

bi- and trisporic.<br />

HABITAT: ubiquitous <strong>in</strong> the woods, oft<strong>en</strong> associated<br />

with Fagus, Picea, Abies, but also with many other<br />

species (chestnut, p<strong>in</strong>e, birch, hazel, etc.) Found <strong>in</strong><br />

temperate or cool periods, from late summer to late<br />

autumn, Widespread and very common.<br />

EDIBILITY: edible<br />

NOTE - This is the “autumnal porc<strong>in</strong>o”, common and<br />

recognised <strong>in</strong> almost all the cont<strong>in</strong><strong>en</strong>ts, where it manifests<br />

a substantial stability <strong>in</strong> its characteristics and it associates<br />

with a great number of be<strong>in</strong>gs. It is recognisable by its<br />

viscous cap, which t<strong>en</strong>ds to lose its colour, especially at<br />

the edges. B. aereus and B. aestivalis are similar, but<br />

these have dry caps and more-richly coloured stipes from<br />

the start; B. p<strong>in</strong>ophilus, which also has a viscous cuticle,<br />

but shows w<strong>in</strong>ey-brown tones on its cap and an obclavate<br />

stipe.


CAP 80-220 (300) mm, very fleshy, from hemispheric to<br />

pulv<strong>in</strong>ate-convex, f<strong>in</strong>ally flat; edge curv<strong>in</strong>g at extreme<br />

edges, f<strong>in</strong>ally dist<strong>en</strong>ded, scattered with whitish bloom<br />

which t<strong>en</strong>ds to dissolve at maturation; cuticle <strong>in</strong>itially<br />

f<strong>in</strong>ely velvety, soon becom<strong>in</strong>g viscous, rugulous; v<strong>in</strong>ous<br />

brown, garnet, reddish-brown, copper red, with sporadic<br />

discoloured areas<br />

TUBES width up to 30 mm, depressed-adnate, milk white<br />

to straw yellow, th<strong>en</strong> yellow-gre<strong>en</strong>, f<strong>in</strong>ally uniform<br />

olivish to gill edge; pores are very small, concolour with<br />

the tubes, oft<strong>en</strong> slightly rusty <strong>in</strong> maturation, unchang<strong>in</strong>g<br />

to the touch.<br />

STIPE up to 100-200 × 50-120 (150) mm, typically<br />

obese, th<strong>en</strong> a little longer, but relatively short and stocky<br />

and almost always dilated-rounded at base; whitish, th<strong>en</strong><br />

soon show<strong>in</strong>g h<strong>in</strong>ts of reddish brown. Displays a f<strong>in</strong>e<br />

lattice, concolour with background, which covers most of<br />

the stipe.<br />

FLESH firm and compact, th<strong>en</strong> a little soft and watery;<br />

white, purplish for a few millimetres under the cuticle;<br />

Boletus p<strong>in</strong>ophilus Pilát & Dermek<br />

[= B. p<strong>in</strong>icola Vittad<strong>in</strong>i, non Swartz]<br />

typically pleasant, but weak odour, very pleasant sweet<br />

taste.<br />

MICROSCOPY: ellipsoidal fusiform spores with weak<br />

elevated depression, 13.6-16.3 × 4.5-5.2 µm, pale yellow<br />

under microscope; olivish brown <strong>in</strong> mass.<br />

HABITAT ma<strong>in</strong>ly associated with Picea, P<strong>in</strong>us, Fagus,<br />

Castanea. Fruits typically two times a year: <strong>in</strong> late spr<strong>in</strong>g,<br />

at lower altitudes, and from the late summer to late<br />

autumn <strong>in</strong> the mounta<strong>in</strong>s and at high altitudes. Recurr<strong>en</strong>t.<br />

EDIBILITY: edible<br />

NOTE - Usually better known under the name B. p<strong>in</strong>icola<br />

Vitt. (an <strong>in</strong>valid name as it has already be<strong>en</strong> used to<br />

designate a lignicole fungus, today known as Fomitopsis<br />

p<strong>in</strong>icola), it is popularly called the “red porc<strong>in</strong>e”. Its name<br />

would seem to suggest it is found only <strong>in</strong> aff<strong>in</strong>ity with<br />

p<strong>in</strong>e trees, however B. p<strong>in</strong>ophilus is, much like edulis, a<br />

widely-occurr<strong>in</strong>g species and is more usually found under<br />

beech or fir trees.<br />

151


CAP up to 150 (200) mm, from hemispheric to convex,<br />

th<strong>en</strong> flat-pulv<strong>in</strong>ate; regular edge, marg<strong>in</strong>s slightly larger.<br />

Plical, f<strong>in</strong>ely felted surface, <strong>in</strong>itially coral p<strong>in</strong>k-red, to<br />

raspberry p<strong>in</strong>k, discoloured with age, ga<strong>in</strong><strong>in</strong>g yellowish<br />

tones, oft<strong>en</strong> also with olive tones; cracks at areole <strong>in</strong> dry<br />

weather.<br />

TUBES similar thickness to flesh of the cap, wh<strong>en</strong><br />

carpophore matures, stipe is rounded; from gold yellow to<br />

olive gre<strong>en</strong>; quickly turn<strong>in</strong>g blue if cut l<strong>en</strong>gthwise; small<br />

pores, round th<strong>en</strong> a little angular; from gold yellow to<br />

olive gre<strong>en</strong>, uniform or turn<strong>in</strong>g blue if bruised<br />

STIPE usually narrower <strong>in</strong> diameter compared to cap on<br />

maturation of carpophore, up to 40 (50) mm <strong>in</strong> diameter;<br />

stocky, with thick base, more oft<strong>en</strong> than not cyl<strong>in</strong>drical;<br />

pale chrome yellow, oft<strong>en</strong> with <strong>in</strong>nate raspberry red spots<br />

towards base; surface unchang<strong>in</strong>g to the touch. Lattice<br />

usually limited to upper half, oft<strong>en</strong> slightly raised,<br />

concolour with background.<br />

FLESH <strong>in</strong>itially very firm <strong>in</strong> cap and also <strong>in</strong> adult<br />

carpophore, while stipe t<strong>en</strong>ds to become fibrous; pale<br />

152<br />

Boletus regius Krombholz<br />

yellow, more <strong>in</strong>t<strong>en</strong>se yellow above tubes and under the<br />

bark of stipe, oft<strong>en</strong> reddish only at extreme base of stipe,<br />

rarely or never turn<strong>in</strong>g blue at gill edge <strong>in</strong> zone above<br />

tubes. Weak, slightly fruity odour; sweet flavour.<br />

MICROSCOPY: spore pale yellow under microscope,<br />

fusiform dim<strong>en</strong>sions 11.3-14.5 × 3.5-4.5 µm. Spores olive<br />

brown.<br />

HABITAT: isolated or <strong>in</strong> small groups under hardwood<br />

trees, ma<strong>in</strong>ly Fagus sylvatica and Castanea sativa <strong>in</strong><br />

acidic ground; from early summer to autumn<br />

EDIBILITY: edible<br />

NOTE - A beautiful species which is only confusable<br />

with the Boletus pseudoregius, which however has more<br />

slant<strong>in</strong>g proportions and flesh which manifests fairly<br />

<strong>in</strong>t<strong>en</strong>se tones. This species has be<strong>en</strong> implicated <strong>in</strong> several<br />

cases of poison<strong>in</strong>g after undercooked carpophores were<br />

consumed.


CAP 120-300 mm, very fleshy, from hemispheric to<br />

convex; cuticle f<strong>in</strong>ely velvety wh<strong>en</strong> young, soon<br />

becom<strong>in</strong>g hairless, dry, milk white, pale grey, cream,<br />

oft<strong>en</strong> with olivish hues, f<strong>in</strong>ally brownish olive, oft<strong>en</strong> just<br />

p<strong>in</strong>kish at edges <strong>in</strong> examples that have grown <strong>in</strong> humid<br />

weather.<br />

TUBES up to 25 mm, rounded near stipe, from yellow, to<br />

yellow-gre<strong>en</strong>ish, f<strong>in</strong>ally olivish, blue at gill edge; pores<br />

very small, <strong>in</strong>itially yellow but soon red, carm<strong>in</strong>e red or<br />

red-orange; rarely rema<strong>in</strong><strong>in</strong>g yellow or weakly orange<br />

ev<strong>en</strong> at maturity; blue wh<strong>en</strong> touched.<br />

STIPE 60-150 × 50-100 mm, narrower <strong>in</strong> diameter than<br />

cap, very stocky, obese, pear shaped, more oft<strong>en</strong> than not<br />

cyl<strong>in</strong>drical; usually yellow at <strong>in</strong>sertion to cap, red or p<strong>in</strong>kpurple,<br />

fuchsia at lower part. Lattice g<strong>en</strong>erally concolour<br />

with background, of f<strong>in</strong>e mesh, isodiametric, limited to<br />

upper half of stipe; the surface turns blue to the touch.<br />

FLESH very firm and compact wh<strong>en</strong> young, soft wh<strong>en</strong><br />

old, pale yellow, turn<strong>in</strong>g pale blue at gill edge; weak<br />

particular odour wh<strong>en</strong> young, cadaverous or of decay<strong>in</strong>g<br />

substances wh<strong>en</strong> mature, sweet flavour. MICROSCOPY:<br />

Boletus satanas L<strong>en</strong>z<br />

ellipsoidal spores, with weak elevated depression, 11.4-<br />

13.4 × 5.1-5.9 µm, yellow under microscope; olive brown<br />

<strong>in</strong> mass.<br />

HABITAT: warm and chalky woods, associated with<br />

Quercus, commonly with Castanea or Fagus, not at high<br />

altitudes. Summer-autumn, not very common.<br />

EDIBILITY: toxic<br />

NOTE - This is one of the largest boletes, characteristic<br />

for its short and paunchy stipe and for the cadaverous<br />

odour that it emits wh<strong>en</strong> ripe. Its light cap, red pores and<br />

the latex <strong>in</strong> its stipe help to dist<strong>in</strong>guish it from other<br />

species of Luridi that might seem similar. In many cases,<br />

it can be found with completely yellow pores and stipe,<br />

and as such it can ev<strong>en</strong> resemble certa<strong>in</strong> species of<br />

App<strong>en</strong>diculati (Boletus fechtneri). Notwithstand<strong>in</strong>g, its<br />

dist<strong>in</strong>ctive and unmistakeable odour helps <strong>in</strong> its<br />

id<strong>en</strong>tification. Toxic wh<strong>en</strong> raw, suspect (and certa<strong>in</strong>ly<br />

poorly tolerated by many people) ev<strong>en</strong> wh<strong>en</strong> cooked<br />

thoroughly.<br />

153


CAP 40-80 mm, from convex to flat, convoluted edges,<br />

oft<strong>en</strong> undulated, smooth, silky, matt, white, dirty white or<br />

dirty cream, oft<strong>en</strong> sta<strong>in</strong>ed ochre or cracked.<br />

GILLS crowded, close, adnate or non marg<strong>in</strong>ated, from<br />

whitish to pale cream, with the surface undulated or<br />

cr<strong>en</strong>ulated, coloured.<br />

STIPE 40-70 × 10-20 mm, cyl<strong>in</strong>drical, almost clavate or<br />

att<strong>en</strong>uated towards the base, bloom<strong>in</strong>g or fully fibrillated,<br />

th<strong>en</strong> filled, whitish or dirty cream.<br />

FLESH thick, hard or a little spongy, white, with strong<br />

smell of flour and sweet, floury flavour.<br />

MICROSCOPY: spore 5-6 × 2.5-3.5 µm, ellipsoidal,<br />

smooth, hyal<strong>in</strong>e; basidia 20-25 × 3-5 µm, tetrasporic,<br />

tightly clavate, filled with siderophile granules; epicyte<br />

formed from <strong>in</strong>terwov<strong>en</strong> hyphae, width of 3-5 µm,<br />

hyphae of subgelled stratum surface, with membranous<br />

pigm<strong>en</strong>tation; usually with h<strong>in</strong>ges.<br />

154<br />

Calocybe gambosa (Fr. : Fr.) Donk<br />

[= Lyophyllum georgii (L. : Fr.) Kühner & Romagnesi;<br />

Tricholoma georgii (L. : Fr.) Quélet]<br />

HABITAT: grows isolated or <strong>in</strong> groups, more oft<strong>en</strong> <strong>in</strong><br />

circles or semicircles (witches’ circles) <strong>in</strong> grassy areas <strong>in</strong><br />

meadows, or <strong>in</strong> clear<strong>in</strong>gs <strong>in</strong> coniferous or hardwood areas,<br />

particularly close to Rosaceae.<br />

EDIBILITY: edible<br />

NOTE - This is a much sought after mushroom with many<br />

pseudonyms, the most famous of which is probably St.<br />

George’s mushroom (so named because the period <strong>in</strong><br />

which it grows <strong>in</strong> near that sa<strong>in</strong>t’s day). In literature<br />

several varieties have be<strong>en</strong> id<strong>en</strong>tified based on the diverse<br />

colours that the cap can assume and ev<strong>en</strong> sometimes the<br />

differ<strong>en</strong>t odours it gives off. For example, C. graveol<strong>en</strong>s<br />

(= Tricholoma georgii fo. flavida) has a darker cap and a<br />

rather unpleasant odour.


BASIDIOCARP up to 100 (150) mm, composed of a<br />

fertile glebe protected by two cortical layers (<strong>en</strong>do - and<br />

exoperidia) supported by spongy sterile base; subglobular<br />

subellipsoidal or with short fairly differ<strong>en</strong>tiated<br />

pseudostipe; <strong>in</strong>itially mostly convex on upper part th<strong>en</strong><br />

truncated-flat, external surface of exoperidium smooth,<br />

ruffled-rugulous and th<strong>en</strong> separated <strong>in</strong>to aureola; from<br />

milk white to pale grey ochre-ish. Across cracks produced<br />

by one sees that the <strong>en</strong>doperidium aureola <strong>in</strong> maturity is<br />

grey-brown and f<strong>in</strong>ally dark brown, <strong>in</strong> adults the sk<strong>in</strong><br />

tears so ext<strong>en</strong>sively and irregularly as to allow the<br />

dispersal of spores which rema<strong>in</strong> for a long time on the<br />

ground; very spongy base, slightly marcescible, uniformly<br />

brown.<br />

GLEBE white, th<strong>en</strong> yellowish, gre<strong>en</strong>ish, olive, f<strong>in</strong>ally<br />

brown-olivish or chocolate brown; fairly soft consist<strong>en</strong>cy,<br />

th<strong>en</strong> dusty.<br />

Calvatia utriformis (Bull. : Pers.) Jaap<br />

[= Lycoperdon caelatum Bull. : Pers.]<br />

MICROSCOPY: spore globular, with warty surface, of<br />

diameter 4-5 µm, brownish to microscope. Spores olive<br />

brown <strong>in</strong> mass.<br />

HABITAT: isolated or <strong>in</strong> groups of several <strong>in</strong>dividuals,<br />

oft<strong>en</strong> with many examples jo<strong>in</strong>ed at base, <strong>in</strong> meadows and<br />

<strong>in</strong> mounta<strong>in</strong> pasture, from summer to autumn; recurr<strong>en</strong>t<br />

EDIBILITY: edible<br />

NOTE - From summer’s <strong>en</strong>d, walk<strong>in</strong>g through mounta<strong>in</strong><br />

meadows, one can oft<strong>en</strong> come across the seem<strong>in</strong>gly<br />

<strong>in</strong>destructible brownish remnants of this large “puffball”.<br />

These residues can <strong>in</strong> fact persist on the ground for over a<br />

year. It may be confused with some Lycoperdaceae,<br />

which are also edible, such as Langermannia gigantea,<br />

the largest, with its near-smooth exoperidium, free of<br />

pseudostipe. C. utriformis is also morphologically very<br />

similar to Vascellum prat<strong>en</strong>se of which, at first glance, it<br />

seems to be a giant form.<br />

155


156<br />

Camarophyllus prat<strong>en</strong>sis (Pers. : Fr.) Kummer<br />

[= Hygrocybe prat<strong>en</strong>sis var. prat<strong>en</strong>sis (Fr.) Murril; = Cuphophyllus prat<strong>en</strong>sis (Pers. : Fr.) Bon]<br />

CAP 25-80 mm, hemispheric th<strong>en</strong> convex, oft<strong>en</strong> with<br />

mostly obtuse umbo, f<strong>in</strong>e marg<strong>in</strong>; hairless, radially dry<br />

away from fairly f<strong>in</strong>e fibrils; pale apricot orange or fleshy<br />

ochre, sometimes covered with white bloom; cuticle<br />

detachable for 3/4 of radius.<br />

GILLS curved, deeply decurr<strong>en</strong>t, concolour with cap or<br />

paler, highly spaced, noticeably thick, oft<strong>en</strong> spoked,<br />

<strong>in</strong>tercalated with numerous lamellule.<br />

STIPE 40-100 × 5-12 mm, normally cyl<strong>in</strong>drical or<br />

att<strong>en</strong>uated at base, more rarely obclavate, from whitish to<br />

pale orange, visibly fibrous, fully dry, oft<strong>en</strong> <strong>in</strong>vaded by<br />

larvae or small <strong>in</strong>sects, soon becom<strong>in</strong>g filled.<br />

FLESH thick and firm fibrous <strong>in</strong> stipe; whitish or faded<br />

yellow <strong>in</strong> cap, white elsewhere, odourless, pleasant<br />

flavour.<br />

MICROSCOPY: spore mostly ellipsoidal, 5-6.7 × 4.2-5<br />

µm; tetrasporophyte basidia, sometimes bisporic, and so<br />

produce larger spores, up to 8.6 µm.<br />

HABITAT: grassy areas, meadows, clear<strong>in</strong>gs <strong>in</strong><br />

hardwood areas; gregarious; widespread and common<br />

from summer to late autumn.<br />

EDIBILITY: edible<br />

NOTE - This is a good species of edible mushroom,<br />

which has se<strong>en</strong> fair commercial success, despite its<br />

fibrous flesh. Due to its orange colour, it can be confused<br />

with Hygrophorus nemoreus, but the latter has an ev<strong>en</strong><br />

more fibrous cap, flesh which both smells and tastes of<br />

flour, pale gills, which range from creamy-whitish to flesh<br />

coloured. It also has a smooth sub-bilateral lamellar trama<br />

and grows <strong>in</strong> the woods (or, at least <strong>in</strong> the vic<strong>in</strong>ity of<br />

trees). Several varieties are reported as differ<strong>en</strong>t <strong>in</strong><br />

literature due to their differ<strong>in</strong>g size and colour (var.<br />

robustus, of larger size, var. Donad<strong>in</strong>i with d<strong>en</strong>ticulate<br />

edges, var. Vitul<strong>in</strong>us, more fragile and pale).


CAP 30-70 (120) mm, <strong>in</strong>itially highly differ<strong>en</strong>tiated from<br />

stipe, th<strong>en</strong> convex, th<strong>en</strong> dist<strong>en</strong>ded with edge convoluted at<br />

the extremes, ev<strong>en</strong>tually irregularly flat-gibbous up to<br />

fairly deeply depressed-<strong>in</strong>fundibulform, marg<strong>in</strong>al zone<br />

very th<strong>in</strong>, with progressively rough, s<strong>in</strong>uous-lobed,<br />

wr<strong>in</strong>kled <strong>in</strong> parts, sh<strong>in</strong>y appearance; with humidity<br />

m<strong>in</strong>utely velvety, smooth; wh<strong>en</strong> dry, orange, apricot,<br />

pal<strong>in</strong>g yolk-yellow.<br />

HYMENOPHORE pseudolamellar, very forked from<br />

compound-branched folds, abundantly spored,<br />

anastomosed, highly decurr<strong>en</strong>t <strong>in</strong> adults, close, thick, with<br />

fairly dull surface, coloured or subconcolour with cap,<br />

Sometimes with p<strong>in</strong>k shades.<br />

STIPE 30-60 (90) × 12-25 mm, cyl<strong>in</strong>drical, normally<br />

progressively flared towards gill <strong>in</strong>sertion, oft<strong>en</strong> ev<strong>en</strong> a<br />

little dilated at base, full, firm <strong>in</strong> maturity softer-rubbery,<br />

hairless, subcoloured.<br />

FLESH white, with yellow-p<strong>in</strong>kish sta<strong>in</strong>s on outer zone,<br />

abundant on circumfer<strong>en</strong>ce, firm and compact <strong>in</strong> cap,<br />

fibrous and almost leathery <strong>in</strong> stipe; pleasant odour, like<br />

Cantharellus cibarius (Fr. : Fr.) Fries<br />

apricot or white peach sk<strong>in</strong> or sweet fruit. Initially mild<br />

flavoured, th<strong>en</strong> sour-astr<strong>in</strong>g<strong>en</strong>t-spicy.<br />

MICROSCOPY: spore from ovoid to ellipsoidal,<br />

sometimes sublarmiform, smooth or fairly evid<strong>en</strong>tly<br />

gra<strong>in</strong>y, 7.5-9.6 × 4.6-5.6 µm.<br />

HABITAT: very common and widespread all over, from<br />

hilly hardwood areas to coniferous mounta<strong>in</strong>s; from start<br />

of summer to late autumn.<br />

EDIBILITY: edible<br />

NOTE - A much sought and valued edible mushroom, this<br />

is one of the few which are also eat<strong>en</strong> <strong>in</strong> both southern<br />

and northern Europe. Literature is full of variants of this<br />

fungus which are sometimes considered separate species,<br />

sometimes mere variants. The var. bicolor is more<br />

precocious and displays a very pale cap and stipe which<br />

are whitish, <strong>in</strong> stark contrast to its yolk-yellow gills; the<br />

var. ferrug<strong>in</strong>asc<strong>en</strong>s has tones of olive gre<strong>en</strong> and a strong<br />

t<strong>en</strong>d<strong>en</strong>cy to assume a rusty colour wh<strong>en</strong> handled; the var.<br />

amethysteus has violet adnate scales on its cap, and can<br />

typically be found under beech trees.<br />

157


CAP 15-45 (65) mm, convex-umbillicate, th<strong>en</strong> flat with<br />

fairly wide c<strong>en</strong>tral depression, <strong>in</strong>fundibulform, edge b<strong>en</strong>t<br />

and f<strong>in</strong>e at the extremes, progressively multi-lobed, fuzzy<br />

<strong>in</strong> parts, fissile, revolute <strong>in</strong> old examples, s<strong>in</strong>uous;<br />

fibrillous-scaly orange brown or reddish brown.<br />

HYMENOPHORE reduced to low v<strong>en</strong>ucole with<br />

numerous branches and anastomoses, mostly rounded at<br />

marg<strong>in</strong>, rugulous, not <strong>in</strong>frequ<strong>en</strong>tly subsmooth especially<br />

<strong>in</strong> stipe where it is, somewhat blurred, decurr<strong>en</strong>t<br />

l<strong>en</strong>gthwise, yellow-orange, yellow or grey<strong>in</strong>g with a h<strong>in</strong>t<br />

of salmon p<strong>in</strong>k <strong>in</strong> paler forms.<br />

STIPE 35-70 × 8-12 mm, normally highly irregular,<br />

dilated at tip and progressively att<strong>en</strong>uated towards base,<br />

oft<strong>en</strong> b<strong>en</strong>t, canalicular-compressed, gibbous and wr<strong>in</strong>kled,<br />

hairless, hollow-tubular, highly characteristic bright<br />

orange colour or h<strong>in</strong>t of p<strong>in</strong>k salmon,.<br />

FLESH exiguous all over, of fibrous and fairly t<strong>en</strong>aciouselastic<br />

consist<strong>en</strong>cy, cream or pale yellowish; fruity odour,<br />

like of plums or of flowers of the Muscari family, sweet<br />

flavour.<br />

158<br />

Cantharellus lutesc<strong>en</strong>s (Pers. : Fr.) Fries<br />

[= C. aurora (Batsch) Kuyper]<br />

MICROSCOPY: spore from ellipsoidal to ovoid, smooth,<br />

guttulate, 9.6-11.4 × 6.5-7.8 µm.<br />

HABITAT: summer-autumn, <strong>in</strong> hardwood or coniferous<br />

woods, oft<strong>en</strong> <strong>in</strong> grassy or mossy areas, more rarely on<br />

bare ground, widespread all over and abundant <strong>in</strong> grow<strong>in</strong>g<br />

area.<br />

EDIBILITY: edible<br />

NOTE - Had the name C. aurora not be<strong>en</strong> synonymised,<br />

this would have the nom<strong>en</strong>clatorial priority, however,<br />

s<strong>in</strong>ce C. lutesc<strong>en</strong>s is widely used, we adhere to this<br />

b<strong>in</strong>omial and hope it lasts. Good to eat, Especially after<br />

dry<strong>in</strong>g and th<strong>en</strong> steep<strong>in</strong>g <strong>in</strong> water and milk. Its f<strong>in</strong>e and<br />

slightly fibrous-elastic flesh make it appear like another<br />

species of similar colour: C. tubaeformis, but this latter<br />

has a hym<strong>en</strong>ophore with fairly dist<strong>in</strong>ct pseudogills; less<br />

vivid colours, rang<strong>in</strong>g from shades of gray to grey-brown,<br />

and is less odorous.


BASIDIOCARP appearance <strong>in</strong> young specim<strong>en</strong>s of a<br />

rounded oval, <strong>in</strong>ternally gelat<strong>in</strong>ous, while external surface<br />

is fragile and waxy at branches. Wh<strong>en</strong> cut, the parts ready<br />

for growth are clearly visible.<br />

EXOPERIDUM is similar to a rail<strong>in</strong>g round the elongated<br />

polygonal meshes, vivid colour, grows up to 70 mm <strong>in</strong><br />

diameter at full developm<strong>en</strong>t. On the lower part,<br />

connected to the remnants of the primordial oval, a volva<br />

is formed, the th<strong>in</strong> elongated hyphal rhizomorphs are<br />

clearly visible and whitish.<br />

GLEBE formed from small granules of gre<strong>en</strong>-blackish<br />

mucilage conta<strong>in</strong><strong>in</strong>g spores, gives off a strong unpleasant<br />

odour similar to that of Phallus impudicus.<br />

Clathrus ruber Mich. ex Pers. : Pers.<br />

MICROSCOPY: ellipsoidal spores, 5 ¥ 6 µm. Spores of<br />

white-brownish colour.<br />

HABITAT: grows fairly isolated <strong>in</strong> the humid parts of<br />

woods, from summer to autumn.<br />

EDIBILITY: non edible<br />

NOTE - This is a rare species, but which grows<br />

abundantly <strong>in</strong> its chos<strong>en</strong> areas. It has the same cadaverous<br />

odour of Phallus impudicus; an odour which appears ev<strong>en</strong><br />

before the mushroom does. The same repell<strong>en</strong>t odour is<br />

oft<strong>en</strong> responsible for this species be<strong>in</strong>g <strong>in</strong>vaded by flies.<br />

159


160<br />

Clitocybe cerussata (Fr. : Fr.) Kummer<br />

[= C. phyllophila (Pers. Fr.) Kummer; = C. pytiophila (Fries) Gillet]<br />

CAP 40-90 mm, convex th<strong>en</strong> flat, typically umbonate.<br />

pure white cuticle, smooth, covered with sericeous fibrils,<br />

bloom<strong>in</strong>g, matt; at most slightly cream colour under<br />

fibrils.<br />

GILLS from adnate to subdecurr<strong>en</strong>t, very crowded, pure<br />

white, sometimes a little cream, concolour with the whole<br />

surface,.<br />

STIPE 40-70 × 10-15 mm, from cyl<strong>in</strong>drical to subclavate,<br />

full, white, slightly fibrillated with base covered with<br />

white flakes.<br />

FLESH whitish, firm with no significant odour or flavour.<br />

SPORES white.<br />

MICROSCOPY: ellipsoidal spores, 5.0-6.0 × 3.0-4.0 µm,<br />

smooth, cyanophilia, preval<strong>en</strong>t <strong>in</strong> tetrads <strong>in</strong> dry<br />

conditions, obtuse base. basidia 16-25 × 4-6 µm,<br />

tetrasporic. hym<strong>en</strong>ophore almost regular. very loose<br />

Pileipellis <strong>in</strong>terwov<strong>en</strong> with structure of hyphal cutis.<br />

HABITAT: gregarious, <strong>in</strong> coniferous woods; fairly<br />

common and widespread, from <strong>en</strong>d of summer.<br />

EDIBILITY: toxic<br />

NOTE - C. phyllophila belongs to a group of organisms<br />

which are very similar to each other, and which maybe<br />

repres<strong>en</strong>t differ<strong>en</strong>t aspects of one, s<strong>in</strong>gle species. Wh<strong>en</strong><br />

try<strong>in</strong>g to dist<strong>in</strong>guish betwe<strong>en</strong> C. cerussata (Fr. : Fr.)<br />

Kummer and C. phyllophila (Pers.: Fr.) Kummer, one<br />

would m<strong>en</strong>tion the habitat of conifers for the former and<br />

of hardwood trees for the latter, and also their differ<strong>en</strong>t<br />

spore colours (p<strong>in</strong>k-cream <strong>in</strong> C. phyllophila). It is not so<br />

simple to dist<strong>in</strong>guish C. phyllophila from C. candicans<br />

(Pers.: Fr.) Kummer or C. rivulosa (Pers.: Fr.) Kummer.<br />

Normally C. phyllophila is slightly larger than these two<br />

latter species and has characteristic adnate, slightly<br />

decurr<strong>en</strong>t gills, and spores arranged <strong>in</strong> tetrads <strong>in</strong> dried<br />

specim<strong>en</strong>s. C. candicans, with its slant<strong>in</strong>g gait, has more<br />

decurr<strong>en</strong>t gills and s<strong>in</strong>gle spores. C. rivulosa (= C.<br />

dealbata s<strong>en</strong>su auct. plur.) normally grows <strong>in</strong> meadows.


CAP 60-200 mm, quite deeply <strong>in</strong>fundibulform, with<br />

c<strong>en</strong>tral umbo emerg<strong>in</strong>g from cavity, not hygrophanous,<br />

not striated for transpar<strong>en</strong>cy, pale ochre-ish, alutaceous,<br />

smooth, matt, silky, F<strong>in</strong>ely felted.<br />

GILLS fairly deeply decurr<strong>en</strong>t, fairly crowded, whitish,<br />

sta<strong>in</strong>ed p<strong>in</strong>kish-brown, concolour with the whole surface.<br />

STIPE 60-150 × 13-20 mm, from cyl<strong>in</strong>drical to lightly<br />

clavate, filled, subcoloured to cap, bear<strong>in</strong>g white fibrils<br />

l<strong>en</strong>gthwise, tom<strong>en</strong>tum white at base.<br />

FLESH white, with particular aromatic odour, and<br />

<strong>in</strong>significant flavour.<br />

SPORES white.<br />

MICROSCOPY: ellipsoidal spores, 6.0-7.0 × 5.2-6.0 µm,<br />

smooth, s<strong>in</strong>gle <strong>in</strong> dry conditions, sublacrimoid base.<br />

basidia 40-45 × 7-9 µm, tetrasporic. Fairly regular<br />

hym<strong>en</strong>ophore texture, colourless hyphae, width 3-8 µm.<br />

Pileipellis <strong>in</strong>terwov<strong>en</strong> with structure of hyphae cutis,<br />

Clitocybe geotropa (Bull.) Quélet<br />

width 3-7 µm, with membranous and m<strong>in</strong>utely <strong>en</strong>crust<strong>in</strong>g.<br />

pigm<strong>en</strong>t<br />

HABITAT: terrestrial, gregarious, <strong>in</strong> hardwood and<br />

coniferous woods or <strong>in</strong> meadows and pastures, <strong>in</strong> the<br />

shape of "witches’ circles", not widespread but with<br />

pl<strong>en</strong>ty of areas of growth. Autumn and late autumn.<br />

EDIBILITY: edible<br />

NOTE - Unmistakeable thanks to its typical shape,<br />

characterised by a very long stipe compared to cap<br />

diameter and to its fairly large size, this late-appear<strong>in</strong>g<br />

species is a much sought edible.<br />

With its basidia, which are fairly long for a clitocybe, C.<br />

geotropa is grouped <strong>in</strong> the subg<strong>en</strong>us Hygroclitocybe Bon,<br />

<strong>in</strong>side which it is unique for its subregular lamellar<br />

trama, its sublacrimoid spores and its mixed<br />

pigm<strong>en</strong>tation.<br />

161


CAP 30-80 mm, fairly deeply <strong>in</strong>fundibulform, with or<br />

without umbo, with the edges convoluted, th<strong>en</strong> straight,<br />

oft<strong>en</strong> ribbed, not hygrophanous, not striated by<br />

transpar<strong>en</strong>cy, ochre-ish pale or alutaceous light reddish,<br />

f<strong>in</strong>ely felted, matt.<br />

GILLS decurr<strong>en</strong>t, fairly crowded, b<strong>en</strong>t, light yellowish<br />

brown, oft<strong>en</strong> with p<strong>in</strong>k sta<strong>in</strong>s, with the whole surface,<br />

coloured.<br />

STIPE 20-50 × 5-8 mm, from cyl<strong>in</strong>drical to lightly<br />

clavate, filled, th<strong>en</strong> fistular, from whitish to light yellow,<br />

g<strong>en</strong>erally lighter than cap, smooth or with white fibrils<br />

l<strong>en</strong>gthwise, with tom<strong>en</strong>tum white at base.<br />

FLESH whitish, with pleasant “cyanide” odour and sweet<br />

flavour.<br />

SPORES white.<br />

MICROSCOPY: ellipsoidal spores, 5.2-6.6 × 4-4.6 µm,<br />

smooth, not cyanophilous, s<strong>in</strong>gle <strong>in</strong> dry conditions, with<br />

conflu<strong>en</strong>t base, lacrimoid. Basidia 22-30 × 5-7 µm,<br />

162<br />

Clitocybe gibba (Pers. : Fr.) Kummer<br />

[= Clitocybe <strong>in</strong>fundibuliformis (Schaeff.) Quélet]<br />

tetrasporic. Hym<strong>en</strong>ophore texture regular with colourless<br />

hyphae. Pileipellis <strong>in</strong>terwov<strong>en</strong> horizontally with structure<br />

of hyphae cutis, with f<strong>in</strong>ely <strong>en</strong>crusted pigm<strong>en</strong>t.<br />

HABITAT: <strong>in</strong> groups, also numerous, <strong>in</strong> hardwood and<br />

coniferous woods<br />

EDIBILITY: edible<br />

NOTE - It is known and sought after <strong>in</strong> Italy as the<br />

“imbut<strong>in</strong>o” (funnel mushroom), and a much-appreciated<br />

edible, despite its fairly tough flesh. C. gibba belongs to<br />

the subg<strong>en</strong>us Clitocybe whose species are characterised<br />

by their typically funnel-like caps which are oft<strong>en</strong> opaque<br />

and almost velvety, by their decurr<strong>en</strong>t gills, the<br />

(sub)regular hym<strong>en</strong>ophoral trama and by the colour<strong>in</strong>g <strong>in</strong><br />

their stipe walls. It is not always easy to dist<strong>in</strong>guish it<br />

from C. costata, though it can normally be id<strong>en</strong>tified by<br />

its stipe be<strong>in</strong>g lighter than its cap and its cap cover<strong>in</strong>g<br />

hav<strong>in</strong>g a negative reaction to treatm<strong>en</strong>t with KOH.


CAP 80-150 mm, convex, with convoluted edges, not<br />

hygrophanous, from ash grey to grey-brown, smooth,<br />

f<strong>in</strong>ely felted, fibrillated from adnate to lightly decurr<strong>en</strong>t,<br />

fairly crowded, pale cream, with the whole surface<br />

coloured.<br />

STIPE 60-90 × 15-30 mm, clavate, filled, subcoloured to<br />

cap, striated l<strong>en</strong>gthwise with f<strong>in</strong>e fibrils, base covered<br />

with white mycelial felt.<br />

FLESH white, with strong aromatic, slightly unpleasant<br />

smell and unpleasant flavour.<br />

SPORES yellowish cream.<br />

MICROSCOPY: ellipsoidal spores, 6.0-7.5 × 3.-4.5 µm,<br />

smooth, cyanophilous, preval<strong>en</strong>t <strong>in</strong> tetrads <strong>in</strong> dry<br />

conditions, obtuse base. basidia 20-25 × 5-7 µm,<br />

tetrasporic. Hym<strong>en</strong>ophore texture regular with colourless<br />

hyphae. Pileipellis with structure of hyphal cutis more or<br />

less parallel, with <strong>in</strong>tracellular pigm<strong>en</strong>tation.<br />

Clitocybe nebularis (Batsch : Fr.) Kummer<br />

HABITAT: ubiquitous, <strong>in</strong> large groups; very common <strong>in</strong><br />

autumn and late autumn.<br />

EDIBILITY: suspect<br />

NOTE - This is a well known species, which <strong>in</strong> many<br />

areas is gathered and eat<strong>en</strong> with impunity. In any case,<br />

rec<strong>en</strong>t studies (based on nutritional casuistics) seem to<br />

demonstrate the toxicity of the species, or at least, the illtolerance<br />

of it by several <strong>in</strong>dividuals. Based on the spore<br />

colour, the cyanophylla of the spore wall (which is<br />

smooth to optical microscopes, but warty to electronic<br />

ones), C. nebularis was considered by several authors,<br />

such as Moser and Bon, as belong<strong>in</strong>g to the g<strong>en</strong>us<br />

Lepista. We prefer, <strong>in</strong> accordance with Kuyper, to keep it<br />

<strong>in</strong> the g<strong>en</strong>us Clitocybe, along with numerous other similar<br />

species which display cyanophylla and coloured spores<br />

which are smooth under an optical microscope.<br />

163


CAP 60-150 (220) × 30-70 mm, <strong>in</strong>itially glandiform to<br />

more or less cyl<strong>in</strong>drical th<strong>en</strong>, <strong>in</strong> maturity, from<br />

campanulate to conical, more expanded with age, f<strong>in</strong>ally<br />

deliquesc<strong>en</strong>t start<strong>in</strong>g at the edges; surface <strong>in</strong>itially silky<br />

and white, soon becom<strong>in</strong>g covered <strong>in</strong> overlapp<strong>in</strong>g scales<br />

from whitish to light brown on white background; cap<br />

oft<strong>en</strong> jo<strong>in</strong>ed and ochre-ish.<br />

GILLS very crowded, unequal, very wide, free to stipe,<br />

<strong>in</strong>itially white, th<strong>en</strong>, p<strong>in</strong>kish at edges, ev<strong>en</strong>tually black,<br />

deliquesc<strong>en</strong>t.<br />

STIPE 100-200-(300) × 10-25-(35) mm, separable from<br />

cap, slim <strong>in</strong> maturity, att<strong>en</strong>uated at tip and fairly bulbous<br />

at base, white, bear<strong>in</strong>g f<strong>in</strong>e white fibrils, empty with age;<br />

medial or basal annulus, which is membranous, m<strong>in</strong>ute,<br />

white, sometimes black due to spores.<br />

FLESH slightly thick, t<strong>en</strong>der <strong>in</strong> cap and soon becom<strong>in</strong>g<br />

fibrous <strong>in</strong> stipe, white; weak and pleasant odour and<br />

flavour.<br />

MICROSCOPY: spore from ellipsoidal to ovoid, smooth,<br />

with c<strong>en</strong>trally germ<strong>in</strong>at<strong>in</strong>g pores, brown-black under<br />

164<br />

Copr<strong>in</strong>us comatus (Müll. : Fr.) S.F. Gray<br />

microscope, 11-14.5 × 6.5-8 mm; tetrasporophyte basidia.<br />

Black spores.<br />

HABITAT: from the spr<strong>in</strong>g to late autumn <strong>in</strong> grassy and<br />

fertile areas <strong>in</strong> gard<strong>en</strong>s, at the edge of wheel tracks, <strong>in</strong><br />

flood pla<strong>in</strong>s, <strong>in</strong> large groups; frequ<strong>en</strong>t.<br />

EDIBILITY: edible<br />

NOTE - This is, most probably, the only Copr<strong>in</strong>us which<br />

is considered edible and, as such, it deserves a certa<strong>in</strong><br />

level of att<strong>en</strong>tion; several authors, <strong>in</strong> fact, consider it<br />

excell<strong>en</strong>t or, ev<strong>en</strong>, «the best edible species»; the exiguity<br />

of its flesh, however, means that long cook<strong>in</strong>g times<br />

should be avoided and therefore would best be eat<strong>en</strong> fried<br />

or ev<strong>en</strong> raw. In any case one should only eat young<br />

specim<strong>en</strong>s, which still have perfectly white gills. This<br />

species is unlikely to be confused with similar species:<br />

Copr<strong>in</strong>us sterquil<strong>in</strong>us grows <strong>in</strong> dung, is solitary or found<br />

<strong>in</strong> small group<strong>in</strong>gs, it is also more sl<strong>en</strong>der and has larger<br />

pores; Copr<strong>in</strong>us vosoustii, is far rarer, has a nondeliquesc<strong>en</strong>t<br />

star shape cover<strong>in</strong>g on its cap and much<br />

larger spores.


CAP 40-80 mm, <strong>in</strong>itially fleshy, campanulate-convex,<br />

th<strong>en</strong> flat-convex, ev<strong>en</strong>tually dist<strong>en</strong>ded gibbous or with<br />

wide c<strong>en</strong>tral umbo, edges convoluted th<strong>en</strong> straight,<br />

slightly lobed, dry cuticle, non-hygrophanous, matt, silky,<br />

d<strong>en</strong>sely fibrillated or scaled, reddish brown orange, brown<br />

auburn.<br />

GILLS adnate-non-marg<strong>in</strong>ated, fairly spaced, wide,<br />

bulg<strong>in</strong>g, brown ochre-ish, brown reddish orange th<strong>en</strong><br />

rusty reddish due to spores, with eroded surface,<br />

yellowish on face.<br />

STIPE 40-90 × 10-15 mm, fairly slim, cyl<strong>in</strong>drical but<br />

oft<strong>en</strong> att<strong>en</strong>uated at base, more or less supple, full, firm<br />

citr<strong>in</strong>a yellow, reddish orange <strong>in</strong> the c<strong>en</strong>tre, decorated<br />

l<strong>en</strong>gthwise with coloured fibrils.<br />

FLESH firm non hygrophanous, ochre-ish, reddish h<strong>in</strong>t,<br />

with radish-like odour and acidic flavour.<br />

MICROSCOPY: ellipsoidal amygdalform spores, 10-12.5<br />

× 5.5-6.5 µm, d<strong>en</strong>sely covered with f<strong>in</strong>e warts.<br />

Filam<strong>en</strong>tous epicyte, with <strong>en</strong>crusted pigm<strong>en</strong>t.<br />

Cort<strong>in</strong>arius orellanus Fries<br />

HABITAT: isolated or gregarious, mostly under oak<br />

trees, but also under beech and hazelnut; not widespread,<br />

but constant <strong>in</strong> grow<strong>in</strong>g areas; from <strong>en</strong>d of summer to all<br />

of autumn.<br />

EDIBILITY: deadly<br />

NOTE - Characterised by its fairly robust shape, its scaly<br />

orange-brown cap, subdistant coloured gills, yellowish<br />

stipe and root-like odour, C. orellanus is responsible for<br />

some of the worst cases cytotoxic poison<strong>in</strong>g, which have<br />

a particularly grave effect on the r<strong>en</strong>al system.<br />

Consider<strong>in</strong>g its long lat<strong>en</strong>cy period, the so called<br />

Orellanus syndrome is extremely dangerous. Of equal<br />

toxicity is the C. orellanoides (= C. speciosissimus),<br />

which has similar colour<strong>in</strong>g, but which is found <strong>in</strong> conifer<br />

woods. This latter typically has a conical-umbonate cap<br />

and a stipe which is decorated with changeable, yellowish<br />

zig-zag stripes.<br />

165


CAP 50-200 mm, <strong>in</strong>itially subhemispheric, th<strong>en</strong> convex,<br />

ev<strong>en</strong>tually flat-convex, with f<strong>in</strong>e edges, convoluted at the<br />

extremes, th<strong>en</strong> straight, very thick and t<strong>en</strong>acious cuticle,<br />

viscid <strong>in</strong> humid weather, sh<strong>in</strong>y, chocolate brown,<br />

becom<strong>in</strong>g a little reddish, brown purple, more or less<br />

bl<strong>en</strong>ded with grey-violet or lilac tones, scattered with<br />

large silky silver purple strips, residues of veil, marked at<br />

the edge with visible wr<strong>in</strong>kles or radial grooves.<br />

GILLS adnate-non-marg<strong>in</strong>ated, fairly crowded, bulg<strong>in</strong>g,<br />

grey<strong>in</strong>g or dirty whitish, h<strong>in</strong>t of violet, th<strong>en</strong> clay brown,<br />

f<strong>in</strong>ally rusty due to spores, with jagged surface, whitish.<br />

STIPE 70-150 (200) × 20-40 mm, very robust,<br />

progressively dilated to a large non-marg<strong>in</strong>ated bulb, a<br />

little root<strong>in</strong>g; full, firm and almost bare at tip, hairless,<br />

whitish th<strong>en</strong> cream, marked l<strong>en</strong>gthwise with silky fibrils,<br />

the lower two thirds visibly decorated with thick residues<br />

from veil, violet-blue silver <strong>in</strong> colour<br />

FLESH thick, very firm white or cream, h<strong>in</strong>ts of violet at<br />

top part of stipe, with weak, slightly fruity and pleasant<br />

odour and sweet flavour.<br />

166<br />

Cort<strong>in</strong>arius praestans (Cordier) Gillet<br />

MICROSCOPY: spore from amygdalform to<br />

subcitriform, 14.0-17.0 × 8.0-10.0 µm, covered with<br />

coarse evid<strong>en</strong>t warts. Filam<strong>en</strong>tous gelled epicyte, made<br />

from frail hyphae. Membranous pigm<strong>en</strong>t.<br />

HABITAT: <strong>in</strong>frequ<strong>en</strong>t but abundant <strong>in</strong> grow<strong>in</strong>g area,<br />

found <strong>in</strong> hardwood areas.<br />

EDIBILITY: edible<br />

NOTE - By far and away the largest of the Cort<strong>in</strong>ari, a<br />

real giant, plus it has organoleptic properties which make<br />

it a choice edible <strong>in</strong> great demand by <strong>en</strong>thusiasts. Beyond<br />

its size and masterly shape, the morphochromatic details<br />

which assist <strong>in</strong> its id<strong>en</strong>tification are the abs<strong>en</strong>ce of a<br />

marg<strong>in</strong>ated bulb, the whitish colour of the gills which<br />

contrast with the reddish-brown of the cap, an abundant<br />

universal veil, at least <strong>in</strong> young specim<strong>en</strong>s, which leaves<br />

clear traces on the cap but above all on the stipe, and its<br />

large spores. C. cumatilis is fairly similar, but is far<br />

smaller and grows under conifers.


CAP 35-75 (90) mm conical-campanulate th<strong>en</strong> dist<strong>en</strong>ded<br />

with broad and slightly acc<strong>en</strong>tuated obtuse umbo, fairly<br />

fleshy for the g<strong>en</strong>us Entoloma; steel blue with h<strong>in</strong>ts of<br />

grey, t<strong>en</strong>d<strong>en</strong>cy to take on a less obvious grey-brownviolet<br />

colour with age, oft<strong>en</strong>, with whitish bursts, dry,<br />

hairless and jo<strong>in</strong>t at op<strong>en</strong><strong>in</strong>g, soon becom<strong>in</strong>g dissociated<br />

from gathered fibrils, ev<strong>en</strong>tually fairly split; oft<strong>en</strong><br />

rugulous-wr<strong>in</strong>kled <strong>in</strong> maturity. F<strong>in</strong>e Cuticle, separable,<br />

and only with small stripes.<br />

GILLS non-marg<strong>in</strong>ated-adnate, v<strong>en</strong>tricular, fairly wide,<br />

with surface irregularly undulated; white ivory,<br />

sometimes (wh<strong>en</strong> se<strong>en</strong> flat) almost pale cream, soon<br />

becom<strong>in</strong>g p<strong>in</strong>kish due to matur<strong>in</strong>g of spores, ev<strong>en</strong>tually<br />

dirty p<strong>in</strong>k.<br />

STIPE 30-70 × 12-25 mm, normally wid<strong>en</strong><strong>in</strong>g <strong>in</strong> the<br />

middle and fairly tapered at base, not <strong>in</strong>frequ<strong>en</strong>tly<br />

slightly canalicular, firm, full, fibrillated l<strong>en</strong>gthwise,<br />

concolour with cap, oft<strong>en</strong> with violet t<strong>in</strong>ges especially at<br />

Entoloma bloxamii (Berk. & Br.) Saccardo<br />

[= E. madidum (Fries) Gillet]<br />

tip, always lighter or white at base; loses a lot of tone<br />

<strong>in</strong>t<strong>en</strong>sity with age, becom<strong>in</strong>g slightly grey-blueish.<br />

FLESH white, firm slightly fibrous <strong>in</strong> stipe flavourful,<br />

floury odour.<br />

MICROSCOPY: polygonal, subisometric spores, with<br />

evid<strong>en</strong>t apex 7.5-8.7 (9.5) × 6.2-8.2 (9.5) µm; jo<strong>in</strong>t at<br />

h<strong>in</strong>ge.<br />

HABITAT: <strong>in</strong> meadows and <strong>in</strong> grassy and op<strong>en</strong> areas of<br />

woods; autumnal species, pres<strong>en</strong>t from pla<strong>in</strong>s to<br />

mounta<strong>in</strong>s, not common, gregarious.<br />

EDIBILITY: edible<br />

NOTE - This is one of the tricholomatoid Entoloma with<br />

the most beautiful colour and shape; similar to E.<br />

bloxamii for its shape and habitat is E. porphyrophaeum,<br />

which, however, does not have the blueish colouration but<br />

is grey-violet or grey-purple-ish and has longer spores of<br />

8.6-11.6 × 6-7.8 µm.<br />

167


CAP 50-200 mm, <strong>in</strong>itially campanulate, th<strong>en</strong> convex,<br />

ev<strong>en</strong>tually flat, with or without a low umbo, edges<br />

undulated, convoluted, lobed, the cuticle more or less<br />

light grey with silky t<strong>in</strong>ges, metallic or ev<strong>en</strong> lead grey,<br />

grey brownish, bloom<strong>in</strong>g, lead or silverish from f<strong>in</strong>e<br />

fibrils.<br />

GILLS deeply non-marg<strong>in</strong>ated, almost free, fairly spaced,<br />

b<strong>en</strong>t, th<strong>en</strong> more or less v<strong>en</strong>tricular, typically yellow, soon<br />

becom<strong>in</strong>g yellowish salmon p<strong>in</strong>k or p<strong>in</strong>k ochre-ish, with<br />

the surface serrated, coloured.<br />

STIPE 50-140 × 15-35 mm, slim, cyl<strong>in</strong>drical or supple,<br />

oft<strong>en</strong> wid<strong>en</strong>ed but oft<strong>en</strong> also att<strong>en</strong>uated at base, firm full<br />

th<strong>en</strong> filled, white, pru<strong>in</strong>ose at tip, marked l<strong>en</strong>gthwise with<br />

silky fibrils.<br />

FLESH white, firm non hygrophanous, with strong,<br />

unpleasant floury smell, and unpleasant flavour, border<strong>in</strong>g<br />

on disgust<strong>in</strong>g.<br />

168<br />

Entoloma s<strong>in</strong>uatum (Bull. : Fr.) Kummer<br />

[= Entoloma lividum (Bull. ) Quélet]<br />

MICROSCOPY: spore subisodiametric, with 6 sides, 8.5-<br />

11.0 × 7.5-8.5 µm. Tetrasporophyte basidia, with jo<strong>in</strong>ts to<br />

h<strong>in</strong>ge. Cheilocystidia abs<strong>en</strong>t. epicyte framed from<br />

(ixo)cutis. Intracellular pigm<strong>en</strong>t. Jo<strong>in</strong>ts at h<strong>in</strong>ge.<br />

HABITAT: <strong>in</strong> hardwood areas, preferably Quercus and<br />

Fagus; from <strong>en</strong>d of summer to late autumn; fairly<br />

common.<br />

EDIBILITY: toxic<br />

NOTE - Despite its fleshy, <strong>in</strong>vit<strong>in</strong>g appearance and its<br />

oft<strong>en</strong>-pleasant, floury odour, this species is a dangerous<br />

one, the cause of pot<strong>en</strong>tially severe gastro<strong>in</strong>test<strong>in</strong>al<br />

illness. An added risk comes from its similarity with<br />

Clitocybe nebularis, a mushroom commonly consumed <strong>in</strong><br />

certa<strong>in</strong> parts of Italy, and with which E. s<strong>in</strong>uatum oft<strong>en</strong><br />

shares its habitat and grow<strong>in</strong>g period. The latter has a<br />

non-fibrous cap, fairly decurr<strong>en</strong>t, separable gills, a whitish<br />

cream colour and a very particular, strong odour.


ASCOCARP stipitate and pileate.<br />

MITRA up to 35 mm, irregular shape vaguely resembl<strong>in</strong>g<br />

a horse saddle, with two-three lobes stretch<strong>in</strong>g towards<br />

the outside, many take on a curly appearance, whitish,<br />

ivory, up to fairly dark cream. Hym<strong>en</strong>ophore covered<br />

with visible part of mitra, smooth, undulated. Lower<br />

surface slightly lighter, tom<strong>en</strong>tose-floccose. S<strong>in</strong>uouslobed<br />

edge, jagged.<br />

STIPE height up to 120 mm, cyl<strong>in</strong>drical-clavate, wid<strong>en</strong>ed<br />

towards at base, deeply ploughed l<strong>en</strong>gthwise, <strong>in</strong>complete<br />

both <strong>in</strong>ternally and externally, white or whitish.<br />

FLESH leathery, but fairly elastic, sub-brittle; whitish, no<br />

dist<strong>in</strong>ctive odour or flavour.<br />

MICROSCOPY: ellipsoidal or mostly ellipsoidal spores,<br />

smooth, 18-19 × 10-12 µm, hyal<strong>in</strong>e under microscope,<br />

monoguttulate, uniseriat <strong>in</strong> asco; cyl<strong>in</strong>drical asci, non<br />

amyloid, octasporic; cyl<strong>in</strong>drical th<strong>in</strong> paraphyses, with<br />

clavate apex.<br />

Helvella crispa (Scop. : Fr.) Fries<br />

HABITAT: on the ground <strong>in</strong> hardwood or mixed woods<br />

or, also <strong>in</strong> grass, s<strong>in</strong>gle or <strong>in</strong> small group<strong>in</strong>gs of several<br />

specim<strong>en</strong>s. Common <strong>in</strong> summer-late autumn. Sometimes<br />

ev<strong>en</strong> <strong>in</strong> late spr<strong>in</strong>g.<br />

EDIBILITY: edible<br />

NOTE - Helvella lactea has a similar shape, but is<br />

smaller (just 30-40 mm tall), and is completely ice white,<br />

has a smooth lower surface and fruits on the ground or on<br />

decay<strong>in</strong>g plant matter (Frax<strong>in</strong>us) <strong>in</strong> autumn. H. lacunosa<br />

has a much darker, blackish mitra a brownish-grey stipe,<br />

and is ubiquitous. H. sulcata is considered an extreme<br />

form of H. lacunose by some authors; it is rarer, bigger,<br />

and has a regular “saddle-shaped” it is almost completely<br />

grey <strong>in</strong> colour. Furthermore, it has a yellowish-ochre-ish<br />

or yellowish grey mitra, dim<strong>en</strong>sions rather smaller size,<br />

and prefers southern, sandy ground near H. pityophila.<br />

169


ASCOMA pileate and stipitate, formed from apothecia<br />

(cap) and from stipe; total height up to 100 mm.<br />

APOTHECIA irregularly lobed-curled, rarely<br />

subselliform, composed of two, three or more variously<br />

jo<strong>in</strong>ed lobes, height up to 15-20 mm and of around 30 mm<br />

<strong>in</strong> diameter. External surface (hym<strong>en</strong>ial) irregularly<br />

rippled-undulated, yellowish; lower surface (sterile)<br />

smooth or lightly rough, whitish. Edge irregularly<br />

undulated or s<strong>in</strong>uous.<br />

STIPE up to 80 × 10-20 mm, subcyl<strong>in</strong>drical or<br />

significantly wid<strong>en</strong>ed at base, pleated-ribbed, lacunous<br />

<strong>in</strong>ternally, concolour with cap towards top, but with lilac<br />

or grey-lilac sta<strong>in</strong>s, more marked at base.<br />

FLESH elastic and fairly t<strong>en</strong>acious, but fragile, brittle,<br />

whitish-yellow<strong>in</strong>g; <strong>in</strong>significant odour and flavour.<br />

MICROSCOPY: spores mostly ellipsoidal, 18-20 × 11-<br />

12.5 µm, guttulate, with smooth wall, hyal<strong>in</strong>e, uniseriat <strong>in</strong><br />

asco; whitish <strong>in</strong> mass. Cyl<strong>in</strong>drical octasporic, not amyloid<br />

170<br />

Helvella pityophila Boud.<br />

asci. Cyl<strong>in</strong>drical paraphyses, dilatate at tip, sometimes<br />

forked, with several septums.<br />

HABITAT: species not widespread all over, fruits alone<br />

or <strong>in</strong> small groups g<strong>en</strong>erally on sandy ground <strong>in</strong> humid<br />

hardwood coniferous woods (ma<strong>in</strong>ly P<strong>in</strong>us sp.) In both<br />

alp<strong>in</strong>e and subalp<strong>in</strong>e mediterranean areas; summerautumn.<br />

EDIBILITY: edible<br />

NOTE - Very similar to H. crispa (Scop. : Fr.) Fr., it can<br />

be dist<strong>in</strong>guished only by its colour<strong>in</strong>g, which t<strong>en</strong>ds to be<br />

grey with cream reflections at the apothecia and have an<br />

abs<strong>en</strong>ce of grey-lilac tones on its stipe. H. crispa can also<br />

reach larger dim<strong>en</strong>sions (up to 120 mm <strong>in</strong> height) and is<br />

g<strong>en</strong>erally found only <strong>in</strong> hardwood forests. H. lactea Boud.<br />

is smaller (grow<strong>in</strong>g to a height of 40 mm), is completely<br />

white, becom<strong>in</strong>g ochre-ish-brown <strong>in</strong> dry conditions; it has<br />

smaller spores (16-18 × 11-12 µm), and fruits <strong>in</strong> autumn<br />

<strong>in</strong> woods rich <strong>in</strong> decay<strong>in</strong>g and decompos<strong>in</strong>g plant matter.


CAP 15-50 mm, <strong>in</strong>itially mostly campanulate or<br />

subhemispheric, ev<strong>en</strong>tually convex or convex-flat,<br />

hairless, sh<strong>in</strong>y-lubricated appearance <strong>in</strong> humid conditions,<br />

sh<strong>in</strong>y-dry <strong>in</strong> dry conditions; <strong>in</strong> these latter conditions<br />

shows very adpressed radial fibrils (slowly!). Marg<strong>in</strong><br />

fairly regular, <strong>in</strong>itially <strong>in</strong>flected, f<strong>in</strong>e, t<strong>en</strong>d<strong>en</strong>cy to crack<br />

radially; <strong>in</strong>t<strong>en</strong>se red-cherry or red-carm<strong>in</strong>e colour, pal<strong>in</strong>g<br />

until white to from disc but always with a characteristic<br />

red annulus <strong>in</strong> the peripheral area. F<strong>in</strong>e cuticle, separable<br />

until circumfer<strong>en</strong>ce.<br />

GILLS adnate or briefly decurr<strong>en</strong>t, s<strong>in</strong>uous-v<strong>en</strong>tricular,<br />

rarely b<strong>en</strong>t, wide, thick, unequal, fairly sparse,<br />

<strong>in</strong>tercalated by numerous lamellule of differ<strong>en</strong>t l<strong>en</strong>gths;<br />

yellow <strong>in</strong>itially, soon becom<strong>in</strong>g red-orange or cherry red,<br />

the surface rema<strong>in</strong>s yellow.<br />

STIPE 30-80 × 5-8 mm, irregularly cyl<strong>in</strong>drical,<br />

sometimes compressed-canalicular, oft<strong>en</strong> b<strong>en</strong>t, fragile,<br />

dry, coloured cap at tip, more shades elsewhere, white<br />

base; hollow.<br />

Hygrocybe cocc<strong>in</strong>ea (Schaeff. : Fr.) Kummer<br />

FLESH f<strong>in</strong>e, from yellow orange to red orange, also red<br />

cherry on periphery, watery, odourless, mild <strong>in</strong>significant<br />

flavour.<br />

MICROSCOPY: elliptical spores at prosurface or<br />

amygdalform, 8-10 × 4.2-5.2 µm; tetrasporophyte basidia.<br />

HABITAT: <strong>in</strong> humid and mossy grassy areas, pastures,<br />

clear<strong>in</strong>gs, gregarious and abundant <strong>in</strong> grow<strong>in</strong>g area,<br />

frequ<strong>en</strong>t; <strong>en</strong>d of summer-autumn ev<strong>en</strong> late autumn.<br />

EDIBILITY: edible<br />

NOTE - Among other small, red Hygrocybes this one’s<br />

cap, which is absolutely hairless and never scalytom<strong>en</strong>tose<br />

sets it apart from H. m<strong>in</strong>iata. Less simple<br />

however is its dist<strong>in</strong>ction from other hairless redcap<br />

species. H. reae is smaller, has a striated marg<strong>in</strong>, bitter<br />

flesh and is abundantly viscous-glut<strong>in</strong>ous; H. <strong>in</strong>sipida is a<br />

near replica of the previously-described mushroom, but<br />

has sweet flesh and a size closer to H. cocc<strong>in</strong>ea; H.<br />

punicea is noticeably larger, has a campanulate cap,<br />

yellow stipe and white flesh with clear red fibrils.<br />

171


CAP 10-30 mm, campanulate or hemispheric-umbonate,<br />

th<strong>en</strong> dist<strong>en</strong>ded to a fairly prom<strong>in</strong><strong>en</strong>t and acute papilla or<br />

dist<strong>en</strong>ded and mostly umbonate, abundantly viscousglut<strong>in</strong>ous,<br />

fragile, with the marg<strong>in</strong> f<strong>in</strong>e and striated with<br />

transpar<strong>en</strong>cy; highly polychrome, yellow ochre-ish<br />

olivish, grass gre<strong>en</strong> with sulphur yellow tones, yellow<br />

orange with gre<strong>en</strong> sta<strong>in</strong>s, sometimes the yellow pigm<strong>en</strong>t<br />

is abs<strong>en</strong>t thus the gre<strong>en</strong> tones evolve towards blue-blueish<br />

ones. F<strong>in</strong>e cuticle, yet separable at circumfer<strong>en</strong>ce.<br />

GILLS non-marg<strong>in</strong>ated-adnate, spaced, v<strong>en</strong>tricular, with<br />

regular and jo<strong>in</strong>t surface; gold<strong>en</strong> yellow, saffron yellow,<br />

sometimes with gre<strong>en</strong>ish or tawny sta<strong>in</strong>s (nearly white <strong>in</strong><br />

abs<strong>en</strong>ce of yellow pigm<strong>en</strong>t); <strong>in</strong>tercalated by numerous<br />

lamellule of differ<strong>en</strong>t l<strong>en</strong>gths.<br />

STIPE 40-80 × 3-6 mm, cyl<strong>in</strong>drical or progressively<br />

wid<strong>en</strong>ed at base, oft<strong>en</strong> supple-curv<strong>in</strong>g, highly viscous due<br />

to a persist<strong>en</strong>t and thick layer of hyal<strong>in</strong>e glut<strong>en</strong>; yellow<br />

gre<strong>en</strong>ish, gre<strong>en</strong> or gre<strong>en</strong> blueish at tip, sometimes with<br />

tawny or brick coloured ve<strong>in</strong>s, soon becom<strong>in</strong>g hollow.<br />

172<br />

Hygrocybe psittac<strong>in</strong>a (Schaeff. : Fr.) Kummer<br />

FLESH f<strong>in</strong>e, white, yet coloured <strong>in</strong> cap, also fairly<br />

deeply, on periphery, very watery; no odour and slightly<br />

earthy flavour, like moss.<br />

MICROSCOPY: ovoidal spores, smooth, more rarely<br />

ellipsoidal, (6.5) 7.4-9 × 4.5-5.6 µm.<br />

HABITAT: <strong>in</strong> meadows, among grass and moss, highly<br />

camouflaged, <strong>in</strong> autumn; gregarious, fairly frequ<strong>en</strong>t.<br />

EDIBILITY: of no value<br />

NOTE - This species is made unmistakeable by its<br />

colour<strong>in</strong>g and its marked glut<strong>in</strong>ous properties; <strong>in</strong> any<br />

case, there are oft<strong>en</strong> anomalies <strong>in</strong> its pigm<strong>en</strong>t-distribution<br />

(see description), which can make it appear with<br />

unexpected colours. H. perplexa (= H. sciophana) is a<br />

lookalike, though with wider gills, is a brick-red colour<br />

with slight gre<strong>en</strong> t<strong>in</strong>ge and is fairly rare. Ev<strong>en</strong> H. laeta<br />

can seem similar due to its many colours and viscosity,<br />

while H. psittac<strong>in</strong>a, on the other hand, has a convex cap,<br />

and more importantly, very decurr<strong>en</strong>t gills, which are not<br />

non-marg<strong>in</strong>ated or adnate.


CAP 30-60 mm, hemispheric, soon becom<strong>in</strong>g convex,<br />

viscous, <strong>in</strong>itially white, with tempo takes on fairly<br />

ext<strong>en</strong>sive yellowish; edge with fairly regular flow, f<strong>in</strong>ely<br />

hairy, adorned with floccose-cottony granules soon<br />

becom<strong>in</strong>g yellow; f<strong>in</strong>e separable cuticle,.<br />

GILLS decurr<strong>en</strong>t, fairly wide of and fairly spaced, thick,<br />

<strong>in</strong>tercalated from numerous lamellule of differ<strong>en</strong>t l<strong>en</strong>gths;<br />

white, <strong>in</strong> maturity with vague flesh coloured t<strong>in</strong>ges, th<strong>en</strong><br />

t<strong>en</strong>d<strong>en</strong>cy to turn yellow like the rest of the carpophore to<br />

the edge.<br />

STIPE 30-70 × 8-14 mm, slim, cyl<strong>in</strong>drical, normally<br />

att<strong>en</strong>uated at base; cort<strong>in</strong>iform residues visible at tip<br />

which, like the edge of cap, bears the same gra<strong>in</strong>y<br />

floccul<strong>en</strong>ce, characteristic, t<strong>en</strong>d<strong>en</strong>cy to turn yellow,<br />

slightly viscous due to humidity, soon becom<strong>in</strong>g dry<br />

<strong>in</strong>itially full fibrils, soon becom<strong>in</strong>g medullar.<br />

FLESH very f<strong>in</strong>e towards the edges, compact on<br />

circumfer<strong>en</strong>ce, white, due to imbibition takes on a citr<strong>in</strong>a<br />

Hygrophorus chrysodon (Batsch : Fr.) Fries<br />

t<strong>in</strong>ge; <strong>in</strong>dist<strong>in</strong>ctive flavour, odour not especially<br />

pronounced, but clearly of the “cossus” type.<br />

MICROSCOPY: spores l<strong>en</strong>gthwise ellipsoidal, smooth, 8-<br />

9.2 × 4.2-5 µm.<br />

HABITAT: <strong>in</strong> the mounta<strong>in</strong>ous hardwood areas, with<br />

prefer<strong>en</strong>ce for beech but also <strong>in</strong> the coniferous and mixed<br />

woods; gregarious, from <strong>en</strong>d of summer to all of autumn,<br />

fairly common and widespread.<br />

NOTE - This beautiful hygrophore reaches the peak of its<br />

lovel<strong>in</strong>ess wh<strong>en</strong> the granulation which adorns its cap<br />

marg<strong>in</strong> and the tip of its stipe assume their <strong>in</strong>t<strong>en</strong>se yellow<br />

colouration. It is liable to be confused with species of<br />

eburneus-cossus, which however, is highly viscous, non<br />

floccul<strong>en</strong>t and does not visibly yellow. An exception to<br />

this last rule however is H. discoxanthus (= H.<br />

chrysaspis), which, wh<strong>en</strong> it dehydrates, becomes a<br />

dist<strong>in</strong>ct rusty fawn colour (the <strong>en</strong>tire carpophore is rusty<br />

brown wh<strong>en</strong> dried).<br />

173


CAP 15-45 mm, convex, th<strong>en</strong> flat with broad obtuse<br />

umbo, f<strong>in</strong>ally also depressed <strong>in</strong> prediscal area, with the<br />

edge b<strong>en</strong>t at the extremes, excess; pure white, only <strong>in</strong><br />

aged specim<strong>en</strong>s vague pale ochre-ish or flesh colour<br />

sta<strong>in</strong>s are visible on circumfer<strong>en</strong>ce, highly viscousglut<strong>in</strong>ous,<br />

thick, elastic and separable cuticle.<br />

GILLS adnate or slightly decurr<strong>en</strong>t, s<strong>in</strong>uous, slightly<br />

v<strong>en</strong>tricular, th<strong>en</strong> b<strong>en</strong>t, highly thick, not very spaced,<br />

white, f<strong>in</strong>ally lightly flesh coloured; <strong>in</strong>tercalated from<br />

lamellule of differ<strong>en</strong>t l<strong>en</strong>gths.<br />

STIPE 40-100 × 8-15 mm, slim, cyl<strong>in</strong>drical, sometimes<br />

supple, or a little dilated, att<strong>en</strong>uated at base, dry and<br />

floccose at tip, glut<strong>in</strong>ous <strong>in</strong> the lower 3/4; white, with age<br />

oft<strong>en</strong> with ochre-ish shades or p<strong>in</strong>kish at base.<br />

FLESH white, thicker on circumfer<strong>en</strong>ce, not unpleasant<br />

flavour, while on the contrary odour is pronounced and<br />

nauseat<strong>in</strong>g, with fruity, sweet and sour h<strong>in</strong>ts of the<br />

“cossus” family, similar to shellfish cook<strong>in</strong>g, and def<strong>in</strong>ed<br />

<strong>in</strong> literature as similar to the odour of woodworm.<br />

174<br />

Hygrophorus eburneus (Bull. : Fr.) Fries<br />

CHEMICAL REACTION: potassium hydrate (KOH) hot<br />

yellow, yellow orange, base of stipe.<br />

MICROSCOPY: spores l<strong>en</strong>gthwise ellipsoidal, sometimes<br />

subcyl<strong>in</strong>drical, smooth, 7.4-8.5 × 4.5-5.6 µm.<br />

HABITAT: <strong>in</strong> hardwood areas with prefer<strong>en</strong>ce for beech,<br />

but not exclusively; from <strong>en</strong>d of summer to all of autumn,<br />

non very common.<br />

EDIBILITY: non edible<br />

NOTE – H. eburneus is likely to be a collective species <strong>in</strong><br />

which other <strong>en</strong>tities may be grouped which are curr<strong>en</strong>tly<br />

considered as <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>t species by some authors. Thus<br />

H. quercetorum is a variant which is just slightly more<br />

robust; we consider H. cossus to be a simple variety with<br />

a yellow pale reaction to potassium. H. discoxanthus (=<br />

H. chrysapsis), despite be<strong>in</strong>g similar morphologically, we<br />

believe merits the dignity of its own species thanks to its<br />

all-over colouration of rusty-fawn to brown reddish, <strong>in</strong><br />

dry conditions, which is ev<strong>en</strong> more evid<strong>en</strong>t <strong>in</strong> dried<br />

samples.


CAP 50-120 (160) mm, convex with broad and obtuse<br />

c<strong>en</strong>tral umbo, th<strong>en</strong> dist<strong>en</strong>ded and also depressed around<br />

umbo, very fleshy, firm glut<strong>in</strong>ous, grey-sooty or greygre<strong>en</strong>ish,<br />

oft<strong>en</strong> with vaguely lilac sta<strong>in</strong>s (similar to<br />

Gomphidius glut<strong>in</strong>osus); g<strong>en</strong>erally the disc peripheral<br />

zone are darker, wide areas decorated <strong>in</strong> ivory white<br />

pres<strong>en</strong>t elsewhere. Thick, stocky, very adher<strong>en</strong>t cuticle.<br />

GILLS b<strong>en</strong>t-decurr<strong>en</strong>t, whitish, th<strong>en</strong> sta<strong>in</strong>ed ochre- pale<br />

flesh colour; thick, wide, v<strong>en</strong>ous on background, not very<br />

spaced, <strong>in</strong>tercalated from numerous lamellule, g<strong>en</strong>erally<br />

small and short <strong>in</strong> l<strong>en</strong>gth.<br />

STIPE 60-150 x 20-50 mm, full, bulky, fusoid, obese <strong>in</strong><br />

middle th<strong>en</strong> subroot<strong>in</strong>g, white, covered by hyal<strong>in</strong>e glut<strong>in</strong>e<br />

(only <strong>in</strong> maturity or dry<strong>in</strong>g more brown-olivish coloured<br />

<strong>in</strong> parts), floccose decorations at tip.<br />

FLESH thick, compact, firm white; odourless, no<br />

particular flavour.<br />

Hygrophorus latitabundus Britzelmayr<br />

(= Hygrophorus limac<strong>in</strong>us Scop. ex Fr. ss. Auct.)<br />

HABITAT: exclusively <strong>in</strong> P<strong>in</strong>us woods, <strong>in</strong> mounta<strong>in</strong>ous<br />

and coastal areas fairly late; rare, but abundant <strong>in</strong> grow<strong>in</strong>g<br />

area.<br />

MICROSCOPY: spores fairly l<strong>en</strong>gthwise ellipsoidal 8.5-<br />

11.5 x 4.7-7 µm. Tetrasporophyte basidia.<br />

EDIBILITY: edible<br />

NOTE - This is a very heavily-set Hygrophorus. It<br />

belongs to the Olivaceoumbr<strong>in</strong>i with Hygrophorus<br />

olivaceoalbus, which is decidedly frailer, with a sl<strong>en</strong>der<br />

stipe and associated with spruce and with H. persoonii (=<br />

H. dichrous), a mushroom which can reach a considerable<br />

size, but which fruits associated with oak and has a<br />

particular gre<strong>en</strong> reaction to ammonia fumes. Other species<br />

of the g<strong>en</strong>us are easily recognisable by their differ<strong>en</strong>t<br />

morphological features.<br />

175


CAP 35-100 (150) mm, convex-hemispheric, soon<br />

becom<strong>in</strong>g dist<strong>en</strong>ded with broad obtuse umbo, f<strong>in</strong>ally also<br />

depressed <strong>in</strong> prediscal area, with edge b<strong>en</strong>t at the<br />

extremes, th<strong>in</strong>ned; <strong>in</strong>itially white or whitish ivory, shades<br />

of cream or yellow-p<strong>in</strong>kish on circumfer<strong>en</strong>ce <strong>in</strong> adults<br />

some excoriation is also pres<strong>en</strong>t; slightly viscous due to<br />

humidity, soon becom<strong>in</strong>g dry g<strong>en</strong>erally ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a<br />

fairly sh<strong>in</strong>y look.<br />

GILLS adnate, fairly decurr<strong>en</strong>t <strong>in</strong> adults, b<strong>en</strong>t, thick and<br />

spaced, concolour with cap or fairly uniformly pale<br />

cream; <strong>in</strong>tercalated from lamellule.<br />

STIPE 30-70 (90) × 12-25 (30) mm, typically tapered at<br />

base, firm and fleshy, barely reaches <strong>in</strong> l<strong>en</strong>gth the same<br />

dim<strong>en</strong>sions as the diameter of cap; dry or slightly viscous<br />

with humidity, white, ev<strong>en</strong>tually ochre-ish at base <strong>in</strong><br />

adults; full.<br />

FLESH abundant on circumfer<strong>en</strong>ce, firm and compact,<br />

more fibrous <strong>in</strong> stipe, white; flavourful, sometimes with<br />

slightly bitter aftertaste, odour is not very clear but<br />

characteristic and unmistakable, like boiled milk.<br />

176<br />

Hygrophorus p<strong>en</strong>arius Fries<br />

CHEMICAL REACTION: flesh of stipe reacts yellow<br />

with KOH.<br />

MICROSCOPY: ellipsoidal spores, sometimes briefly<br />

ellipsoidal, smooth, 6-7.4 × 4.5-5 µm.<br />

HABITAT: <strong>in</strong> autumn, <strong>in</strong> hardwood areas, especially <strong>in</strong><br />

the oak; abundant <strong>in</strong> grow<strong>in</strong>g area.<br />

EDIBILITY: edible<br />

NOTE - Much sought after due to its good organoleptic<br />

characteristics, and <strong>in</strong>exp<strong>en</strong>sive thanks to its flesh<strong>in</strong>ess,<br />

H. p<strong>en</strong>arius has earned a reputation as the best edible<br />

hygrophore. Other similar white and dry hygrophores are:<br />

H. Karst<strong>en</strong>ii, found on mounta<strong>in</strong> spruce, with apricot<br />

gills, H. poetarum, found <strong>in</strong> beech forests, which has a<br />

matt cap, p<strong>in</strong>k t<strong>in</strong>ge and a balsamic odour; H. phages,<br />

grows on beech, is slightly shorter, with a p<strong>in</strong>kish<br />

reflection on its gills; f<strong>in</strong>ally H. barbatulus, a rare species<br />

with a pale cream-ochre-ish cap, is fairly hairy on its<br />

marg<strong>in</strong> and has ochre-cream-ish gills.


CAP: 35-100 (135) mm, convex with edge convoluted<br />

and excessive at the extreme edges, th<strong>en</strong> from pulv<strong>in</strong>ate to<br />

fairly dist<strong>en</strong>ded sometimes lobed, very fleshy; <strong>in</strong>itially<br />

whitish, soon becom<strong>in</strong>g fairly sporadically spotted with<br />

w<strong>in</strong>e red patches or frills, more crowded on<br />

circumfer<strong>en</strong>ce, th<strong>en</strong> with zone fairly wide of delicate<br />

raspberry p<strong>in</strong>k, sometimes also completely coloured with<br />

the same tone, sometimes yellow<strong>in</strong>g with age; lightly<br />

viscous to humid weather, soon becom<strong>in</strong>g dry very f<strong>in</strong>e<br />

cuticle, separable for 1/2-2/3 of radius.<br />

GILLS: from horizontal-adnate to lightly b<strong>en</strong>t-adnate,<br />

sometimes non-marg<strong>in</strong>ated; very crowded for the<br />

Hygrophorus g<strong>en</strong>us, thick, of irregular width but always<br />

fairly scarce; white or whitish-flesh coloured, <strong>in</strong> maturity<br />

fairly d<strong>en</strong>sely spotted with w<strong>in</strong>y red colour, <strong>in</strong>tercalated<br />

from lamellule <strong>in</strong> report of ca. 1:1.<br />

STIPE: 35-70 × 10-25 mm, irregularly cyl<strong>in</strong>drical, oft<strong>en</strong><br />

slightly att<strong>en</strong>uated at base, floccose at tip, white th<strong>en</strong><br />

Hygrophorus russula (Schaeff. : Fr.) Quélet<br />

[= Tricholoma russula (Schaeff. : Fr.) Gillet]<br />

fairly ext<strong>en</strong>sively marked with red-purpl<strong>in</strong>g spots; dry,<br />

firm, full.<br />

FLESH: white, very firm can take on light p<strong>in</strong>kish sta<strong>in</strong>s<br />

especially towards the foot of stipe; highly variable<br />

flavour also conta<strong>in</strong>ed <strong>in</strong> the same report, from mild (ca.<br />

50%) to bitter up to clearly bitter, no significant odour.<br />

MICROSCOPY: ovoid or ellipsoidal spores (6) 7-9.3 ×<br />

4.5-5.2 µm.<br />

HABITAT: <strong>in</strong> hardwood areas with prefer<strong>en</strong>ce for oak, <strong>in</strong><br />

autumn and also late autumn, gregarious <strong>in</strong> large groups,<br />

rarely solitary.<br />

EDIBILITY: edible<br />

NOTE - In some zones it is highly prized and is stored <strong>in</strong><br />

oil. The most trustworthy characteristic <strong>in</strong> dist<strong>in</strong>guish<strong>in</strong>g<br />

it from the similar species, H. erubesc<strong>en</strong>s, is the particular<br />

crowdedness of its gills; other valid dist<strong>in</strong>guish<strong>in</strong>g<br />

features are its habitat, its <strong>in</strong>disposition to yellow<strong>in</strong>g, and<br />

its slightly-smaller pores.<br />

177


CAP 20-50 mm, <strong>in</strong>itially convex, th<strong>en</strong> from flat to<br />

depressed <strong>in</strong> c<strong>en</strong>tre, with the edges convoluted at the<br />

extremes, th<strong>en</strong> dist<strong>en</strong>ded, a little undulated, scalloped and<br />

furrowed; completely vivid purple-amethyst fairly dark,<br />

pal<strong>in</strong>g, with dry conditions, towards grey-blueish, ochrecream<br />

or dirty white with lilac-ish t<strong>in</strong>ges; cap cover<strong>in</strong>g<br />

matt, smooth or felted, slightly scaled <strong>in</strong> the c<strong>en</strong>tre;<br />

hygrophanous.<br />

GILLS mostly adnate to stipe or a little decurr<strong>en</strong>t,<br />

fairly spaced, width of and thick, anastomosate at base;<br />

vivid violet, pru<strong>in</strong>ose; with irregular surface.<br />

STIPE 40-60 (100) × 4-8 mm, cyl<strong>in</strong>drical, oft<strong>en</strong><br />

undulated, oft<strong>en</strong> wider at tip, striated l<strong>en</strong>gthwise with<br />

white fibrils on dark violet-amethyst background; whitish<br />

towards base, strongly pal<strong>in</strong>g <strong>in</strong> dry conditions and wh<strong>en</strong><br />

cut l<strong>en</strong>gthwise reveals whitish flesh.<br />

178<br />

Laccaria amethyst<strong>in</strong>a (Huds.) Cooke<br />

FLESH f<strong>in</strong>e <strong>in</strong> cap, pale violet; flesh of stipe is fibrous,<br />

elastic, white and firm with sweet odour and flavour.<br />

MICROSCOPY: spores 9.0-10.0 × 8.5-10.0 µm, globular,<br />

with tall sp<strong>in</strong>es up to 2 mm; tetrasporophyte basidia.<br />

Cheilocystidia abundant, 30-80 × 6.0-10.0 µm, wiry,<br />

irregular, sometimes branched, hyal<strong>in</strong>e. Pileipellis<br />

hyphae cutis cyl<strong>in</strong>drical arranged radially.<br />

HABITAT: grows humus rich soil, from hills to<br />

mounta<strong>in</strong>s, gregarious or <strong>in</strong> groups, <strong>in</strong> hardwood and<br />

coniferous woods.<br />

EDIBILITY: of no value<br />

NOTE - This species cannot be confused with other<br />

Laccaria. Only very old and particularly dry specim<strong>en</strong>s,<br />

which have lost their characteristic violet colour, run any<br />

risk of confus<strong>in</strong>g one as to their id<strong>en</strong>tity.


CAP 10-35 mm, <strong>in</strong>itially convex, th<strong>en</strong> flat and depressed,<br />

striated for transpar<strong>en</strong>cy almost up to c<strong>en</strong>tre; edges from<br />

round to cr<strong>en</strong>ulated. hygrophanous cuticle, ochre-beige,<br />

f<strong>in</strong>ely scaly with dry weather with almost marg<strong>in</strong>al area,<br />

brown-tawny, f<strong>in</strong>ely warty-gra<strong>in</strong>y <strong>in</strong> humid weather.<br />

GILLS mostly adnate or lightly decurr<strong>en</strong>t, fairly spaced,<br />

wide, salmon p<strong>in</strong>k or red-brownish, with the surface<br />

whole coloured.<br />

STIPE 30-60 × 1-3.5 mm, cyl<strong>in</strong>drical, wid<strong>en</strong><strong>in</strong>g at base,<br />

from full to hollow, covered with f<strong>in</strong>e white fibrils<br />

l<strong>en</strong>gthwise on brown-red background, pru<strong>in</strong>ose to apex,<br />

with mycelium white at base.<br />

FLESH f<strong>in</strong>e, red-brownish, watery. Pleasant odour, sweet<br />

fungus flavour.<br />

Laccaria fraterna (Sacc.) Pegler<br />

MICROSCOPY: spores 8.5-10.5 × 7.0-9.5 µm, from<br />

subglobose to mostly ellipsoidal, ech<strong>in</strong>ulate, hyal<strong>in</strong>e, with<br />

sp<strong>in</strong>es reach<strong>in</strong>g 1 µm <strong>in</strong> l<strong>en</strong>gth; bisporic and monosporic<br />

basidia.<br />

HABITAT: basidiomata, gregarious or cespitose, near<br />

Eucalyptus, P<strong>in</strong>us, Cupressus sp. pl., <strong>in</strong> Mediterranean<br />

<strong>en</strong>vironm<strong>en</strong>t. Summer-autumn.<br />

EDIBILITY: of no value<br />

NOTE - It is almost impossible to determ<strong>in</strong>e a Laccaria<br />

with only the morphological data such as that evid<strong>en</strong>ced<br />

by L. fraterna, to go on without the aid of a microscope.<br />

This species can be recognized by its mostly bisporic<br />

basidia, its spore size, the l<strong>en</strong>gth of its sp<strong>in</strong>es and its<br />

typical Mediterranean habitat.<br />

179


CAP 10-35 (45) mm, <strong>in</strong>itially hemispheric, th<strong>en</strong> convex<br />

ed f<strong>in</strong>ally flat and depressed <strong>in</strong> the c<strong>en</strong>tre; edges striated<br />

for transpar<strong>en</strong>cy, undulated and d<strong>en</strong>ticulate; from brownorange,<br />

brown reddish, to p<strong>in</strong>kish red <strong>in</strong> humid weather,<br />

paler to beige or faded ochre-ish with the dry; matt<br />

surface, smooth, very f<strong>in</strong>e radial fibrils, a little dandruff <strong>in</strong><br />

c<strong>en</strong>tre, hygrophanous.<br />

GILLS mostly adnate or lightly decurr<strong>en</strong>t, wide, spaced;<br />

light flesh colour light at first, th<strong>en</strong> brown-p<strong>in</strong>k, on the<br />

whole surface.<br />

STIPE 35-100 × 3-5 mm, cyl<strong>in</strong>drical, oft<strong>en</strong> slightly<br />

wid<strong>en</strong>ed at base, full th<strong>en</strong> hollow, elastic; surface from<br />

brown-red to brown dirty, smooth or just striated, covered<br />

longitud<strong>in</strong>al with whitish fibrils.<br />

FLESH watery, from brown-grey to whitish, f<strong>in</strong>e; weak<br />

herbal odour; sweet fungus flavour.<br />

180<br />

Laccaria laccata (Scop. : Fr.) Berkeley & Broome<br />

MICROSCOPY: spores from subglobose to ellipsoidal,<br />

hyal<strong>in</strong>e, 8.0-10.0 × 6.5-8.0 µm; sp<strong>in</strong>es 1-2 µm <strong>in</strong> l<strong>en</strong>gth.<br />

basidia clavate, 28-45 × 8-15 µm, tetrasporic, h<strong>in</strong>ged;<br />

l<strong>en</strong>gth of sterigmata up to 10 µm. regular lamellar web.<br />

Cheilocystidia cyl<strong>in</strong>drical, fairly supple, 25-60 × 3-7 µm.<br />

Cuticle formed from parallel hyphae, <strong>in</strong>terwov<strong>en</strong>, width<br />

of 7-15 µm, with some hyphae scattered perp<strong>en</strong>dicularly.<br />

H<strong>in</strong>ges pres<strong>en</strong>t.<br />

HABITAT: isolated or gregarious, <strong>in</strong> hardwood or<br />

coniferous woods or on their outskirts, <strong>in</strong> uncovered<br />

areas, on carpets of needles, among moss<br />

EDIBILITY: of no value<br />

NOTE - L. laccata var. laccata with its small and delicate<br />

carpophores this can be dist<strong>in</strong>guished from other varieties<br />

above all due to its ellipsoidal spores, which have a<br />

l<strong>en</strong>gth/width ratio of over 1-2.


CAP 50-150 mm at start, convex, th<strong>en</strong> flatt<strong>en</strong>ed, f<strong>in</strong>ally<br />

depressed-<strong>in</strong>fundibulform, yellow-orange, orange-ochreish,<br />

with more saturated conc<strong>en</strong>tric zone, edges<br />

convoluted, th<strong>en</strong> more or less undulated-lobed, hairless<br />

surface, a little viscous <strong>in</strong> humid weather, th<strong>en</strong> dry,<br />

pru<strong>in</strong>ose, more clear at edges.<br />

GILLS lightly decurr<strong>en</strong>t, crowded, rigid, forked, pale<br />

orange th<strong>en</strong> carrot red <strong>in</strong> fractures, f<strong>in</strong>ally, very slowly,<br />

dirty gre<strong>en</strong>ish.<br />

STIPE 30-60 × 15-25 mm, filled th<strong>en</strong> hollow, pru<strong>in</strong>osefelted,<br />

pale orange, more or less bear<strong>in</strong>g red-orange<br />

dimples.<br />

FLESH pale, carrot red <strong>in</strong> fractures to the latex, th<strong>en</strong> very<br />

slowly becom<strong>in</strong>g gre<strong>en</strong>ish (<strong>in</strong> 24 ore), with fruity odour<br />

and mild flavour.<br />

LATEX: carrot red, uniform or pal<strong>in</strong>g, with mild flavour.<br />

Lactarius deliciosus (L. : Fr.) S.F. Gray<br />

MICROSCOPY: spores from mostly ellipsoidal to<br />

ellipsoidal, 8.1-10.3 × 6.5-8.0 µm, with warts jo<strong>in</strong>t with<br />

fairly thick ridges, form<strong>in</strong>g an almost complete lattice;<br />

tetrasporophyte basidia, subclavate; Pileipellis, an<br />

ixocutis is pres<strong>en</strong>t<br />

HABITAT: exclusively associated with P<strong>in</strong>us; frequ<strong>en</strong>t <strong>in</strong><br />

p<strong>in</strong>e. From summer to the first signs of w<strong>in</strong>ter.<br />

EDIBILITY: edible<br />

NOTE - Of those species which associate with conifers<br />

and have orange or red latex, L. deliciosus is easily<br />

recognisable by its cap with orange-ochre-ish patches, its<br />

stipe covered with red-orange dimples, its unchang<strong>in</strong>g<br />

latex and its habitat of p<strong>in</strong>e trees. Of the large, edible<br />

milk-caps this one is fairly well known, and, probably, the<br />

one best suited to the d<strong>in</strong>ner table.<br />

181


CAP 30-100 mm, <strong>in</strong>itially convex th<strong>en</strong> flat, f<strong>in</strong>ally<br />

depressed <strong>in</strong> the c<strong>en</strong>tre, vivid orange, th<strong>en</strong> rusty orange,<br />

gre<strong>en</strong><strong>in</strong>g all over with age, not zoned or with crowded<br />

zon<strong>in</strong>g at edges, slightly evid<strong>en</strong>t, rounded edges th<strong>en</strong><br />

op<strong>en</strong>, the surface slightly viscous <strong>in</strong> humid weather, th<strong>en</strong><br />

dry, pru<strong>in</strong>ose-rugulous.<br />

GILLS adnate-decurr<strong>en</strong>t, very crowded, forked, ochreorange-ish,<br />

sta<strong>in</strong>ed gre<strong>en</strong>-brownish <strong>in</strong> fractures.<br />

STIPE 30-60 × 10-25 mm, filled, soon becom<strong>in</strong>g hollow,<br />

concolour with cap, g<strong>en</strong>erally not scrobitulate, pru<strong>in</strong>ose,<br />

bear<strong>in</strong>g a white rim at tip, ev<strong>en</strong>tually gre<strong>en</strong><strong>in</strong>g all over.<br />

FLESH cream-orange, slowly turn<strong>in</strong>g to w<strong>in</strong>ey red, th<strong>en</strong><br />

dark gre<strong>en</strong>, with fruity or carrot like odour and mild or<br />

lightly acrid and bitter flavour. Guaiac, w<strong>in</strong>y grey.<br />

LATEX: slightly abundant, orange, turn<strong>in</strong>g red-w<strong>in</strong>ey <strong>in</strong><br />

15 m<strong>in</strong>utes, with mild flavour, th<strong>en</strong> a little acrid and<br />

bitter.<br />

182<br />

Lactarius deterrimus Gröger<br />

MICROSCOPY: spores from subglobose to mostly<br />

ellipsoidal, 8.0-11.4 × 6.6-8.7 µm, with warts jo<strong>in</strong>ed with<br />

th<strong>in</strong> ridges, form<strong>in</strong>g a very <strong>in</strong>complete lattice;<br />

tetrasporophyte basidia, subclavate; Pileipellis, it has an<br />

ixocutis.<br />

HABITAT: symbiont of Picea abies; highly widespread<br />

and common <strong>in</strong> fir abetaie and red fir; from summer to<br />

late autumn.<br />

EDIBILITY: edible<br />

NOTE - The peculiar characteristics of this species are the<br />

non patchy cap and stipe, though which soon become<br />

sta<strong>in</strong>ed gre<strong>en</strong>. The stipe is not dimpled, though has a<br />

typical white circle at its tip; the latex moves slowly from<br />

orange to w<strong>in</strong>ey red and its habitat is near Picea abies. In<br />

spite of its name, which means “the worst”... it is<br />

considered a good edible, ev<strong>en</strong> if less well-esteemed than<br />

L. deliciosus.


CAP 50-150 mm, <strong>in</strong>itially convex, th<strong>en</strong> flat-depressed,<br />

f<strong>in</strong>ally <strong>in</strong>fundibulform, white-cream, soon becom<strong>in</strong>g<br />

dotted with brown-ochre ones, ev<strong>en</strong>tually with some rusty<br />

shades, the edges are f<strong>in</strong>e and convoluted wh<strong>en</strong> young,<br />

th<strong>en</strong> lobed-undulated, the cuticle is adnate, dry, hairless, a<br />

little rugulous, with the t<strong>en</strong>d<strong>en</strong>cy to crack.<br />

GILLS from adnate-decurr<strong>en</strong>t to slightly decurr<strong>en</strong>t, very<br />

crowded and close, th<strong>in</strong>, with numerous lamellule, white<br />

with pale cream and flesh colour t<strong>in</strong>ges, brownish <strong>in</strong><br />

fractures.<br />

STIPE 60-10 × 15-25 mm, short or slim, cyl<strong>in</strong>drical or<br />

att<strong>en</strong>uated at base, oft<strong>en</strong> ecc<strong>en</strong>tric, full, firm smooth,<br />

white, with dirty cream or brown-ochre-ish sta<strong>in</strong>s from<br />

the base.<br />

FLESH thick, firm, white to gill edge, but soon turn<strong>in</strong>g<br />

cream, with a very acrid flavour and no significant odour.<br />

LATEX: uniformly white if isolated, but lightly yellow<br />

olivish, dry<strong>in</strong>g on the gills, with very peppery flavour.<br />

Lactarius piperatus (Scop. : Fr.) S.F. Gray<br />

MICROSCOPY: spores from subglobose to oblong, 7.2-<br />

10.4 × 5.2-7.5 µm, with warts jo<strong>in</strong>ed <strong>in</strong> ridges and<br />

form<strong>in</strong>g un <strong>in</strong>complete lattice; bisporic or tetrasporic<br />

basidia, subclavate ; Pileipellis, epithelium.<br />

HABITAT: <strong>in</strong> hardwood and coniferous woods, very<br />

common, grows <strong>in</strong> groups, oft<strong>en</strong> early; summerautumn.<br />

EDIBILITY: non edible<br />

NOTE - L. piperatus can be told apart from L.<br />

pergam<strong>en</strong>us by the negative reaction of its latex with<br />

potassium hydroxide and by its gills and flesh which do<br />

not assume grey-gre<strong>en</strong>ish sta<strong>in</strong>s. L. vellereus and similar<br />

species are usually more robust and stubby, and have<br />

spaced out gills; L. controversus, a symbiont of poplar<br />

trees, has decidedly p<strong>in</strong>kish gills.<br />

183


CAP 40-80 mm, from convex to flat-depressed, firm<br />

fleshy, with the edges convoluted at the extremes, th<strong>en</strong><br />

rounded, undulated-lobed, f<strong>in</strong>ely felted. Cuticle lightly<br />

viscous <strong>in</strong> humid weather, th<strong>en</strong> dry, pru<strong>in</strong>ose, slightly<br />

zoned at most, light orange, orange-ochre-ish, orangegrey<strong>in</strong>g,<br />

f<strong>in</strong>ally with non uniform gre<strong>en</strong>ish sta<strong>in</strong>s.<br />

GILLS crowded, th<strong>in</strong>, from adnate to lightly decurr<strong>en</strong>t,<br />

forked, lilac-p<strong>in</strong>kish, grey-lilac-orange, grey- v<strong>in</strong>ous red,<br />

red-brownish <strong>in</strong> fractures th<strong>en</strong> sta<strong>in</strong>ed dark gre<strong>en</strong>.<br />

STIPE 20-40 × 10-20 mm, firm filled, soon becom<strong>in</strong>g<br />

hollow, cyl<strong>in</strong>drical or a little att<strong>en</strong>uated at the base,<br />

pru<strong>in</strong>ose, white-grey<strong>in</strong>g at the summit, p<strong>in</strong>k-violet, p<strong>in</strong>kgreyish,<br />

grey-violet <strong>in</strong> the lower part, smooth or with<br />

small darker dimples<br />

FLESH firm whitish, th<strong>en</strong> brick p<strong>in</strong>k, red-brick. Fruity<br />

odour, mild th<strong>en</strong> lightly bitter flavour.<br />

184<br />

Lactarius sanguifluus (Paulet) Fr.<br />

LATEX slightly abundant, red-v<strong>in</strong>ous, uniform, mild th<strong>en</strong><br />

bitter flavour.<br />

MICROSCOPY: spores 7-9 × 6-7 µm, mostly ellipsoidal,<br />

crested-reticular, with little mesh completely closed.<br />

HABITAT: thermophilic species, grows exclusively<br />

under P<strong>in</strong>us. Summer-autumn.<br />

EDIBILITY: edible<br />

NOTE - A thermophilic species which is fairly common<br />

to maritime p<strong>in</strong>es. It can be recognised by its orangetoned<br />

cap and its lilac-p<strong>in</strong>k gills. It is confusable with<br />

Lactarius v<strong>in</strong>osus Quél., which, however, has a cap with<br />

patches of reddish-violet tones, and gills which are<br />

<strong>in</strong>itially w<strong>in</strong>ey-red to violet, oft<strong>en</strong> with almost total<br />

gre<strong>en</strong><strong>in</strong>g.


CAP 40-110, <strong>in</strong>itially convex th<strong>en</strong> flatt<strong>en</strong>ed, f<strong>in</strong>ally<br />

depressed, more or less umbillicate, viscous if humid, dry<br />

and rough <strong>in</strong> dry weather due to f<strong>in</strong>e, short <strong>in</strong>nate fibrils,<br />

from flesh-p<strong>in</strong>k to p<strong>in</strong>k-orange-reddish, with dark p<strong>in</strong>kreddish<br />

conc<strong>en</strong>tric zon<strong>in</strong>g, the edges are convoluted,<br />

bear<strong>in</strong>g tangled woolly hairs.<br />

GILLS adnate-decurr<strong>en</strong>t, crowded, close, forked, cream<br />

p<strong>in</strong>kish.<br />

STIPE 25-50 (80) × 10-20 mm, full, th<strong>en</strong> hollow, whitishcream,<br />

oft<strong>en</strong> with a p<strong>in</strong>k labrum at tip, oft<strong>en</strong> with some<br />

p<strong>in</strong>kish dimples.<br />

FLESH thick, hard whitish, sometimes with flesh colour<br />

sta<strong>in</strong>s, with fruity or pelargonium odour and very acrid<br />

flavour.<br />

LATEX white, uniform, but slowly yellow<strong>in</strong>g on a tissue<br />

or sheet of white paper.<br />

MICROSCOPY: spores from mostly ellipsoidal to<br />

ellipsoidal, 8.3-9.8 × 6.2-7.5 µm, with warts connect<strong>in</strong>g to<br />

form several closed meshes; tetrasporophyte basidia,<br />

subclavate; pileipellis, an ixocutis is pres<strong>en</strong>t.<br />

Lactarius torm<strong>in</strong>osus (Schaeff. : Fr) S.F. Gray<br />

HABITAT: <strong>in</strong> hardwood areas near birch; fruits from the<br />

<strong>en</strong>d of summer to the <strong>en</strong>d of autumn; fairly common.<br />

NOTE - This can be dist<strong>in</strong>guished from similar species by<br />

its white, uniform latex, its fairly red-p<strong>in</strong>kish and hairyfelt<br />

cap, and by its symbiosis with Betula. L. Pubesc<strong>en</strong>s is<br />

a smaller and nearly white or white-p<strong>in</strong>kish replica. L.<br />

tesquorum and L. mairei, have a more yellowish colour,<br />

and t<strong>en</strong>d to grow <strong>in</strong> more southern climes and are not<br />

l<strong>in</strong>ked to birch trees. Ev<strong>en</strong> if some guidebooks, a little<br />

recklessly perhaps, nom<strong>in</strong>ate this as an edible species,<br />

which it may be after a long cook<strong>in</strong>g time, it is certa<strong>in</strong>ly<br />

poisonous, and causes gastro<strong>in</strong>test<strong>in</strong>al distress. This<br />

characteristic, which is rapidly discovered by those<br />

unfortunate <strong>en</strong>ough to confuse it with the saffron milkcaps<br />

(edible milk-caps with a red or carrot-orange latex),<br />

is the orig<strong>in</strong> of its well-deserved Lat<strong>in</strong> name, mean<strong>in</strong>g<br />

“caus<strong>in</strong>g colic”.<br />

185


CAP 50-120 mm, <strong>in</strong>itially convex, th<strong>en</strong> flat, f<strong>in</strong>ally<br />

depressed, from yellow-reddish to tawny-orange, with the<br />

c<strong>en</strong>tre darker. Adnate, dry, matt, pru<strong>in</strong>ose surface<br />

<strong>in</strong>itially, from smooth to lightly rugulous, velvety<br />

convoluted edges, th<strong>en</strong> dist<strong>en</strong>ded oft<strong>en</strong> cracked radially<br />

wh<strong>en</strong> dry.<br />

GILLS from adnate to a little decurr<strong>en</strong>t, crowded, forked<br />

to stipe, cream, pale yellow-ochre colour, sta<strong>in</strong>ed dark<br />

brown <strong>in</strong> fractures.<br />

STIPE 30-80 (100) × 15-30 mm, firm, full th<strong>en</strong> filled,<br />

pru<strong>in</strong>ose, cyl<strong>in</strong>drical or a little att<strong>en</strong>uated at base,<br />

concolour with cap, but lighter at tip, brown<strong>in</strong>g <strong>in</strong> the<br />

manipulated po<strong>in</strong>ts.<br />

FLESH thick, firm compact, whitish-cream at gill edge,<br />

brown<strong>in</strong>g <strong>in</strong> cap, with an odour characteristic of fish<br />

(herr<strong>in</strong>g).<br />

LATEX: very abundant, d<strong>en</strong>se, white, brownish dry<strong>in</strong>g<br />

wh<strong>en</strong> exposed to air, with a sweet flavour.<br />

186<br />

Lactarius volemus (Fr. : Fr.) Fries<br />

MICROSCOPY: spores from globose to subglobose, 9.2-<br />

11.2 × 8.4-10.6 µm, with clearly jo<strong>in</strong>t warts <strong>in</strong> ridges<br />

form<strong>in</strong>g an almost complete lattice; bisporic or tetrasporic<br />

basidia, subclavate ; pileipellis, epithelium.<br />

HABITAT: mostly hardwood areas, more rarely <strong>in</strong><br />

coniferous areas; not widespread, faithful to its grow<strong>in</strong>g<br />

areas; not very common.<br />

EDIBILITY: edible<br />

NOTE - Apart from its dry cap, L. volemus can be<br />

id<strong>en</strong>tified by its flesh, which has a gre<strong>en</strong>ish reaction to<br />

ferrous sulphate solution, its volum<strong>in</strong>ous latex which<br />

seeps from any cracks <strong>in</strong> its sk<strong>in</strong>, and its characteristic<br />

odour of herr<strong>in</strong>gs (very similar to that ev<strong>in</strong>ced by the<br />

Russula <strong>in</strong> the amo<strong>en</strong>a group). It is edible, though<br />

appreciated by all, and is best cooked on the grill so as to<br />

preserve a vaguely smoky aftertaste.


Langermannia gigantea (Batsch : Pers.) Rostkovius<br />

BASIDIOCARP prosurface is globular, to irregularly<br />

roundish, with a circumfer<strong>en</strong>ce rang<strong>in</strong>g 50 to 600 mm<br />

and, <strong>in</strong> exceptional cases, can reach ev<strong>en</strong> more<br />

remarkable dim<strong>en</strong>sions. Sessile, with sterile radiciform<br />

base.<br />

EXOPERIDIUM formed from a s<strong>in</strong>gle layer to a white<br />

and velvety, smooth th<strong>en</strong> yellowish-cream bark; at<br />

maturity tears <strong>in</strong>to irregular strips, fairly coarse, leav<strong>in</strong>g<br />

the f<strong>in</strong>e <strong>en</strong>doperidium free, whitish, th<strong>en</strong> grey<strong>in</strong>g-sooty or<br />

grey-brown-ochre-ish, of papyrus consist<strong>en</strong>cy, friable,<br />

gradually dehisc<strong>en</strong>t due to erosion, start<strong>in</strong>g from the<br />

summit.<br />

GLEBE white, firm and compact wh<strong>en</strong> young, with<br />

weak, fungal odour and pleasant flavour, th<strong>en</strong> soggy,<br />

from yellow-ochre to brown-olivish, powdery <strong>in</strong> maturity.<br />

MICROSCOPY: spores spherical or mostly ellipsoidal,<br />

3.6-5.6 µm, with short, f<strong>in</strong>ely warty peduncle. Brownish<br />

spores.<br />

HABITAT: <strong>in</strong> grassy areas, <strong>in</strong> pastures, grown <strong>in</strong> parks<br />

and gard<strong>en</strong>s, from the <strong>en</strong>d of summer throughout autumn.<br />

Solitary, gregarious. Infrequ<strong>en</strong>t.<br />

EDIBILITY: edible<br />

NOTE - This mushroom is spectacular for the sizes it can<br />

atta<strong>in</strong> and there are reports of specim<strong>en</strong>s over a metre <strong>in</strong><br />

diameter and which have achieved the considerable<br />

weight of 20-25 kg. Species <strong>in</strong> the g<strong>en</strong>us Calvatia, which<br />

have an exoperidium <strong>in</strong> two layers, can also achieve<br />

considerable size, among them, C. lilac<strong>in</strong>a, which is<br />

coloured pale brownish-purple, prefers cultivated soil or<br />

footpaths, while C. utriformis, a white species whose<br />

exoperidium is ornam<strong>en</strong>ted with pyramidal warts, t<strong>en</strong>ds to<br />

grow <strong>in</strong> alp<strong>in</strong>e pastures.<br />

187


188<br />

Lecc<strong>in</strong>um aurantiacum (Bulliard) S.F. Gray ss. Pilát<br />

CAP 40-120 (150) mm, subglobular, th<strong>en</strong> tightly<br />

parabolic, marg<strong>in</strong> f<strong>in</strong>ally dist<strong>en</strong>ded regularly, visibly<br />

hang<strong>in</strong>g from excess of cuticle; f<strong>in</strong>ely velvety-felted,<br />

sometimes with adnate scales, just greasy <strong>in</strong> humid<br />

weather; uniformly red, red-orange, red-tawny,<br />

decolour<strong>in</strong>g to brick or to yellow orange at maturity, dry.<br />

TUBES rounded-depressed or almost free to stipe, tall,<br />

ev<strong>en</strong> beyond 30 mm; grey-whitish, th<strong>en</strong> grey, grey<br />

gre<strong>en</strong>ish dirty due to the maturation of spores, dark grey<br />

at gill edge, th<strong>en</strong> through a temporary violet colour. Very<br />

small, round pores,, concolour with tubes; sta<strong>in</strong><strong>in</strong>g grey<br />

brownish to the touch.<br />

STIPE 60-130 (150) × 15-30 (45) mm, progressively<br />

att<strong>en</strong>uated towards tip; whitish, thickly covered with<br />

scales becom<strong>in</strong>g more crowded and coarse towards the<br />

base, <strong>in</strong>itially white, th<strong>en</strong> becom<strong>in</strong>g darker brownreddish,,<br />

almost black <strong>in</strong> old age or to the touch; basal<br />

area is oft<strong>en</strong> sta<strong>in</strong>ed with a gre<strong>en</strong>-blue colour. Quickly<br />

becom<strong>in</strong>g more woody-fibrous <strong>in</strong> consist<strong>en</strong>cy, full.<br />

FLESH fairly firm <strong>in</strong> cap, very fibrous <strong>in</strong> stipe; whitish,<br />

slowly turn<strong>in</strong>g grey-lilac, th<strong>en</strong> dirty violet, f<strong>in</strong>ally orange<br />

subtle, <strong>in</strong>significant odour and flavourful.<br />

MICROSCOPY: fusiform spores 13.5-16 × 3.8-5 µm,<br />

light brown under microscope; grey brownish olive <strong>in</strong><br />

mass.<br />

HABITAT: <strong>in</strong> humid woods, associated with Populus<br />

tremula, <strong>in</strong> summer-autumn, recurr<strong>en</strong>t.<br />

EDIBILITY: edible<br />

NOTE - This is the most common of the ”porc<strong>in</strong>elli<br />

rossi”, (“little red porc<strong>in</strong>es”). It is very easy, however, to<br />

confuse it with the other red Lecc<strong>in</strong>ums: L. querc<strong>in</strong>um,<br />

which is bulkier, has more precociously coloured reddish<br />

scales, and associates with other hardwoods than Populus;<br />

L. vulp<strong>in</strong>um and L. pice<strong>in</strong>um are symbionts of conifers.<br />

L. versipelle is orange and is a symbiont of Betula. In our<br />

own gather<strong>in</strong>g fieldwork we oft<strong>en</strong> had the impression that<br />

the correlations betwe<strong>en</strong> carpophore characteristics as<br />

described <strong>in</strong> literature and symbiosis with host plants does<br />

not always follow precise rules, but rather prefer<strong>en</strong>tial<br />

t<strong>en</strong>d<strong>en</strong>cies.


CAP 50-125 mm, <strong>in</strong>itially convex, th<strong>en</strong> obtusely conical<br />

and f<strong>in</strong>ally flat, sometimes with large umbo; convoluted<br />

marg<strong>in</strong>, sometimes a little affected, curv<strong>in</strong>g towards the<br />

base at the extremes, dist<strong>en</strong>ded s<strong>in</strong>uated-undulated late<br />

on; smooth, matt surface, slightly greasy <strong>in</strong> humid<br />

weather; violet, lilac, blueish colour, t<strong>en</strong>d<strong>en</strong>cy to become<br />

brown tawny mostly towards the c<strong>en</strong>tre of the cap,<br />

decolour<strong>in</strong>g to ochre-ish-violet or ochre-ish-p<strong>in</strong>kish with<br />

age.<br />

GILLS adnate-unc<strong>in</strong>ate or just decurr<strong>en</strong>t, crowded and<br />

with numerous wide lamellule; grey-lilac, lilac blueish<br />

colour, th<strong>en</strong> with brownish tones.<br />

STIPE 50 –90 × 15-30 mm, cyl<strong>in</strong>drical or wid<strong>en</strong><strong>in</strong>g<br />

towards the base, clavate, sometimes bulbous; base is rich<br />

with mycelial residues which typically <strong>en</strong>compass the<br />

substrate wh<strong>en</strong> the carpophore is picked; fibrous and<br />

elastic; lilac, lilac-grey-violet, violet colour, covered with<br />

a white fluff especially at the tip.<br />

FLESH firm, soon becom<strong>in</strong>g soft and a little watery; light<br />

grey colour, with violet tones; odour is characteristically<br />

strong, aromatic, hot and <strong>in</strong>def<strong>in</strong>able.<br />

Lepista nuda (Bull. : Fr.) Cooke<br />

MICROSCOPY: ellipsoidal, lightly warty spores,<br />

dim<strong>en</strong>sions 7-8.5 × 3.5-5 µm; salmon p<strong>in</strong>k <strong>in</strong> mass.<br />

HABITAT: ubiquitous, on the substrate humus of plants,<br />

<strong>in</strong> large groups, oft<strong>en</strong> <strong>in</strong> l<strong>in</strong>es or circles; from autumn to<br />

w<strong>in</strong>ter, oft<strong>en</strong> ev<strong>en</strong> <strong>in</strong> spr<strong>in</strong>g.<br />

EDIBILITY: edible<br />

NOTE - This is a sought-after edible with a delicate<br />

aroma. It can be confused with L. sordida, which is<br />

slightly th<strong>in</strong>ner and usually has a more <strong>in</strong>t<strong>en</strong>se and “dirty”<br />

colour, border<strong>in</strong>g on violet-dark grey. A L. nuda var.<br />

lilacea has be<strong>en</strong> described, bear<strong>in</strong>g <strong>in</strong>t<strong>en</strong>se violet<br />

colour<strong>in</strong>g all over, with a slightly smaller body. L.<br />

glaucocana has a much paler cap, t<strong>en</strong>d<strong>in</strong>g toward lilacgrey,<br />

and has a weaker and less-pleasant odour. L.<br />

personata is very similar to L. nuda, but comb<strong>in</strong>es a<br />

grey<strong>in</strong>g, white-coffee coloured cap with a lovely violet<br />

stipe. Several other <strong>mushrooms</strong> can display a g<strong>en</strong>eral<br />

blue-violet colouration, (e.g.: Cort<strong>in</strong>arius violaceus and<br />

Entoloma bloxamii) but also have vary<strong>in</strong>g g<strong>en</strong>eric<br />

characteristics; (see their respective g<strong>en</strong>us descriptions).<br />

189


BASIDIOCARP high 30-80 mm, 20-60 mm <strong>in</strong> diameter,<br />

subglobular, obvoid or piriform. Exoperidium formed<br />

from d<strong>en</strong>se converg<strong>in</strong>g sp<strong>in</strong>es and composites, width of 3-<br />

6 mm, <strong>in</strong>itially white, th<strong>en</strong> dark brown, which can be<br />

removed fairly easily leav<strong>in</strong>g a reticulated <strong>en</strong>doperidium.<br />

Endoperidium is, light brown papyrus.<br />

GLEBE from grey-brown violet to chocolate brown, with<br />

an <strong>in</strong>dist<strong>in</strong>ct pseudocolumella. Areolated subglebe, with<br />

various brown and lilac sta<strong>in</strong>s.<br />

MICROSCOPY: globose spores, 4.0-5.0 µm, warty. Light<br />

brown, elastic scalp, with small rounded pores, fairly<br />

numerous. Para-capitulum is abs<strong>en</strong>t. Exoperidium has<br />

large irregularly shaped thick walled spherocytes, dark<br />

190<br />

Lycoperdon ech<strong>in</strong>atum Pers. : Pers.<br />

brown. Spore powder is chocolate brown or with lilac<br />

tones.<br />

HABITAT: solitary or <strong>in</strong> small groups, <strong>in</strong> calcerous soil,<br />

ma<strong>in</strong>ly <strong>in</strong> beech woods.<br />

EDIBILITY: edible<br />

NOTE - This is a very-easily recognisable species thanks<br />

to the <strong>en</strong>tirety of its morphological features. Wh<strong>en</strong> found<br />

<strong>in</strong> forests of chestnut trees it is ev<strong>en</strong> likely to be tak<strong>en</strong> for<br />

a chestnut shell! Lycoperdon foetidum also possesses a<br />

brownish exoperidium and a reticulated <strong>en</strong>doperidium<br />

after its sp<strong>in</strong>es have dropped, but these are significantly<br />

shorter; L. umbr<strong>in</strong>um and L. molle too display a brownish<br />

exoperidium but their <strong>en</strong>doperidia are smooth.


BASIDIOCARP height from 30-90 mm, 20-40 mm <strong>in</strong><br />

diameter, subglobose, piriform, subcyl<strong>in</strong>drical or almost<br />

pestle shaped, white, from cream to light brown.<br />

Exoperidium is formed from conical sp<strong>in</strong>es, l<strong>en</strong>gth of 1-2<br />

mm, fragile, whitish or cream, th<strong>en</strong> light brown,<br />

surrounded with a circular row of more persist<strong>en</strong>t sp<strong>in</strong>es.<br />

Wh<strong>en</strong> the sp<strong>in</strong>es fall, they move apart to form a<br />

characteristic polygonal grid pattern on the <strong>en</strong>doperidium.<br />

Endoperidium is, grey-brown papyrus.<br />

GLEBE white, th<strong>en</strong> brown or olivish brown, with a well<br />

developed pseudocolumella. Subglebe is strongly<br />

developed, cellular, from olivish brown to grey-brown.<br />

MICROSCOPY: globose spores, 3.5-4.5 µm, warty. Scalp<br />

is yellow-brown, formed from hyphae sized 3-8 µm, with<br />

relatively th<strong>in</strong> walls; fairly numerous pores.<br />

Paracapitulum, usually abundant. Exoperidium has f<strong>in</strong>e<br />

Lycoperdon perlatum Pers. : Pers.<br />

[= L. gemmatum Batsch]<br />

walled spherocytes of 20-30 µm,. Spore powder is<br />

yellow-brown, olivish brown or grey-brown.<br />

HABITAT: ubiquitous, <strong>in</strong> hardwood and coniferous areas.<br />

EDIBILITY: edible<br />

NOTE - On a macroscopic level, L. perlatum can be<br />

id<strong>en</strong>tified by the shape of its basidiocarp and by the<br />

characteristics of its exoperidium, and microscopically, by<br />

its small spores. Occasionally it can be found on dead<br />

wood but confusion with Lycoperdon piriforme is highly<br />

unlikely. This latter displays, <strong>in</strong> fact, white glebae ev<strong>en</strong> at<br />

maturity and after shedd<strong>in</strong>g its exoperidium, its<br />

<strong>en</strong>doperidium has a smooth appearance. L. nigresc<strong>en</strong>s has<br />

darker and more-persist<strong>en</strong>t sp<strong>in</strong>es plus larger and lessornam<strong>en</strong>ted<br />

spores.<br />

191


BASIDIOCARP height 15-60 mm, piriform, clavate,<br />

rarely subglobose, connected by thick white rhizoids.<br />

Dehisc<strong>en</strong>ce comes through a fairly wide, op<strong>en</strong> operculum.<br />

Exoperidium is white, th<strong>en</strong> fairly dark brown, wartygranular,<br />

with adpressed scales, soon becom<strong>in</strong>g hairless at<br />

tip. Endoperidium is papyrus colour and matt.<br />

GLEBE with dist<strong>in</strong>ctive pseudocolumella, white th<strong>en</strong><br />

olivish, f<strong>in</strong>ally grey-brown, with a strong unpleasant<br />

odour and sweet flavour. Subglebe is firm and areolate<br />

which rema<strong>in</strong>s white.<br />

MICROSCOPY: globose spores, 3.5-4.0 µm, almost<br />

smooth. Capitulum is brown, elastic, not pored, largo 3-<br />

192<br />

Lycoperdon pyriforme Schaeff. : Pers.<br />

7.5 µm, with thick walls 0.7-1.0 µm. Paracapitulum is<br />

abundant. Exoperidium has large sp<strong>in</strong>yspherocytes, walls<br />

thick, irregular shape. Spore powder is olive brown.<br />

HABITAT: <strong>in</strong> large groups on decay<strong>in</strong>g wood, oft<strong>en</strong> on<br />

burnt wood, <strong>in</strong> woods, parks and gard<strong>en</strong>s.<br />

EDIBILITY: edible<br />

NOTE – Very easy to recognise, by its lignicole habits,<br />

floury, <strong>in</strong>consist<strong>en</strong>t exoperidium, its cespitose growth,<br />

and its uniform, white subgleba.


CAP 50-70 mm, hemispheric, convex, th<strong>en</strong> flat, oft<strong>en</strong><br />

with large obtuse umbo, the marg<strong>in</strong> is oft<strong>en</strong> lobed and<br />

undulated, fairly convoluted, th<strong>en</strong> dist<strong>en</strong>ded. Cuticle is<br />

smooth or fibrillated radially, sh<strong>in</strong>y, lardaceous to the<br />

touch <strong>in</strong> humid weather, brown-grey, dark brown-ochre,<br />

with the edge lighter, oft<strong>en</strong> almost whitish.<br />

GILLS adnate or unc<strong>in</strong>ate, fairly crowded, relatively<br />

close, from whitish to cream, oft<strong>en</strong> sta<strong>in</strong>ed p<strong>in</strong>k.<br />

STIPE 30-120 × 8-20 mm, from cyl<strong>in</strong>drical to clavate,<br />

full, elastic-fibrous, whitish, fibrillated with the tip<br />

covered with a white bloom.<br />

FLESH elastic, whitish, with fungal odour and sweet<br />

flavour.<br />

MICROSCOPY: spores 5.5-7 × 5.0-6.5 µm, subglobose,<br />

smooth, hyal<strong>in</strong>e; tetrasporophyte basidia, clavate, with<br />

siderophile granulation; epicyte formed from fairly<br />

Lyophyllum decastes (Fr. : Fr.) S<strong>in</strong>g.<br />

[= Lyophyllum aggregatum (Schaeffer) Kühner]<br />

parallel, braided hyphae, with pigm<strong>en</strong>t partially brownish,<br />

h<strong>in</strong>ged.<br />

HABITAT: grows g<strong>en</strong>erally collated and <strong>in</strong> groups or <strong>in</strong><br />

circles <strong>in</strong> hardwood and conifer woods, especially <strong>in</strong> op<strong>en</strong><br />

areas, at the edges of paths, <strong>in</strong> parks or <strong>in</strong> gard<strong>en</strong>s among<br />

grass.<br />

EDIBILITY: edible<br />

NOTE - The species <strong>in</strong> the section Difformia with<br />

tricholomatoid silhouette, brownish-grey colours and<br />

globose spores, constitute a fairly homog<strong>en</strong>ous group of<br />

species, sometimes difficult to categorise. Wh<strong>en</strong> the<br />

carpophores are connate at the base, but not branch<strong>in</strong>g,<br />

and their growth is not cespitose th<strong>en</strong> we are look<strong>in</strong>g at<br />

either L. decastes or L. loricatum. The former has a f<strong>in</strong>ely<br />

fibrillated, relatively th<strong>in</strong> cuticle, the while the latter has<br />

a thick, t<strong>en</strong>acious, glabrous cuticle.<br />

193


CAP 100-250 mm, <strong>in</strong>itially spherical, ovoid, th<strong>en</strong><br />

hemispheric-campanulate, f<strong>in</strong>ally flat, with large obtuse<br />

umbo, the cuticle is decorated with conc<strong>en</strong>tric plical<br />

scales, hazelnut ochre-ish <strong>in</strong> colour, oft<strong>en</strong> fairly brownish<br />

or reddish, on a light background, the marg<strong>in</strong> is large and<br />

fr<strong>in</strong>ged.<br />

GILLS free, crowded, white th<strong>en</strong> ochre.<br />

STIPE up to 200-350 (500) × 10-20 mm, slim,<br />

cyl<strong>in</strong>drical, with base dilated to form a clear bulb, filled,<br />

th<strong>en</strong> hollow, bear<strong>in</strong>g mottled brownish bands which leave<br />

h<strong>in</strong>ts of the cream flesh below, subsmooth above the<br />

annulus. Double annulus, mobile, whitish externally, with<br />

the lower leaf brownish.<br />

FLESH white, uniform, with pleasant fungal odour,, and<br />

hazelnut flavour.<br />

194<br />

Macrolepiota procera (Scop. : Fr.) S<strong>in</strong>ger<br />

MICROSCOPY: ellipsoidal smooth, hyal<strong>in</strong>e spores, with<br />

germ<strong>in</strong>at<strong>in</strong>g pores, 12.5-17.8 × 8.5-11 µm. clavate,<br />

tetrasporic basidia. Polycystidea is abs<strong>en</strong>t. Cheilocystidia<br />

clavate. Epicyte formed from trichoderma. Partially<br />

dom<strong>in</strong>ant pigm<strong>en</strong>t. Rarely jo<strong>in</strong>t at h<strong>in</strong>ges.<br />

HABITAT: isolated or gregarious <strong>in</strong> hardwood and<br />

conifer woods or <strong>in</strong> meadows; very widespread and<br />

common, from summer throughout autumn.<br />

EDIBILITY: edible<br />

NOTE - By its antonomasia, this is the “drumstick”, a<br />

high-quality, much-sought edible. It is easy to id<strong>en</strong>tify,<br />

just look for its large size and outl<strong>in</strong>e which expla<strong>in</strong> its<br />

German name, mean<strong>in</strong>g “parasol”, its stripy stipe and its<br />

characteristic, movable double annulus.


CAP 80-150 mm, <strong>in</strong>itially campanulate, th<strong>en</strong> convex,<br />

f<strong>in</strong>ally flat, the cuticle is excoriated up to the<br />

circumfer<strong>en</strong>ce with wide, coarse, crowded, overlapp<strong>in</strong>g<br />

scales, fairly light brownish <strong>in</strong> colour, with a fairly tight<br />

c<strong>en</strong>tral cap, of colour brown reddish.<br />

GILLS free, whitish, cream, th<strong>en</strong> dirty p<strong>in</strong>k, redd<strong>en</strong><strong>in</strong>g<br />

wh<strong>en</strong> rubbed, with a floccose surface.<br />

STIPE 100-160 × 10-15 mm, stocky, cyl<strong>in</strong>drical,<br />

progressively dilated to form a bulbous submarg<strong>in</strong>ated<br />

bulb, hollow, smooth, white, gradually brown-reddish<br />

with time or wh<strong>en</strong> rubbed. Annulus is membranous,<br />

robust, whitish, mobile.<br />

FLESH white, turn<strong>in</strong>g orange vivid at gill edge, th<strong>en</strong> to<br />

red-v<strong>in</strong>ous, with an odour of raw potato and sweet<br />

hazelnut flavour.<br />

MICROSCOPY: ellipsoidal or ovoid, smooth, hyal<strong>in</strong>e,<br />

with germ<strong>in</strong>at<strong>in</strong>g pores, 8.8-11.2 × 6.8-8.0 µm. clavate,<br />

tetrasporic basidia. Polycystidea is abs<strong>en</strong>t. Cheilocystidia<br />

clavate or piriform. Epicyte formed from a trichoderma of<br />

Macrolepiota rhacodes (Vittad<strong>in</strong>i) S<strong>in</strong>ger<br />

fairly erect hyphae. Membranous brown pigm<strong>en</strong>t. Jo<strong>in</strong>t at<br />

h<strong>in</strong>ges.<br />

HABITAT: isolated or gregarious, <strong>in</strong> parks, gard<strong>en</strong>s, and<br />

also <strong>in</strong> the woods, mostly of mixed conifers. from the <strong>en</strong>d<br />

of summer to autumn, recurr<strong>en</strong>t.<br />

EDIBILITY: edible<br />

NOTE - M. rhacodes is characterised by its peculiar pileic<br />

scal<strong>in</strong>g, which is formed of tortoiseshell scales,<br />

concolour with the cap background, and above all for its<br />

redd<strong>en</strong><strong>in</strong>g flesh. The variety, bohemica differs by hav<strong>in</strong>g<br />

scales of a differ<strong>en</strong>t colour to those of its background and<br />

for its habitat on the periphery of woodlands. M.<br />

v<strong>en</strong><strong>en</strong>ata, heavily toxic, can be dist<strong>in</strong>guished by the radial<br />

arrangem<strong>en</strong>t of its pileic scales and by the total abs<strong>en</strong>ce<br />

of jo<strong>in</strong>t h<strong>in</strong>ges, a characteristic which is <strong>in</strong>credibly<br />

difficult to verify. Therefore, <strong>in</strong> case of doubt, one would<br />

be best advised to avoid consum<strong>in</strong>g any Macrolepiota<br />

with redd<strong>en</strong><strong>in</strong>g flesh.<br />

195


CAP 20-50 mm <strong>in</strong> diameter, <strong>in</strong>itially hemispheric,<br />

campanulate, th<strong>en</strong> flat, umbonate <strong>in</strong> the c<strong>en</strong>tre, the marg<strong>in</strong><br />

is acute, smooth, oft<strong>en</strong> lightly cr<strong>en</strong>ulated, the surface is<br />

smooth, hygrophanous, from orange-ochre to brownish<br />

with humid weather, but light cream-hazelnut wh<strong>en</strong> dry,<br />

spaced, <strong>in</strong>terspersed from lamellule, s<strong>in</strong>uous, wide, from<br />

whitish to cream.<br />

STIPE 30-70 (100) × 3-5 mm, full, cyl<strong>in</strong>drical, oft<strong>en</strong> a<br />

little wid<strong>en</strong>ed at the two extremities, slim, t<strong>en</strong>aciouselastic,<br />

whitish dirty-cream at tip, brownish on the lower<br />

part, from f<strong>in</strong>ely pru<strong>in</strong>ose to velvety for the whole l<strong>en</strong>gth,<br />

with brownish mycelium.<br />

FLESH whitish, elastic, f<strong>in</strong>e, hygrophanous, with a<br />

characteristic odour, like almonds, and sweet hazelnut<br />

flavour.<br />

196<br />

Marasmius oreades (Bolt. : Fr.) Fries<br />

MICROSCOPY: spores from ellipsoidal, fairly elongated,<br />

to amygdalform, (7.0) 8.0-10.5 (11.5) µm;<br />

tetrasporophyte basidia, tightly clavate; pileipellis<br />

hym<strong>en</strong>iform. H<strong>in</strong>ges pres<strong>en</strong>t.<br />

HABITAT: <strong>in</strong> meadows, <strong>in</strong> large groups found <strong>in</strong> l<strong>in</strong>es or<br />

circles; from the spr<strong>in</strong>g throughout autumn.<br />

EDIBILITY: edible<br />

NOTE - This, fairly common mushroom, grows<br />

abundantly, from the spr<strong>in</strong>g to autumn, <strong>in</strong> meadows,<br />

form<strong>in</strong>g “witches’ circles”. It is a choice edible, much<br />

sought after by collectors and can be stored and eat<strong>en</strong> dry.<br />

M. coll<strong>in</strong>us (regard<strong>in</strong>g whose edibility there are some<br />

doubts), is very similar, though can be told apart by its<br />

sl<strong>en</strong>der, smooth stipe and crowded gills.


BASIDIOCARP pileate, devoid of or with rudim<strong>en</strong>tary<br />

stipe, reduced to a po<strong>in</strong>t of attachm<strong>en</strong>t on the cap.<br />

CAP of width up to 300 mm, depth of 10-20 mm and<br />

projection of around 100-150 mm; irregularly circular<br />

shape to gill edge, with several <strong>in</strong>dividuals around a<br />

common base. Surface plicea is undulated, brown or<br />

brown-reddish, markedly zoned, rough due to the<br />

pres<strong>en</strong>ce of adpressed flakes. undulated marg<strong>in</strong>, complete.<br />

HYMENOPHORE tubes and pores, follow the tr<strong>en</strong>d of<br />

the undulated surface plicea. Tubes about 15 <strong>in</strong> thickness<br />

mm, monolayer, from whitish to dark ochre-ish,<br />

black<strong>en</strong><strong>in</strong>g if handled. pores 0.2-0.3 mm <strong>in</strong> diameter,<br />

round.<br />

FLESH fibrous and t<strong>en</strong>acious, but not hard (<strong>in</strong> the context<br />

of a monomorphic constitution), cream white, with fungal<br />

odour and sweetish flavour.<br />

MICROSCOPY: spores subglobose, <strong>in</strong> the shape of<br />

chestnuts, monoguttulate, not amyloid, smooth and<br />

hyal<strong>in</strong>e, dim<strong>en</strong>sions 5.5-6.5 × 4.5-5.5 µm; basidia 20-25<br />

(45) × 5-10 µm, cyl<strong>in</strong>drical-claviform, tetrasporic,<br />

without jo<strong>in</strong>ts at basal h<strong>in</strong>ge; cystidia abs<strong>en</strong>t.<br />

Meripilus giganteus (Pers. : Fr.) P. Karst<strong>en</strong><br />

[= Polyporus giganteus Pers. : Fr.]<br />

HABITAT: saprophyte or parasitic to conifer or Fagus<br />

trees, <strong>in</strong> thick groups with specim<strong>en</strong>s overlapp<strong>in</strong>g, from<br />

summer to autumn; not widespread.<br />

NOTE - At first sight this is liable to be confused with<br />

Polyporus squamosus, as it grows exclusively on<br />

hardwood trunks, the latter, however, has a very scaly cap<br />

surface and larger, angular pores; it is also marked out by<br />

its strong odour of cucumber, especially <strong>in</strong> the younger<br />

specim<strong>en</strong>s.<br />

The patchy appearance of the cap surface Meripilus<br />

giganteus is common also to several species of Trametes,<br />

as is their leathery consist<strong>en</strong>cy due to its trimeric hyphal<br />

structure; of these the ones which spr<strong>in</strong>g to m<strong>in</strong>d are, <strong>in</strong><br />

particular, T. zonatella and T. versicolor, the former<br />

hav<strong>in</strong>g a creamy ochre-ish-brown colour, the latter be<strong>in</strong>g<br />

<strong>in</strong>stead grey-brown, or with decidedly blueish tones. Both<br />

produce cyl<strong>in</strong>drical-allantois spores and prefer to live on<br />

brok<strong>en</strong> hardwood substrates.<br />

197


ASCOCARP pileate and stipitate, of 120-130 mm <strong>in</strong><br />

height and 40-45 mm <strong>in</strong> diameter.<br />

MITRA elongated-conical, with slightly po<strong>in</strong>ted tip, with<br />

alveoli clearly separated from <strong>in</strong>tersection of l<strong>en</strong>gthwise<br />

and transversal ribs arranged parallel to them.<br />

HYMENOPHORE found on all exposed parts of the<br />

mitra, smooth, brick-brown colour, which black<strong>en</strong>s on the<br />

ribs with age. Edge is regular, separated from the stipe by<br />

a vallecula.<br />

STIPE subcyl<strong>in</strong>drical, sometimes swoll<strong>en</strong> at base, rarely<br />

furrowed, rough, white suffused with p<strong>in</strong>kish tones,<br />

hollow or filled <strong>in</strong>ternally.<br />

FLESH leathery-elastic, whitish, with light spermatic<br />

odour and sweetish flavour.<br />

198<br />

Morchella conica Persoon var. costata V<strong>en</strong>t<strong>en</strong>at<br />

MICROSCOPY: ellipsoidal spores, 19-25 × 12-13 µm,<br />

smooth, with some small guttules arranged on the external<br />

surface of the polar zone, uniseriate <strong>in</strong> asco; asci are<br />

cyl<strong>in</strong>drical, not amyloid, octasporic; slightly cyl<strong>in</strong>drical<br />

paraphyses ext<strong>en</strong>ded at tip, septate and sometimes forked.<br />

HABITAT: s<strong>in</strong>gle or <strong>in</strong> small groups <strong>in</strong> conifer woods, <strong>in</strong><br />

spr<strong>in</strong>g; not common.<br />

EDIBILITY: edible<br />

NOTE - M. conica var. costata can be dist<strong>in</strong>guished from<br />

similar species by its characteristic dark<strong>en</strong>ed parallel ribs,<br />

and also the p<strong>in</strong>kish colouration of its stipe. Its habitat and<br />

microscopic features are not particularly useful <strong>in</strong> its<br />

id<strong>en</strong>tification.


Morchella escul<strong>en</strong>ta (L<strong>in</strong>naeus) Persoon var. escul<strong>en</strong>ta<br />

ASCOCARP pileate and stipitate, up to 100 to 250 mm <strong>in</strong><br />

height and 50-80 mm <strong>in</strong> diameter.<br />

MITRA irregularly ovoid, subspherical, globular, with<br />

longitud<strong>in</strong>al and transversal ribs <strong>in</strong> relief, variably carved<br />

betwe<strong>en</strong> them form<strong>in</strong>g irregularly polygonal alveoli.<br />

Hym<strong>en</strong>ophore is smooth, from yellow cream to light<br />

ochre; edges of the ribs are coloured. <strong>in</strong>sertion to stipe is<br />

without vallecula.<br />

STIPE wid<strong>en</strong>ed at base, sometimes semibulbous, oft<strong>en</strong><br />

partially ruffled, irregularly cyl<strong>in</strong>drical, cream ochre-ish,<br />

granular, <strong>in</strong>ternally cavernous.<br />

FLESH elastic, ochre, with light spermatic odour.<br />

MICROSCOPY: smooth ellipsoidal spores, 18-25 × 14-<br />

16 µm, hyal<strong>in</strong>e under microscope, thick walls, with some<br />

small guttules on the extreme surfaces, monoseriat <strong>in</strong><br />

asco; asci are cyl<strong>in</strong>drical, not amyloid, octasporic;<br />

cyl<strong>in</strong>drical clavate paraphyses at tip, septate, simple or<br />

branched.<br />

HABITAT: s<strong>in</strong>gle or <strong>in</strong> small groups on mouldy, sandy<br />

ground to sandy or sandy-clay ground <strong>in</strong> fresh hardwood<br />

areas, under Frax<strong>in</strong>us, Ulmus, Alnus, <strong>in</strong> humid places.<br />

Fairly common, <strong>in</strong> spr<strong>in</strong>g.<br />

EDIBILITY: edible<br />

NOTE - There are some other varieties of M. escul<strong>en</strong>ta,<br />

which can be dist<strong>in</strong>guished by their morphological<br />

features; var. rigid which has a visibly more globular<br />

mitra and is larger (up to 300 mm <strong>in</strong> height); var. vulgaris<br />

which has a conic-elongated mitra, (sometimes) smaller<br />

dim<strong>en</strong>sions (from a m<strong>in</strong>imum of 50 mm <strong>in</strong> height); var.<br />

rotunda which has an oval, subglobular mitra, which, <strong>in</strong><br />

size, can match var. rigid (which is difficult to dist<strong>in</strong>guish<br />

from the latter). Morchella crassipes is very similar to M.<br />

escul<strong>en</strong>ta (of which it may be just a giant variety), has a<br />

conical-rounded ochre-greyish mitra, clavate stipe which<br />

can be as large as 70 mm <strong>in</strong> diameter; Morchella<br />

escul<strong>en</strong>ta var. umbr<strong>in</strong>a, <strong>in</strong>stead, diverges from the usual<br />

appearance by the brown colour of its mitra, which,<br />

however has rib edges which are light ochre-ish. Grows<br />

close to hardwoods such as Fagus or Frax<strong>in</strong>us.<br />

199


200<br />

Morchella escul<strong>en</strong>ta (L.) Persoon var. vulgaris Persoon<br />

ASCOCARP pileate and stipitate, from 80 to 150 mm of<br />

height and 50-60 mm of diameter.<br />

MITRA ovoid-conica, with rounded or subpo<strong>in</strong>ted apex,<br />

with irregular, polygonal or roundish alveoli, deep.<br />

HYMENOPHORE found on the <strong>en</strong>tire visible part of the<br />

mitra, smooth, light brown, whitish on the ribs. Edge is<br />

regular, separated from the stipe by a vallecula.<br />

STIPE subcyl<strong>in</strong>drical, but swoll<strong>en</strong> at base where it is<br />

oft<strong>en</strong> deeply ribbed or furrowed, rough, white-ochre-ish,<br />

filled <strong>in</strong>ternally.<br />

FLESH elastic, whitish, with light spermatic odour and<br />

sweet flavour.<br />

MICROSCOPY: ellipsoidal spores, 19-25 × 12-13 µm,<br />

smooth, with some small guttules arranged on the external<br />

surface of the polar zone, uniseriat <strong>in</strong> asco; asci are<br />

cyl<strong>in</strong>drical, not amyloid, octasporic; paraphyses lightly<br />

cyl<strong>in</strong>drical elongated <strong>in</strong> height.<br />

HABITAT: s<strong>in</strong>gle or <strong>in</strong> small groups near hardwood<br />

trees, especially Ulmus, <strong>in</strong> spr<strong>in</strong>g; not common.<br />

EDIBILITY: edible<br />

NOTE - This is confusable with other species of the same<br />

g<strong>en</strong>us, both for its colour and appearance, which are not<br />

<strong>in</strong>frequ<strong>en</strong>tly <strong>in</strong>flu<strong>en</strong>ced by its growth conditions.. One of<br />

its peculiar characteristics is the colour of its<br />

hym<strong>en</strong>ophore which is light brown <strong>in</strong> contrast to its white<br />

ribs.


ASCOCARP stipitate and pileate, up to 200 mm <strong>in</strong> height<br />

and around 30 <strong>in</strong> diameter.<br />

MITRA conical-po<strong>in</strong>ted, oft<strong>en</strong> rounded, sub-cerebriform,<br />

with longitud<strong>in</strong>al and transversal ribs slightly <strong>in</strong> relief<br />

form<strong>in</strong>g the irregular alveoli. Hym<strong>en</strong>ophore is smooth, of<br />

brown-brick colour, darker on the edges of the ribs.<br />

Lower surface is smooth or m<strong>in</strong>utely rough, white cream.<br />

STIPE slim, subcyl<strong>in</strong>drical, oft<strong>en</strong> ribbed l<strong>en</strong>gthwise,<br />

rough, white cream.<br />

FLESH t<strong>en</strong>acious, elastic, but to con fragile, sweet, with<br />

spermatic odour; white cream colour.<br />

HABITAT: <strong>in</strong> humid places, on sandy or clay-sandy<br />

ground, under trees such as Alnus, Crataegus, Frax<strong>in</strong>us<br />

and Populus, but also <strong>in</strong> v<strong>in</strong>eyards, more rarely under<br />

other hardwood; <strong>in</strong> spr<strong>in</strong>g, <strong>in</strong> groups of several<br />

specim<strong>en</strong>s, recurr<strong>en</strong>t.<br />

MICROSCOPY: ellipsoidal spores, smooth, 20-25 × 14-<br />

17.5 µm, hyal<strong>in</strong>e under microscope, oft<strong>en</strong> with small<br />

Morchella semilibera De Cand. : Fr.<br />

guttules on the external surface at the <strong>en</strong>ds, uniseriat <strong>in</strong><br />

asco; asci are cyl<strong>in</strong>drical, not amyloid, octasporic;<br />

cyl<strong>in</strong>drical paraphyses with wid<strong>en</strong>ed and oft<strong>en</strong> guttural<br />

apex, septate.<br />

EDIBILITY: edible<br />

NOTE - This has <strong>in</strong> the past be<strong>en</strong> considered as part of<br />

another g<strong>en</strong>us, the g<strong>en</strong>us Mitrophora, dist<strong>in</strong>ct from the<br />

Morchella by the way the stipe was <strong>in</strong>serted <strong>in</strong>to the<br />

mitra. In the Mitrophora the vallecula is l<strong>en</strong>gth<strong>en</strong>ed, and<br />

jo<strong>in</strong>s onto the lower surface at around 1/3-2/3 of the<br />

l<strong>en</strong>gth of the mitra itself. Today this differ<strong>en</strong>ce is not held<br />

to be suffici<strong>en</strong>t to warrant ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g two diverse<br />

taxonomic g<strong>en</strong>era.<br />

M. fusca, which is smaller (up to 80 mm <strong>in</strong> height) (and<br />

has spores just 8-9 µm wide) while M. gigas can reach<br />

heights of 200 mm, with a clavate stipe which measures<br />

up to 50 mm at its wide base.<br />

201


CAP 20-50 mm, from fairly campanulate to flat-convex,<br />

with or without an obtuse umbo, hygrophanous, striated to<br />

transpar<strong>en</strong>cy, hairless; pale p<strong>in</strong>k with light lilac sta<strong>in</strong>s.<br />

GILLS 25-30, from asc<strong>en</strong>d<strong>in</strong>g to fairly horizontal, from<br />

adnate to non-marg<strong>in</strong>ated, slight crowded, bulg<strong>in</strong>g, from<br />

smooth to v<strong>en</strong>ous, whitish, suffused with very light violet,<br />

concolour with the surface.<br />

STIPE 40-70 × 3-8 mm, cyl<strong>in</strong>drical, a little wid<strong>en</strong>ed at<br />

base, smooth, hollow, t<strong>en</strong>acious, pru<strong>in</strong>ose at tip, dirty<br />

whitish, suffused with violet, lighter at tip, with base<br />

fairly d<strong>en</strong>sely covered with whitish fibrils.<br />

FLESH f<strong>in</strong>e, whitish, with raphanoid odour and flavour.<br />

MICROSCOPY: ellipsoidal spores, amyloid, 7.0-9.5 ×<br />

3.5-4.5 µm. Tetrasporophyte basidia, clavate, with h<strong>in</strong>ges.<br />

Cheilocystidia is fusiform clavate, fairly elongated,<br />

g<strong>en</strong>erally smooth but covered with sparse diverticula at<br />

the edges of the cap. Pleurocystidia similar. Epicyte<br />

formed from filam<strong>en</strong>tous smooth hyphae, very th<strong>in</strong>.<br />

202<br />

Myc<strong>en</strong>a pura (Pers. : Fr.) Kummer<br />

Hyphae of stipe is smooth, with fusiform or ellipsoidal<br />

caulocystides, smooth.<br />

HABITAT: <strong>in</strong> hardwood and conifer woods, betwe<strong>en</strong><br />

fall<strong>en</strong> needles and leaves; very widespread and frequ<strong>en</strong>t at<br />

every latitude. From the <strong>en</strong>d of spr<strong>in</strong>g.<br />

EDIBILITY: suspect<br />

NOTE - Of all the species belong<strong>in</strong>g to the g<strong>en</strong>us<br />

Myc<strong>en</strong>a, M. pura, with its differ<strong>en</strong>t varieties and forms, is<br />

probably the one which has the widest range of cap<br />

colour<strong>in</strong>g. Follow<strong>in</strong>g the guidel<strong>in</strong>es proposed by Maas<br />

Geesteranus, any taxon’s colour variations should be<br />

considered as mere forms rather than varieties. Among<br />

these we m<strong>en</strong>tion, for example, the completely white fo.<br />

alba, the blue-capped fo. ianth<strong>in</strong>a, which has a h<strong>in</strong>t of<br />

violet or grey, and the fo. lutea which can be id<strong>en</strong>tified by<br />

the yellow colour of its cap but also its pale stipe bear<strong>in</strong>g<br />

just a h<strong>in</strong>t of violet.


CAP 30-50 mm, from conical to campanulate, th<strong>en</strong><br />

convex or flat-convex, mamelon, pale p<strong>in</strong>k, p<strong>in</strong>k-lilac,<br />

sometimes v<strong>in</strong>ous h<strong>in</strong>ts, with the edge lighter,<br />

hygrophanous, smooth, hairless, a little unctuous, striated<br />

to transpar<strong>en</strong>cy.<br />

GILLS 32-36, wide, asc<strong>en</strong>d<strong>in</strong>g, bulg<strong>in</strong>g, adnate or nonmarg<strong>in</strong>ated,<br />

fairly light p<strong>in</strong>k, whitish towards the surface.<br />

STIPE 70-110 × 5-10 mm, cyl<strong>in</strong>drical, hollow, smooth or<br />

covered with very f<strong>in</strong>e fibrils, white, h<strong>in</strong>t of p<strong>in</strong>k.<br />

FLESH white p<strong>in</strong>kish, hygrophanous, with fairly clear<br />

raphanoid odour.<br />

MICROSCOPY: spores mostly ellipsoidal, smooth,<br />

hyal<strong>in</strong>e, amyloid, 7.5-10.2 × 3.8-4.5 µm. basidia clavate<br />

tetrasporic, h<strong>in</strong>ged. Cheilocystidia and pleurocystidia<br />

fusiform, clavate or spherical-p<strong>en</strong>dunculated. Epicyte<br />

Myc<strong>en</strong>a rosea (Bulliard) Gramberg<br />

formed from parallel <strong>in</strong>terwov<strong>en</strong> hyphae, the surface layer<br />

is geleld. H<strong>in</strong>ges pres<strong>en</strong>t.<br />

HABITAT: isolated or gregarious, on decompos<strong>in</strong>g<br />

residues <strong>in</strong> hardwood and of conifer woods; non very<br />

common, fruits preferably <strong>in</strong> autumn.<br />

EDIBILITY: suspect<br />

NOTE - M. rosea belongs to the subsection Purae (Konr.<br />

& Maubl.) Maas G. of section Calodontes (Fr. ex Berk.)<br />

Quélet and differs from M. pura, of which it is oft<strong>en</strong><br />

considered a variety, not only by the colour of its cap,<br />

which is a particular shade of p<strong>in</strong>k, but also by its shape,<br />

which is conical-campanulate at the extremes or<br />

parabolic, and by its more-delicate stipe.<br />

203


BASIDIOCARP <strong>in</strong>itially cont<strong>en</strong>t <strong>in</strong> a whitish peridium,<br />

globular, oft<strong>en</strong> and filled with a gelat<strong>in</strong>ous substance,<br />

external surface is membranous, <strong>in</strong>itially smooth, soon<br />

becom<strong>in</strong>g percolated by elevated ve<strong>in</strong>s; the peridium has<br />

clear mycelial rootlets and the tip tears at maturity to<br />

allow the exit of a phallic receptacle, made from the stipe<br />

and cap.<br />

STIPE 120-210 × 20-35 mm, cyl<strong>in</strong>drical, progressively<br />

tapered at tip, white, fragile and spongy, oft<strong>en</strong> curv<strong>in</strong>g, to<br />

surface thickly dimpled.<br />

CAP vaguely resembl<strong>in</strong>g a mitra, wider <strong>in</strong> diameter than<br />

stipe, honeycombed, shows a round op<strong>en</strong><strong>in</strong>g at tip and<br />

marg<strong>in</strong>; whitish colour but at the covered with a rott<strong>en</strong><br />

gre<strong>en</strong> or olive gre<strong>en</strong> dark mucilage paste at extremes,<br />

which constitutes the glebe and conta<strong>in</strong>s its spores. It is<br />

not unusual for portions of gelat<strong>in</strong>ous peridium to adorn<br />

the summit of the cap. After the dissolution of the<br />

gre<strong>en</strong>ish-whitish glebe, the cap ev<strong>en</strong>tually takes its<br />

cellular-ribbed form.<br />

FLESH fragile <strong>in</strong> cap, fragile and spongy <strong>in</strong> stipe. Odour<br />

at first, until the carpophore is closed with<strong>in</strong> the peridium<br />

204<br />

Phallus impudicus L. : Pers.<br />

is not unpleasant, raphanoid, with a t<strong>en</strong>d<strong>en</strong>cy to smell of<br />

flesh or faeces or with h<strong>in</strong>ts of gorgonzola cheese; very<br />

unpleasant. the odour is noticeable several feet away and<br />

clearly <strong>in</strong>dicates the pres<strong>en</strong>ce of the mushroom ev<strong>en</strong><br />

before it is se<strong>en</strong><br />

MICROSCOPY: ellipsoidal spores, smooth, brownish<br />

under microscope, dim<strong>en</strong>sions: 4-5 × 1-2 µm.<br />

HABITAT: solitary or <strong>in</strong> groups <strong>in</strong> humid recesses dei<br />

woods, oft<strong>en</strong> hidd<strong>en</strong> among the undergrowth and close to<br />

decompos<strong>in</strong>g vegetable residues; not rare.<br />

EDIBILITY: non edible<br />

NOTE - An unmistakeable mushroom with its odour<br />

which recalls fecal or strongly-rott<strong>en</strong> organic matter. An<br />

odour which attracts the flies which are necessary to the<br />

diffusion of its spores. P. hadrianii, which is rarer, is very<br />

similar but has a p<strong>in</strong>k peridium, is slightly smaller and<br />

grows <strong>in</strong> sandy, arid earth. Mut<strong>in</strong>us can<strong>in</strong>us has a moreslant<strong>in</strong>g<br />

stipe which is coloured orange-p<strong>in</strong>k where it<br />

<strong>in</strong>tersects with the cap, which is the same diameter as the<br />

stipe, and is po<strong>in</strong>ted.


CAP: 50-100 (150) mm, convex, th<strong>en</strong> more dist<strong>en</strong>ded<br />

with convoluted marg<strong>in</strong> at the extremes, f<strong>in</strong>ally flat, very<br />

ecc<strong>en</strong>tric, <strong>in</strong> the shape of a fan or a shell, th<strong>in</strong>ned <strong>in</strong> the<br />

marg<strong>in</strong>al zone which is sometimes a little striated;<br />

hairless, greasy-sh<strong>in</strong>y, grey, grey steel blueish, greybrown,<br />

sometimes with fairly violet sta<strong>in</strong>s, cuticle is<br />

separable.<br />

GILLS: very decurr<strong>en</strong>t, not very crowded, with forks<br />

multiple and to various levels, th<strong>in</strong>, unequal, white or<br />

white-silver on whole surface, sometimes pale whitecream.<br />

STIPE: 10-35 × 10-20 mm, sometimes nearly abs<strong>en</strong>t, very<br />

acc<strong>en</strong>tric or lateral, irregularly cyl<strong>in</strong>drical, of pru<strong>in</strong>ose<br />

appearance, white, or slight h<strong>in</strong>t of grey; dry, firm, full.<br />

FLESH: white, abundant <strong>in</strong> correspond<strong>en</strong>ce with stipe<br />

<strong>in</strong>sertion, soon becom<strong>in</strong>g th<strong>in</strong>ned, fairly elastic-t<strong>en</strong>acious,<br />

sub-leathery <strong>in</strong> adults, especially around the stipe; odour<br />

vaguely of mould <strong>in</strong> older specim<strong>en</strong>s, sweet flavour.<br />

Pleurotus ostreatus (Jacq. : Fr.) Kummer<br />

MICROSCOPY: spores tightly ellipsoidal, subcyl<strong>in</strong>drical,<br />

smooth, 8-11.6 × 3.2-4.2 µm.<br />

HABITAT: on liv<strong>in</strong>g or dead wood of various hardwood<br />

trees, <strong>in</strong> woods or <strong>in</strong> parks, numerous examples are found<br />

with overlapp<strong>in</strong>g caps; late autumn or w<strong>in</strong>ter, common <strong>in</strong><br />

grow<strong>in</strong>g areas, but not widespread. Easily cultivated<br />

EDIBILITY: edible<br />

NOTE - There is a variant of this which grows on conifer<br />

trees, the var. columb<strong>in</strong>us, which has a light blue t<strong>in</strong>ge all<br />

over. This species is very well known for the ease with<br />

which they can be cultivated. Very commonly sold, it can<br />

be found on sale <strong>in</strong> all European and most <strong>in</strong>ternational<br />

markets. It also used to be very readily found <strong>in</strong> the wild<br />

too, from meadowlands to the mounta<strong>in</strong>s, but it is<br />

becom<strong>in</strong>g less and less easy to f<strong>in</strong>d them <strong>in</strong> their natural<br />

state. They are a choice edible and almost impossible to<br />

confuse with poisonous species.<br />

205


BASIDIOCARP coralloid, of 80-100 mm <strong>in</strong> width and<br />

50-120 mm of height, verticillated, made from a base up<br />

50 mm wide from which many small branches reach out,<br />

<strong>in</strong> various numbers. The pr<strong>in</strong>cipal branches create a<br />

po<strong>in</strong>ted tip p<strong>in</strong>k v<strong>in</strong>ous <strong>in</strong> colour, which contrast with the<br />

rest of the branches which are white or whitish.<br />

HYMENOPHORE <strong>in</strong>dist<strong>in</strong>ct, found on the smooth<br />

surface of branches and roughly half their height.<br />

FLESH fairly compact but fragile (monomorphic hyphal<br />

structure), white, with pleasant odour and flavour.<br />

MICROSCOPY: spores cyl<strong>in</strong>drical-ellipsoidal, 14-17 ×<br />

4.5-8 µm, with fairly pronounced apiculture, irregularly<br />

furrowed l<strong>en</strong>gthwise, not amyloid, hyal<strong>in</strong>e under<br />

microscope; basidia 45-60 × 9-11 µm, cyl<strong>in</strong>dricalclaviform,<br />

tetrasporic, jo<strong>in</strong>t to h<strong>in</strong>ges at base. Cystidia<br />

abs<strong>en</strong>t.<br />

HABITAT: on the ground <strong>in</strong> hardwood and of conifer<br />

woods, fruits <strong>in</strong> groups which sometimes cover a large<br />

area, <strong>in</strong> summer-autumn; not widespread.<br />

EDIBILITY: edible<br />

206<br />

Ramaria botrytis (Pers. : Fr.) Rick<strong>en</strong><br />

NOTE - Ramaria botrytis has a w<strong>in</strong>ey p<strong>in</strong>k colour which<br />

is commonly found <strong>in</strong> other species such as R.<br />

subbotrytis, <strong>in</strong> which, however one can see hues verg<strong>in</strong>g<br />

on corral p<strong>in</strong>k; this latter has similar-look<strong>in</strong>g carpophores,<br />

fruits <strong>in</strong> hardwood and conifer forests and has smaller,<br />

rough spores, from 8-11 × 3-4 µm. R. holorubella seems<br />

to be a variant found <strong>in</strong> conifer woods, and has a fairlywell<br />

rooted basal trunk which is firmly embedded <strong>in</strong> the<br />

ground. More common is R. rufesc<strong>en</strong>s, always whitereddish,<br />

with a t<strong>en</strong>d<strong>en</strong>cy to yellow at the lower part of its<br />

branches. It has dist<strong>in</strong>ct basal trunk dim<strong>en</strong>sions and can<br />

be found from summer to autumn <strong>in</strong> woodlands. It has<br />

amygdaliform spores, 8-10 × 3,5-4 µm.<br />

R. formosa has basidiocarps with an att<strong>en</strong>uated base with<br />

decreas<strong>in</strong>g branches at the top; these t<strong>en</strong>d to be of three<br />

colours: yellow on the uppermost extremities, salmon<br />

p<strong>in</strong>k on the branches and white at the base. It has are 9-13<br />

× 5-6 µm, warty-crested spores, and lives on the ground<br />

<strong>in</strong> hardwood forests.


BASIDIOCARP <strong>in</strong>itially <strong>in</strong> the shape of a cauliflower,<br />

th<strong>en</strong> coralloid, width of 100-200 mm and height 100-150<br />

mm, fairly verticillated, formed from an irregularly<br />

cyl<strong>in</strong>drical, solid and fairly developed basal trunk from<br />

which numerous branches grow, ev<strong>en</strong>tually fairly long,<br />

and divide further, until <strong>en</strong>d<strong>in</strong>g <strong>in</strong> two short spikes at the<br />

upper <strong>en</strong>d. The branches are yellow or apricot colour<br />

while the trunk is whitish<br />

HYMENOPHORE not dist<strong>in</strong>ct, found on the surface on<br />

the upper half of the branches.<br />

FLESH compact (monomorphic hyphal structure), white,<br />

sometimes marbled, no particular odour and weak,<br />

slightly sour flavour.<br />

MICROSCOPY: spores cyl<strong>in</strong>drical-ellipsoidal, 9-13 × 4-<br />

5.5 µm, with clear apiculture, with partially jo<strong>in</strong>ed warts,<br />

not amyloid, hyal<strong>in</strong>e under microscope; cyl<strong>in</strong>dricalclaviform,<br />

tetrasporic basidia, with basal jo<strong>in</strong>ts at h<strong>in</strong>ges.<br />

Cystidia abs<strong>en</strong>t.<br />

HABITAT: on the ground <strong>in</strong> hardwood or<br />

mixed woods, <strong>in</strong> summer-autumn; occasional.<br />

Ramaria flavesc<strong>en</strong>s (Schaeff.) Peters<strong>en</strong><br />

EDIBILITY: edible<br />

NOTE - There are numerous yellow species <strong>in</strong> the g<strong>en</strong>us<br />

Ramaria; some of these are fairly poisonous; among<br />

which R. formosa typically stands out due to three<br />

colours: white on its trunk, p<strong>in</strong>k on its branches and<br />

yellow at the branch tips. Other species should be eat<strong>en</strong><br />

with caution as they can have a laxative effect. R. flava,<br />

has least developed basal trunk and can also be id<strong>en</strong>tified<br />

by its large spores (10-15 × 4-6 µm) and the unpleasant<br />

odour of its flesh. R. aurea possesses a less-developed<br />

trunk, from which arise several columns, which <strong>in</strong> turn<br />

branch out <strong>in</strong>to fairly-long, gold<strong>en</strong> yellow app<strong>en</strong>dages; it<br />

lives on the ground <strong>in</strong> woods of Fagus and has warty<br />

spores of the same shape, but smaller (9-11 × 3,5-5 µm).<br />

R. larg<strong>en</strong>tii too has several analagous features to R.<br />

flavesc<strong>en</strong>s but is a very vivid yellow-orange colour and<br />

possesses an unpleasant odour, similar to car tyres, and as<br />

such is usually considered <strong>in</strong>edible.<br />

207


BASIDIOCARP coralloid, about 150 mm <strong>in</strong> width and<br />

200 mm <strong>in</strong> height, usually appears robust, very branched,<br />

with wide base, usually wider than it is tall, very dist<strong>in</strong>ct,<br />

white or whitish, from which fairly thick, erect,<br />

cyl<strong>in</strong>drical branches, vivid p<strong>in</strong>k <strong>in</strong> colour wh<strong>en</strong> young,<br />

th<strong>en</strong>, slowly becomes, p<strong>in</strong>k-ochre-ish, salmon, <strong>en</strong>d<strong>in</strong>g<br />

with a lemon yellow po<strong>in</strong>ted tip, f<strong>in</strong>ally concolour with<br />

branches. The bifurcation of the branches (saddles) very<br />

close to the structure of a U.<br />

HYMENOPHORE not dist<strong>in</strong>ct, found on the surface of<br />

the branches.<br />

FLESH fairly thick, white, soft, marbled with humidity,<br />

brittle wh<strong>en</strong> dry, oft<strong>en</strong> a little red-brownish at gill edge<br />

and wh<strong>en</strong> handled; odour is light or <strong>in</strong>significant, slightly<br />

bitter, sour flavour.<br />

MICROSCOPY: spores cyl<strong>in</strong>drical-ellipsoidal, 9.0-13.0 x<br />

5.0-6.0 μm, warty, hyal<strong>in</strong>e under microscope; tightly<br />

clavate, tetrasporic basidia, with jo<strong>in</strong>ts at h<strong>in</strong>ges;<br />

monomorphic structure, made from septate hyphae, with<br />

jo<strong>in</strong>ts at h<strong>in</strong>ges. Spores are yellow.<br />

208<br />

Ramaria formosa (Pers. : Fr.) Quélet<br />

HABITAT: grows on the ground <strong>in</strong> hardwood areas,<br />

especially oak; summer-autumn, fairly common a little<br />

widespread.<br />

EDIBILITY: toxic<br />

NOTE – This is one of the largest Ramaria (carpophores<br />

over 300 mm <strong>in</strong> height have be<strong>en</strong> found!) and can be<br />

easily recognised by its three colours and its parallelshaped<br />

branches. It is toxic and provokes gastro<strong>in</strong>test<strong>in</strong>al<br />

disturbances <strong>in</strong>clud<strong>in</strong>g strong and cont<strong>in</strong>ual diarrhoea. R.<br />

neoformosa has diverg<strong>en</strong>t branches, with preval<strong>en</strong>t<br />

bifurcations similar to Var; R. flavesc<strong>en</strong>s, with which it<br />

oft<strong>en</strong> shares the same habitat. Its colour makes it the<br />

closest species but it has divaricat<strong>in</strong>g, scattered branches,<br />

mixed, U- and V-shaped saddles and its branch tips are a<br />

corn-yellow colour; R. fagetorum has a longer, tighter<br />

base and preval<strong>en</strong>tly V-shaped angles; R. cettoi can be<br />

told apart by the dark reddish colour of its branches and<br />

its sweet, pleasant odour and flavour.


BASIDIOCARP <strong>in</strong>itially subglobular and with<br />

resembl<strong>in</strong>g a cauliflower due to the pres<strong>en</strong>ce of branches,<br />

th<strong>en</strong> coralloid, about 150-180 mm <strong>in</strong> width and <strong>in</strong> height,<br />

made from a solid, but not very developed basal trunk,<br />

white or whitish-yellow <strong>in</strong> colour, from which various<br />

columns grow which are th<strong>en</strong> divided <strong>en</strong>d<strong>in</strong>g with one or<br />

two short po<strong>in</strong>ts, yellow-orange, fire orange, sometimes<br />

scarlet red <strong>in</strong> colour.<br />

HYMENOPHORE not <strong>in</strong>dividualised, found on<br />

the upper half of the branches.<br />

FLESH compact (hav<strong>in</strong>g a monomorphic hyphal<br />

structure), white, with a fairly pronounced odour of tyres<br />

or “d<strong>en</strong>tal surgery” and sweet-sour flavour<br />

MICROSCOPY: spores ellipsoidal or cyl<strong>in</strong>dricalellipsoidal,<br />

12-14.5 × 3.5-5 µm, with clear apiculture,<br />

warty, not amyloid, hyal<strong>in</strong>e-yellow under microscope;<br />

claviform, tetrasporic basidia, with basal jo<strong>in</strong>t on h<strong>in</strong>ges.<br />

Cystidia abs<strong>en</strong>t.<br />

Ramaria larg<strong>en</strong>tii Marr & Stuntz<br />

HABITAT: on the ground <strong>in</strong> conifer woods, <strong>in</strong> summerautumn;<br />

fairly common.<br />

EDIBILITY: not edible<br />

NOTE - Ramaria aurea is similar but forms smaller<br />

carpophores with a gold<strong>en</strong>-yellow colour and has<br />

branches which spread out from a rather undeveloped<br />

base. It fruits on the ground <strong>in</strong> Fagus woods dur<strong>in</strong>g the<br />

summer-autumn period and produces small spores 9-11 ×<br />

3,5-5 µm, which are covered with partially-united warts.<br />

R. flava too has yellowish colouration and has not-very<br />

differ<strong>en</strong>tiated branches which develop from its basal<br />

trunk; it grows <strong>in</strong> conifer woods and has 10-15 × 4-6 µm<br />

spores which are mostly warty. Other species <strong>in</strong> this<br />

g<strong>en</strong>us have similar colours; their morphological<br />

id<strong>en</strong>tification can mostly be based on the colour of their<br />

branches, but to be sure we must recourse to microscopic<br />

analysis, particularly of spore characteristics.<br />

209


BASIDIOCARP <strong>in</strong>itially like a cauliflower, soon<br />

coralloid, up to 200 mm <strong>in</strong> width, height can reach more<br />

than 150 (200) mm, made from a basal trunk which is at<br />

most 40 mm <strong>in</strong> from which various branches grow and<br />

are subdivided aga<strong>in</strong>, <strong>en</strong>d<strong>in</strong>g <strong>in</strong> two short po<strong>in</strong>ts. The<br />

trunk is whitish ivory towards the base, with ochre-ish<br />

shades elsewhere; branches are yellow or weakly<br />

yellowish, sometimes with flesh coloured sta<strong>in</strong>s, darker<br />

due to the maturation of the spores, fairly oft<strong>en</strong> bear<strong>in</strong>g a<br />

s<strong>in</strong>uous pattern.<br />

HYMENOPHORE not dist<strong>in</strong>ct, distributed over the upper<br />

half of the branches.<br />

FLESH compact, th<strong>en</strong> soft (<strong>in</strong> a monomorphic hyphal<br />

structure), white, with weak or <strong>in</strong>significant odour of dry<br />

grass, and no dist<strong>in</strong>ct flavour.<br />

MICROSCOPY: spores irregularly ellipsoidal, sometimes<br />

flatt<strong>en</strong>ed on one side, 9-12 × 4.5-5.5 µm, with partially<br />

jo<strong>in</strong>ed warts, not amyloid, hyal<strong>in</strong>e-yellow under<br />

microscope; claviform, tetrasporic basidia, without basal<br />

jo<strong>in</strong>ts at h<strong>in</strong>ges. Cystidia abs<strong>en</strong>t.<br />

210<br />

Ramaria pallida (Schaeff.) Rick<strong>en</strong><br />

HABITAT: on the ground <strong>in</strong> conifer and mixed woods, <strong>in</strong><br />

summer to autumn; common.<br />

EDIBILITY: toxic<br />

NOTE - The light colour of R. pallida is similar to several<br />

Clavul<strong>in</strong>a, such as C. rugosa, which has far-less<br />

developed carpophores, with no def<strong>in</strong>ed basal trunk and<br />

featur<strong>in</strong>g thick, sometimes rough and flatt<strong>en</strong>ed branches.<br />

Furthermore, it has very diverse globose, round and<br />

smooth spores 9-13.5 × 7.5-10 µm, and typically fruits on<br />

woodland floors. R. gracilis grows <strong>in</strong> conifer woods and<br />

has coralloid, white-ochre carpophores no larger than 60<br />

mm, which have a p<strong>in</strong>kish colour to them. Its spores,<br />

which are ellipsoid and f<strong>in</strong>ely verrucose, are noticeably<br />

smaller and 5-7 × 3-4 µm <strong>in</strong> size. With colours t<strong>en</strong>d<strong>in</strong>g to<br />

grey-violet is R. fumigata, which produces arboresc<strong>en</strong>tcoralloid<br />

carpophores; fruits <strong>in</strong> hardwoods forests <strong>in</strong><br />

summer and autumn and produces 9.5-11.5 × 4-5 µm<br />

spores covered with partially-united warts.


CAP 50-80 (100) mm, hemispheric or truncatedhemispheric,<br />

th<strong>en</strong> convex, f<strong>in</strong>ally flat or flat depressed,<br />

with obtuse marg<strong>in</strong>, slightly grooved <strong>in</strong> old age; <strong>in</strong>itially<br />

of firm, hard, becom<strong>in</strong>g more fragile dur<strong>in</strong>g maturity of<br />

the carpophore. Surface appears greasy-sh<strong>in</strong>y, viscous<br />

with humidity, fairly corrugated, from c<strong>in</strong>nabar red to fire<br />

red, vivid orange, oft<strong>en</strong> with ext<strong>en</strong>ded sulphur yellow<br />

zone, sometimes completely yellow; f<strong>in</strong>e cuticle,<br />

separable for 1/3 of the radius.<br />

GILLS rounded, subfree, fairly wide, very th<strong>in</strong> and<br />

fragile, fairly crowded; whitish, th<strong>en</strong> pale cream flat<br />

appearance, f<strong>in</strong>ally also ext<strong>en</strong>sively yellow, typically with<br />

a yellow surface (these features are rarely evid<strong>en</strong>t and<br />

oft<strong>en</strong> completely abs<strong>en</strong>t).<br />

STIPE 35-80 × 12-25 mm, from cyl<strong>in</strong>drical to<br />

subfusiform dry corrugated-rugulous, white, not<br />

<strong>in</strong>frequ<strong>en</strong>tly evid<strong>en</strong>t and with fairly sulphuric yellow<br />

shades; full, soon becom<strong>in</strong>g filled-medullar.<br />

FLESH fairly hard <strong>in</strong> young specim<strong>en</strong>s, soon becom<strong>in</strong>g<br />

fragile and brittle, almost friable <strong>in</strong> adults; white,<br />

Russula aurea (Persoon)<br />

sometimes yellow for a fairly ext<strong>en</strong>ded subcuticular area,<br />

of flavourful and non dist<strong>in</strong>ctive odour.<br />

CHEMICAL REACTION: Guaiac quickly blue gre<strong>en</strong>ish.<br />

FeSO weak, p<strong>in</strong>k pale ochre-ish.<br />

4<br />

MICROSCOPY: spore from mostly ellipsoidal to ovoid,<br />

7.5-9.0 × 6.2-7.5 µm, warty, partially reticulated. Light<br />

yellow <strong>in</strong> mass.<br />

HABITAT: ubiquitous and mostly widespread; pres<strong>en</strong>t<br />

from summer and fruits until late autumn.<br />

EDIBILITY: edible<br />

NOTE - This species is easy to recognise wh<strong>en</strong> it shows<br />

its typical characteristics; its colour<strong>in</strong>g, with a yellow<br />

surface surround<strong>in</strong>g its gills, and the fragility of adult<br />

specim<strong>en</strong>s’ flesh; however, it should be noted that this is a<br />

very “capricious” species, which sometimes appears<br />

completely yellow, and sometimes does not have the<br />

yellow mark<strong>in</strong>g around the gills. Among edible species it<br />

is, with good reason, considered one of the best,<br />

notwithstand<strong>in</strong>g the frail flesh and gills of adult<br />

specim<strong>en</strong>s.<br />

211


CAP 50-140 mm, fleshy and compact, subglobular with a<br />

fairly po<strong>in</strong>ted, gradually expanded summit, f<strong>in</strong>ally also<br />

depressed, marg<strong>in</strong> is b<strong>en</strong>t at the extremes, subacute;<br />

cuticle separable to half of the radius, lubricated-sh<strong>in</strong>y,<br />

ev<strong>en</strong> greasy <strong>in</strong> humid weather, from violet lilac to violet<br />

blueish, fairly variegated of gre<strong>en</strong>, grey-gre<strong>en</strong>, sometimes<br />

completely cyclam<strong>en</strong> p<strong>in</strong>k (fo. lilacea), completely gre<strong>en</strong><br />

olive or pear gre<strong>en</strong> (fo. peltereaui), ev<strong>en</strong>tually dimpled<br />

towards the edge (fo. cutefracta).<br />

GILLS b<strong>en</strong>t-adnate or a little decurr<strong>en</strong>t, sometimes<br />

biforked at <strong>in</strong>sertion, close, fairly crowded, lardaceous,<br />

whitish, sometimes fairly clear cream, ev<strong>en</strong>tually also<br />

sta<strong>in</strong>ed brown ochre.<br />

STIPE 30-90 × 15-35 mm, cyl<strong>in</strong>drical, rugulous,<br />

completely white or suffused with lilac p<strong>in</strong>k, vaguely<br />

grey<strong>in</strong>g due to imbibition, ev<strong>en</strong>tually a little sta<strong>in</strong>ed of<br />

brown, filled with a compact medulla, th<strong>en</strong> cavernousfilled.<br />

FLESH highly compact, almost hard normally lilac under<br />

the cuticle, white elsewhere; mild flavour, slightly<br />

s<strong>en</strong>sitive odour, <strong>in</strong> mature specim<strong>en</strong>s, after rubb<strong>in</strong>g, it is<br />

212<br />

Russula cyanoxantha (Schaeffer) Fries<br />

possible to experi<strong>en</strong>ce an unpleasant metallic note, like<br />

FeSO .<br />

4<br />

CHEMICAL REACTION: Guaiac strong and rapid.<br />

Anil<strong>in</strong>e late on, orange on the gills. FeSO negative, th<strong>en</strong><br />

4<br />

slowly grey-gre<strong>en</strong>.<br />

MICROSCOPY: spores ellipsoidal-oboval or r<strong>en</strong>iform <strong>in</strong><br />

parts, (6.4) 7.2-9 (9.5) × 5.8-7 µm, warty, hemispheric<br />

0.4-0.5 µm, isolated or grouped <strong>in</strong> part from slightly<br />

amyloid connections. Spores are pure white.<br />

HABITAT: ubiquitous species, common from the start of<br />

the season under hardwood and conifer, from the<br />

mediterranean up to limited tree vegetation.<br />

EDIBILITY: edible<br />

NOTE - Accord<strong>in</strong>g to Bon, the types with cream, elastic<br />

<strong>in</strong>stead of waxy gills, a dark violet cap and stipe usually<br />

featur<strong>in</strong>g a lilac-p<strong>in</strong>k colour<strong>in</strong>g, belong to an <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>t<br />

species named R. langei. Specim<strong>en</strong>s with a subuniform<br />

violet-lilac cap (fo. lilacea) can seem similar to R. grisea,<br />

differ<strong>en</strong>tiated only by the cream spores, fragile gills, spicy<br />

taste and red-orange reaction to FeSO 4 .


CAP 60-140 (185) mm, fleshy and firm, hemispheric,<br />

th<strong>en</strong> convex, with obtuse umbilical dimple <strong>in</strong> the<br />

background, slowly expand<strong>in</strong>g, ev<strong>en</strong>tually deeply<br />

<strong>in</strong>fundibulform; marg<strong>in</strong> b<strong>en</strong>t at the extremes, th<strong>in</strong>ned;<br />

semiadnate dry and matt cuticle, thorny or a little felted,<br />

covered with residues of soil and leaves difficult to<br />

separate, whitish at first, soon becom<strong>in</strong>g sta<strong>in</strong>ed ochre<br />

brown, th<strong>en</strong> of rusty brown, start<strong>in</strong>g with the most<br />

exposed parts.<br />

GILLS a little decurr<strong>en</strong>t on stipe, falciform-arcuate,<br />

subacute at the front, forked <strong>in</strong> parts, width of 6-9 mm,<br />

<strong>in</strong>tercalated from lamellule of diverse l<strong>en</strong>gths, fairly<br />

spaced, fragile although rigid, cream, with the whole<br />

surface coloured, soon becom<strong>in</strong>g sta<strong>in</strong>ed rusty brown on<br />

the most exposed parts.<br />

STIPE 25-48 × 15-35 mm, hard, highly stocky and robust,<br />

flared at the top, or cyl<strong>in</strong>drical subequal, subsmooth or<br />

f<strong>in</strong>ely corrugated surface, pru<strong>in</strong>ose, white, th<strong>en</strong> sta<strong>in</strong>ed<br />

rusty brown, rarely with glucose belts under the gills, the<br />

medulla is compact, only ev<strong>en</strong>tually a little spr<strong>in</strong>gy and<br />

wormy.<br />

Russula delica Fries<br />

FLESH very thick, firm and fragile, white, clearly<br />

brown<strong>in</strong>g on the surface and washed with ochre tones to<br />

air after the gill edge; strong and unpleasant odour, like<br />

fish or salty, with fruity h<strong>in</strong>ts wh<strong>en</strong> young, peppery<br />

flavour, less on the gills.<br />

CHEMICAL REACTION: Guaiac strong and rapid.<br />

FeSO pale p<strong>in</strong>k.<br />

4<br />

MICROSCOPY: spores from obvoid to subglobose, 8.5-<br />

11.2 × 7-9 µm, ech<strong>in</strong>ulate, crested-cat<strong>en</strong>ulate, partly<br />

connected, subreticulate, with obtuse sp<strong>in</strong>es; creamwhitish<br />

<strong>in</strong> mass.<br />

HABITAT: very common species under hardwood and<br />

conifer, with prefer<strong>en</strong>ce to dry, calcerous ground.<br />

EDIBILITY: of no value<br />

NOTE - R. chloroides can be dist<strong>in</strong>guished by its funnelshaped,<br />

fairly regular cap and its very close and crowded<br />

gills. R. palespora is a highly characteristic species for its<br />

refresh<strong>in</strong>g, amaresc<strong>en</strong>t flavour which is never harsh. Its<br />

gills are ochre with an orange lustre at maturity, with full,<br />

cream spores.<br />

213


CAP 50-100 (120) mm, fleshy, <strong>in</strong>itially firm <strong>in</strong> the shape<br />

of a helmet, th<strong>en</strong> convex, becom<strong>in</strong>g flat, f<strong>in</strong>ally also<br />

lightly depressed; with obtuse and jo<strong>in</strong>t marg<strong>in</strong>; cuticle is<br />

separable up to half of the radius, lubricated and sh<strong>in</strong>y,<br />

full vivid red, apple red, arterial blood red, sometimes<br />

with blackish shades <strong>in</strong> the c<strong>en</strong>tre or with a sharply<br />

demarcated ivory-cream zone.<br />

GILLS rounded or almost free at <strong>in</strong>sertion, from lightly<br />

convex to straight, width of 6-9 mm, th<strong>in</strong> and fragile,<br />

f<strong>in</strong>ally spaced, sparsely forked, <strong>in</strong>terve<strong>in</strong>ed, sometimes<br />

whitish, with cream straw t<strong>in</strong>ges very clear view of gill<br />

edge; <strong>in</strong>tercalated by sporadic lamellule.<br />

STIPE 50-80 (100) × 10-20 mm, slim, slightly claviform<br />

wh<strong>en</strong> young, th<strong>en</strong> fairly cyl<strong>in</strong>drical, oft<strong>en</strong> lightly th<strong>in</strong>ned<br />

at tip, visibly corrugated, white, slightly sta<strong>in</strong>ed yellowbrown<br />

<strong>in</strong> certa<strong>in</strong> conditions, f<strong>in</strong>ely striated and a little<br />

sat<strong>in</strong> for the rest; medullar, soon becom<strong>in</strong>g <strong>in</strong>complete.<br />

FLESH fragile, a little watery, white, slightly yellow<strong>in</strong>g<br />

wh<strong>en</strong> handled; peppery flavour <strong>in</strong> every part,<br />

imperceptible or lightly fruity odour at gill edge.<br />

214<br />

Russula emetica (Schaeff. : Fr.) Persoon<br />

CHEMICAL REACTION: Guaiac, subnul.<br />

MICROSCOPY: spores mostly oboval 8.8-10.5 × 7.4-8.8<br />

µm, ech<strong>in</strong>ulate, with large conical-obtuse warts,<br />

sometimes briefly crested, reticulated-connected. Spores<br />

are whitish.<br />

HABITAT: under conifers <strong>in</strong> mounta<strong>in</strong>s, mostly Picea,<br />

but also under birch; with prefer<strong>en</strong>ce to sphagnum or<br />

other types of moss.<br />

EDIBILITY: toxic<br />

NOTE - Among similar species, we can dist<strong>in</strong>guish: R.<br />

grisesc<strong>en</strong>s Sphagnicolous, around half the size of R.<br />

emetica, flesh grey<strong>in</strong>g with humidity, positive reaction to<br />

Guaiac, spores very much smaller and f<strong>in</strong>ely ornate; R.<br />

nanatypical of Alp<strong>in</strong>e microsilva. R. mairei found <strong>in</strong> fresh<br />

hardwood forests, with a predilection for the Beech has<br />

flesh that turns blue on treatm<strong>en</strong>t with Guaiac and gills<br />

that reveal a glaucous t<strong>in</strong>ge which is <strong>in</strong>consist<strong>en</strong>t but<br />

characteristic. R. silvestris grows <strong>in</strong> dryer ground on<br />

mossy carpets at the bottom of oak, chestnut or p<strong>in</strong>e trees.


CAP 55-140 (200) mm, fleshy and rigid subglobular,<br />

progressively expansive, th<strong>en</strong> flat, grooved-tubercolate<br />

marg<strong>in</strong> for 20-30 mm, acute; thorny surface, cuticle is<br />

separable for a third of the radius, viscous, persist<strong>en</strong>tly<br />

sh<strong>in</strong>y wh<strong>en</strong> dry, yellow-brown colour, honey like, paler <strong>in</strong><br />

peripheral area, th<strong>en</strong> bear<strong>in</strong>g brown tawny spots, also<br />

tawny blackish <strong>in</strong> the contused parts.<br />

GILLS rounded-free, partly connate at <strong>in</strong>sertion, width of<br />

8-16 mm, unequal, fairly thick, sparsely forked, not very<br />

crowded, <strong>in</strong>terve<strong>in</strong>ed, fragile, ivory cream, bear<strong>in</strong>g watery<br />

drops <strong>in</strong> humid weather, with residual rusty sta<strong>in</strong>s on gill<br />

edge, brown<strong>in</strong>g with age.<br />

STIPE 60-120 × 20-40 mm, cyl<strong>in</strong>drical, fairly flared at<br />

tip, corrugated, rusty at tip, sta<strong>in</strong>ed brown grey<strong>in</strong>g<br />

elsewhere, medullar-<strong>in</strong>complete for three or four cells<br />

soon becom<strong>in</strong>g conflu<strong>en</strong>t with wide caverns, the sk<strong>in</strong> is<br />

fragile and thick, papered with brownish lumps and soft<br />

<strong>in</strong>ternally.<br />

FLESH rigid and fragile, whitish on gill edge, not<br />

yellow<strong>in</strong>g, very sta<strong>in</strong>ed soon becom<strong>in</strong>g rusty brown; very<br />

clear peppery flavour, unpleasant odour, complex and<br />

Russula foet<strong>en</strong>s Pers. : Fr.<br />

difficult to def<strong>in</strong>e, with fruity h<strong>in</strong>ts <strong>in</strong> the second level and<br />

only to perceptible traits.<br />

CHEMICAL REACTION: Guaiac positive. KOH<br />

negative.<br />

MICROSCOPY: spore subglobose, 8-9.8 × 7-8.2 µm,<br />

with flat sp<strong>in</strong>es and apex, <strong>in</strong>completely amyloid.<br />

HABITAT: gregarious, widespread and abundant, under<br />

hardwood and conifers.<br />

EDIBILITY: not edible<br />

NOTE - R. laurocerasi can be id<strong>en</strong>tified by its average or<br />

small stature, the abs<strong>en</strong>ce of glut<strong>en</strong>, a strong smell of<br />

bitter almonds; its rounded spores, embellished with<br />

spectacular w<strong>in</strong>ged crests. Also R. illota gives off<br />

efflu<strong>en</strong>ce of bitter almonds, though to a lesser degree and<br />

mixed with rather less pleasant h<strong>in</strong>ts than R. foet<strong>en</strong>s. The<br />

stipe and the gill edge of its gills display a characteristic<br />

blackish-brown series of mark<strong>in</strong>gs. Its most similar<br />

lookalike, however is, R. subfoet<strong>en</strong>s, recognizable by its<br />

slightly smaller stature, the surface of its cap which is<br />

usually without glut<strong>en</strong>, its yellow<strong>in</strong>g flesh and its positive<br />

reaction to KOH.<br />

215


CAP 60-100 (130) mm, very fleshy and hard, globular or<br />

with lightly po<strong>in</strong>ted summit, pulv<strong>in</strong>ate, f<strong>in</strong>ally dist<strong>en</strong>ded<br />

and a little depressed, with fleshy and obtuse rigid<br />

marg<strong>in</strong>, curv<strong>in</strong>g at the extremes; cuticle is separable for a<br />

third of the radius, thick, t<strong>en</strong>acious-elastic, appears<br />

greasy, sh<strong>in</strong>y, rarely matt or ev<strong>en</strong> pru<strong>in</strong>ose, brown, brown<br />

honey or chestnut.<br />

GILLS att<strong>en</strong>uated, th<strong>en</strong> rounded, fairly crowded, with<br />

some fork<strong>in</strong>g, subacute at the front, nearly straight, width<br />

of 5-8 mm, <strong>in</strong>terve<strong>in</strong>ed, sublardaceous, straw cream, th<strong>en</strong><br />

sta<strong>in</strong>ed brown on the surface; some lamellule are pres<strong>en</strong>t.<br />

STIPE 40-100 × 15-35 mm, bulky, from cyl<strong>in</strong>drical to<br />

subclavate, clearly corrugated, sta<strong>in</strong>ed brown and oft<strong>en</strong><br />

plicate at base, ivory-cream, th<strong>en</strong> with fairly ext<strong>en</strong>sive<br />

rusty sta<strong>in</strong>s; full, compact medulla, f<strong>in</strong>ally cavernous.<br />

FLESH of notable thickness and hardness, firm, white,<br />

shades of yellow under the cuticle, clearly washed with<br />

ochre brown wh<strong>en</strong> exposed to air and with age; sweet<br />

flavour and no dist<strong>in</strong>ctive odour.<br />

CHEMICAL REACTION: FeSO vivid orange. anil<strong>in</strong>e<br />

4<br />

on the gills, slowly yellow. Guaiac fairly rapid and<br />

<strong>in</strong>t<strong>en</strong>se.<br />

216<br />

Russula mustel<strong>in</strong>a Fries<br />

MICROSCOPY: spores oboval 7-9.7 × 5.8-7.8 µm,<br />

warty, crispate, weakly connected, subreticular. Pale<br />

cream ochre-ish <strong>in</strong> mass.<br />

HABITAT: highly common alp<strong>in</strong>e forests where it grows<br />

<strong>in</strong> abundance and fairly underground; <strong>en</strong>d of summerautumn.<br />

EDIBILITY: edible<br />

NOTE - An edible mushroom which is widely<br />

commercialised thanks to its firm flesh and pleasant<br />

flavour. It can be id<strong>en</strong>tified by its tawny-brown to honeybrown<br />

colouration, evocative of R. foet<strong>en</strong>s or Boletus<br />

edulis, its pale cream spores, and a vivid orange reaction<br />

to FeSO 4. It loves to grow fairly buried <strong>in</strong> temperate<br />

periods, from the <strong>en</strong>d of summer to autumn, until the first<br />

signs of w<strong>in</strong>ter. In some years it can be found abundantly<br />

while <strong>in</strong> others it can still be found, yet far less<br />

numerously.


CAP 40-70 (100) mm fleshy and firm th<strong>en</strong> more fragile,<br />

at first convex-subhemispheric, progressively flat, f<strong>in</strong>ally<br />

mostly depressed, with th<strong>in</strong>ned but obtuse marg<strong>in</strong>, briefly<br />

grooved <strong>in</strong> maturity; cuticle separable to almost half of<br />

the radius, wet and sh<strong>in</strong>y collectively, red purple, violet<br />

v<strong>in</strong>ous, dark violet, oft<strong>en</strong> blackish towards the disc, other<br />

times brown violet, partly brownish, streaks of gre<strong>en</strong>grey.<br />

GILLS att<strong>en</strong>uated or lightly rounded, obtuse at the front,<br />

<strong>in</strong>terve<strong>in</strong>ed, sparsely forked, fairly crowded, width of 4-8<br />

mm, fragile, whitish, th<strong>en</strong> dirty cream, <strong>in</strong>terspersed with<br />

<strong>in</strong>frequ<strong>en</strong>t lamellule.<br />

STIPE 30-90 × 10-20 mm, cyl<strong>in</strong>drical, sometimes a little<br />

fusiform, rugulous, white at base, with red shades<br />

elsewhere, carm<strong>in</strong>e under a whitish bloom thick<strong>en</strong>ed and<br />

fugacious to the touch, oft<strong>en</strong> completely white, a little<br />

grey<strong>in</strong>g due to imbibition, the medulla is compact, th<strong>en</strong><br />

soft<strong>en</strong>ed and partly <strong>in</strong>complete.<br />

FLESH violet under the cuticle, a little grey<strong>in</strong>g due to<br />

imbibition; <strong>in</strong>t<strong>en</strong>se fruity odour, like mature pears, clearly<br />

peppery flavour.<br />

Russula queletii Fries<br />

CHEMICAL REACTION: Guaiac positive, slow. FeSO 4<br />

pale p<strong>in</strong>k-orange.<br />

MICROSCOPY: spores ellipsoidal-oboval 7.3-9 (9.8) ×<br />

6-7.3 (8.2) µm, from ech<strong>in</strong>ulate to sp<strong>in</strong>ulose, to warty<br />

conical-obtuse. Light cream <strong>in</strong> mass.<br />

HABITAT: highly common <strong>in</strong> the subalp<strong>in</strong>e area under<br />

Picea <strong>in</strong> calcerous non-humid ground, sometimes also<br />

under white fir and P<strong>in</strong>us.<br />

EDIBILITY: toxic<br />

NOTE - R. cavipes is smaller and grows under Abies alba,<br />

and more rarely under Picea, it has a humid and bright<br />

cuticle, more widely-spaced gills which are whitish wh<strong>en</strong><br />

young, its stipe is never red-violet and its spores are pale<br />

cream; Furthermore, it has a subnul reaction to Guaiac<br />

test<strong>in</strong>g and a positive, redd<strong>en</strong><strong>in</strong>g, reaction to ammonia. It<br />

has a peppery flavour and an <strong>in</strong>t<strong>en</strong>se, pleasant odour of<br />

geraniums. R. sardonia, can be id<strong>en</strong>tified by its pale,<br />

sulphuric gills, <strong>in</strong>significant odour and its ar<strong>en</strong>aceous p<strong>in</strong>e<br />

habitat.<br />

217


CAP 30-100 (120) mm, from convex to flat, f<strong>in</strong>ally<br />

depressed, f<strong>in</strong>e firm marg<strong>in</strong>, curv<strong>in</strong>g, regular, smooth, yet<br />

slightly striated, briefly, <strong>in</strong> adult specim<strong>en</strong>s; vivid red,<br />

cherry red, carm<strong>in</strong>e red, without violet tones, paler at<br />

marg<strong>in</strong>, fad<strong>in</strong>g to pale p<strong>in</strong>k, sometimes with white ivory<br />

patches; surface rough due to f<strong>in</strong>e granules, dry and matt,<br />

lightly viscous and sh<strong>in</strong>y with humidity.<br />

GILLS adnate and fairly decurr<strong>en</strong>t, <strong>in</strong>itially b<strong>en</strong>t, th<strong>en</strong><br />

horizontal or a little v<strong>en</strong>tricular, width of 3 to 10 mm,<br />

thick, fairly crowded, sometimes biforked, jo<strong>in</strong>ed on the<br />

background by f<strong>in</strong>e ve<strong>in</strong>s, irregularly <strong>in</strong>tercalated from<br />

some lamellule; whitish th<strong>en</strong> cream-ochre-ish, f<strong>in</strong>e edge,<br />

sometimes coloured red.<br />

STIPE 30-80 × 10-30 mm, fairly stocky, cyl<strong>in</strong>drical or<br />

att<strong>en</strong>uated at base, rigid, full, ev<strong>en</strong>tually filled-cavernous;<br />

normally completely suffused with red or red-p<strong>in</strong>kish, up<br />

to almost concolour with cap, on white-ochre-ish<br />

background, fairly yellow<strong>in</strong>g start<strong>in</strong>g from the base;<br />

surface is f<strong>in</strong>ely rugulous-reticulated.<br />

218<br />

Russula sangu<strong>in</strong>ea (Bulliard) Fries<br />

FLESH firm compact, firm, whitish, carm<strong>in</strong>e red under<br />

the cuticle, yellow<strong>in</strong>g fairly slowly; weak fruity odour;<br />

acrid, hot and also bitter flavour. Slow but positive<br />

reaction to Guaiac.<br />

MICROSCOPY: spores pale ochre <strong>in</strong> mass, oboval with<br />

conical-obtuse warts about 1 µm high, jo<strong>in</strong>ed <strong>in</strong> parts with<br />

<strong>in</strong>frequ<strong>en</strong>t ridges, 7.8-9.4 × 6.5-8.2 µm.<br />

HABITAT: <strong>in</strong> conifer woods, pr<strong>in</strong>cipally under p<strong>in</strong>e,<br />

fairly common, <strong>in</strong> summer-autumn.<br />

EDIBILITY: toxic<br />

NOTE - Russula sangu<strong>in</strong>ea, due to its morphochromatic<br />

features, is similar to: R. persic<strong>in</strong>a which, however,<br />

favours hardwood forests; R. helodes, typical of high<br />

mounta<strong>in</strong> bogs and is l<strong>in</strong>ked to conifers; R. rhodopus,<br />

with its lacquered red cap, and habitat of acidic grounds<br />

<strong>in</strong> red fir forests. In the wild one also comes across some<br />

chromatic variants, g<strong>en</strong>erally ranked by shape or variety.


CAP 45-100 (140) mm, fleshy and firm, subglobular, th<strong>en</strong><br />

irregularly flat, ev<strong>en</strong>tually depressed, with th<strong>in</strong>ned yet<br />

obtuse marg<strong>in</strong>; cuticle is separable for two fifths of the<br />

radius, oft<strong>en</strong> a little retracted towards the marg<strong>in</strong>, soon<br />

becom<strong>in</strong>g dry and matt, p<strong>in</strong>k lilac, brown v<strong>in</strong>ous,<br />

sometimes with undef<strong>in</strong>ed pale areas, cream flesh colour,<br />

occasionally sta<strong>in</strong>ed gre<strong>en</strong>-grey, with streaks darker than<br />

the background.<br />

GILLS vaguely decurr<strong>en</strong>t and biforked mostly at the<br />

<strong>in</strong>sertion, subacute at the front, crowded and relatively<br />

close, delicately <strong>in</strong>terve<strong>in</strong>ed, sublardaceous wh<strong>en</strong> young,<br />

whitish, with rusty sta<strong>in</strong>s and f<strong>in</strong>ally yellow wh<strong>en</strong><br />

handled.<br />

STIPE from subcyl<strong>in</strong>drical to fairly progressively<br />

att<strong>en</strong>uated towards the base, corrugated, rare h<strong>in</strong>ts of p<strong>in</strong>k<br />

on the side, rusty low down, with some yellow-brown<br />

sta<strong>in</strong>s, full, th<strong>en</strong> a little filled with age.<br />

FLESH compact, white, clearly yellow<strong>in</strong>g wh<strong>en</strong> touched<br />

and partly sta<strong>in</strong>ed brown; completely sweet flavour and<br />

<strong>in</strong>dist<strong>in</strong>ctive odour.<br />

CHEMICAL REACTION: FeSO red-orange. Guaiac<br />

4<br />

positive. anil<strong>in</strong>e, yellow.<br />

Russula vesca Fries<br />

MICROSCOPY: spores oboval or a little elongated, 6.4-8<br />

× 5.3-5.8 µm, with isolated warts; any l<strong>in</strong>ks betwe<strong>en</strong> them<br />

are very th<strong>in</strong> and sporadic. characteristic needle-like<br />

forms protrude from rigid and thick cell walls.<br />

HABITAT: highly common <strong>in</strong> mildly acidic or neutral<br />

ground under various types of hardwood and under<br />

conifers <strong>in</strong> mounta<strong>in</strong>s; from the late spr<strong>in</strong>g.<br />

EDIBILITY: edible<br />

NOTE - R. vesca can be recognised by its slightly lilac or<br />

w<strong>in</strong>ey-brown flesh, the t<strong>en</strong>d<strong>en</strong>cy to turn yellow-brown on<br />

its deteriorat<strong>in</strong>g parts, its sweet flavour, white spores and<br />

a red-orange reaction to FeSO 4 . One should guard aga<strong>in</strong>st<br />

giv<strong>in</strong>g excessive importance to characteristics which are<br />

<strong>in</strong>consist<strong>en</strong>t and none too specific: the t<strong>en</strong>d<strong>en</strong>cy of the<br />

cuticle to retract towards the marg<strong>in</strong> (“habillé trop court”<br />

accord<strong>in</strong>g to a metaphor giv<strong>en</strong> by Fr<strong>en</strong>ch authors) for<br />

example. In the case of gre<strong>en</strong><strong>in</strong>g or partially discoloured<br />

samples, the completely sweet flavour, white spores and<br />

an <strong>en</strong>ergetic reaction to FeSO 4 should help to dist<strong>in</strong>guish<br />

this aga<strong>in</strong>st other, macroscopically similar species of<br />

Grise<strong>in</strong>ae.<br />

219


220<br />

Sarcosphaera crassa (Santi ex Steudel) Pouzar<br />

[= S. eximia Durieu & Léveillé; S. coronaria (Jacqu<strong>in</strong>) Schroeter]<br />

ASCOCARP made from a subspheric, sessile apothecium.<br />

APOTHECIUM <strong>in</strong>itially semi-underground, globular, up<br />

to 160 mm <strong>in</strong> diameter, top is op<strong>en</strong> only for a fairly small<br />

operculum (sometimes <strong>in</strong> a non apical position), th<strong>en</strong><br />

more and more op<strong>en</strong> and protrud<strong>in</strong>g from the ground up<br />

to appear domed and epigean. Hym<strong>en</strong>ophore is smooth,<br />

lightly undulated, <strong>in</strong>itially violet, th<strong>en</strong> darker, t<strong>en</strong>d<strong>in</strong>g to<br />

turn brown violet. Smooth external surface, white greyish.<br />

edge soon becom<strong>in</strong>g cracked, lacianated, with erratic<br />

po<strong>in</strong>ts due to the lacerations on the carpophore dur<strong>in</strong>g<br />

growth.<br />

FLESH fragile, leathery, whitish, thick.<br />

MICROSCOPY: regular ellipsoidal spores, with well<br />

rounded extremes, smooth,18-20 × 7-8 µm, hyal<strong>in</strong>e under<br />

microscope, biguttulate, uniseriat <strong>in</strong> asco; asci are<br />

cyl<strong>in</strong>drical, amyloid, octosporic; cyl<strong>in</strong>drical paraphyses<br />

with slightly wid<strong>en</strong>ed tip, septate and forked.<br />

HABITAT: ubiquitous, on the ground among needles,<br />

leaves, grass or moss, <strong>in</strong> humid places; rarely isolated,<br />

more oft<strong>en</strong> found <strong>in</strong> large groups, from the spr<strong>in</strong>g to<br />

summer, rarely <strong>in</strong> autumn. Quite common.<br />

EDIBILITY: of no value<br />

NOTE - S. crassa has amyloid asci such as the species <strong>in</strong><br />

the g<strong>en</strong>us Peziza; the g<strong>en</strong>us Sarcosphaera is, however,<br />

dist<strong>in</strong>guished from the g<strong>en</strong>us Peziza by its semi-buried<br />

grow<strong>in</strong>g habits. This prerogative does not really seem a<br />

conv<strong>in</strong>c<strong>in</strong>g justification for the creation and ma<strong>in</strong>t<strong>en</strong>ance<br />

of this separation, not least of all because several “true”<br />

Peziza species, such as P. ammophila and P.<br />

pseudoammophila, fruit almost completely underground<br />

<strong>in</strong> the sand of coastal dunes <strong>in</strong> autumn.


CAP 40-120 mm, from hemispheric to convex, th<strong>en</strong> flat;<br />

marg<strong>in</strong> from convoluted to curv<strong>in</strong>g towards the base, th<strong>en</strong><br />

dist<strong>en</strong>ded cuticle overflow<strong>in</strong>g on the hym<strong>en</strong>ophore;<br />

surface is viscous <strong>in</strong> humid weather, otherwise slimy,<br />

totally separable, smooth and sh<strong>in</strong>y <strong>in</strong> dry weather; from<br />

brown reddish, to tawny, to brown yellowish.<br />

TUBES up to 10 mm, from adnate to weakly decurr<strong>en</strong>t;<br />

yellow, th<strong>en</strong> gold<strong>en</strong> yellow and f<strong>in</strong>ally yellow-olive at<br />

complete sporal maturation; pores are <strong>in</strong>itially small and<br />

round, secretes opalesc<strong>en</strong>t yellow drops, a little angular <strong>in</strong><br />

maturation, concolour with tubes, sometimes brown<strong>in</strong>g <strong>in</strong><br />

patches.<br />

STIPE 40-90 × 10-25 mm, cyl<strong>in</strong>drical, a little wid<strong>en</strong>ed at<br />

base, sometimes supple or curv<strong>in</strong>g; covered with a very<br />

m<strong>in</strong>ute, pale yellow granulation, sometimes milky,<br />

coloured on background and only brown<strong>in</strong>g later on; sk<strong>in</strong><br />

is chrome yellow, pale lemon yellow <strong>in</strong> colour, oft<strong>en</strong><br />

brownish patches at base.<br />

FLESH firm wh<strong>en</strong> young, th<strong>en</strong> softer; whitish, yellow<br />

pale near the tubes and under the sk<strong>in</strong> of the stipe;<br />

uniform to the area; weakly f<strong>en</strong>olic odour, sweetish<br />

flavour.<br />

Suillus granulatus (L. : Fr.) Roussel<br />

MICROSCOPY: ellipsoidal spores, 7.8-9.1 × 2.8-3.5 µm,<br />

pale yellow under microscope; cuticle of the cap is<br />

formed from un gelat<strong>in</strong>ised trichoderma, made from<br />

cyl<strong>in</strong>drical hyphae which soon transform becom<strong>in</strong>g cutis.<br />

Spores are brown-ochre.<br />

HABITAT: largely widespread species, considered to be<br />

highly associated with P<strong>in</strong>us and to two needles. Fruits<br />

ma<strong>in</strong>ly <strong>in</strong> hills and mounta<strong>in</strong>s, from summer to late<br />

autumn; common.<br />

EDIBILITY: edible<br />

NOTE - This is perhaps the most well-known Suillus,<br />

very common, and grouped together with similar species<br />

by the common name of “p<strong>in</strong>arolo” <strong>in</strong> Italy. It might be<br />

confused with S. coll<strong>in</strong>itus, due to its id<strong>en</strong>tical edible<br />

properties, but it can be told a part by its colour, which is<br />

normally more brown-red, the abs<strong>en</strong>ce of radial fibrils on<br />

its cap cuticle and its more-m<strong>in</strong>ute stipe decorations. The<br />

spores of S. granulatus are also a fair degree smaller as<br />

well.<br />

221


CAP up until 120 (150) mm, <strong>in</strong>itially hemispheric th<strong>en</strong><br />

convex, pulv<strong>in</strong>ate, rarely; marg<strong>in</strong> curv<strong>in</strong>g at the extremes<br />

towards the base, regular, acute, a little excessive, oft<strong>en</strong><br />

decorated with whitish remnants of the partial veil;<br />

smooth cuticle, very viscous, separable, brown, yellow<br />

brown, brown violet, chocolate brown, oft<strong>en</strong> with darker<br />

radial fibrils wh<strong>en</strong> dry.<br />

TUBES up to 12 mm, adnate or decurr<strong>en</strong>t, `yellow, th<strong>en</strong><br />

chrome yellow, f<strong>in</strong>ally yellow brownish; small, round<br />

pores, only angled <strong>in</strong> advanced maturation, concolour<br />

with tubes, uniform wh<strong>en</strong> pressed.<br />

STIPE 40-70 × 12-30 mm, longer than the diameter of the<br />

cap wh<strong>en</strong> young, th<strong>en</strong> the same l<strong>en</strong>gth as the diameter of<br />

the cap or shorter, cyl<strong>in</strong>drical, oft<strong>en</strong> a little wid<strong>en</strong>ed<br />

towards base, full; with a broad membranous annulus,<br />

whitish <strong>in</strong> colour, th<strong>en</strong> violet brown, it is possible to f<strong>in</strong>d<br />

adher<strong>en</strong>t volviform residues at the base, from whitish to<br />

white-grey-violet. A f<strong>in</strong>e yellow lattice can be found<br />

above the annulus, below the annulus there are yellow<br />

po<strong>in</strong>ts which th<strong>en</strong> become concolour with cap.<br />

222<br />

Suillus luteus (L. : Fr.) Roussel<br />

FLESH <strong>in</strong>itially firm soon becom<strong>in</strong>g soft and watery <strong>in</strong><br />

cap, more fibrous <strong>in</strong> stipe; white, th<strong>en</strong> yellow<strong>in</strong>g; uniform<br />

to gill edge. Pleasant, fruity odour, sweet flavour.<br />

MICROSCOPY: ellipsoidal spores, 7.0-9.2 × 3.0-4.0 µm,<br />

pale yellow under microscope. Spores brown olive rusty<br />

<strong>in</strong> colour.<br />

HABITAT: only <strong>in</strong> groups <strong>in</strong> P<strong>in</strong>us woods, recurr<strong>en</strong>t<br />

from late summer to late autumn.<br />

EDIBILITY: edible<br />

NOTE - This is a very common Suillus, the only one<br />

which has an annulus adorn<strong>in</strong>g its stipe and which grows<br />

with two-fascicle (P. nigra, P. sylvestris, more rarely<br />

anche P. p<strong>in</strong>aster) and three-fascicle (P. radiata) P<strong>in</strong>us<br />

trees. Grows t<strong>en</strong>d<strong>en</strong>tially <strong>in</strong> hills and mounta<strong>in</strong>s and is not<br />

usually found under coastal p<strong>in</strong>es. As it matures and ages,<br />

the cuticle has a t<strong>en</strong>d<strong>en</strong>cy to become dehydrated and at<br />

that stage it oft<strong>en</strong> assumes an appearance very similar to<br />

that of S. coll<strong>in</strong>itus. Several forms and varieties have be<strong>en</strong><br />

described: fo. albus, completely white, and fo. volvaceus,<br />

with a short stipe whose annulus has the appearance of a<br />

volva.


CAP 30-60 mm, a little fleshy, convex campanulate, soon<br />

becom<strong>in</strong>g flat, with an obtuse umbo, lightly convoluted,<br />

th<strong>en</strong> dist<strong>en</strong>ded and th<strong>in</strong>ned marg<strong>in</strong> , sometimes cracked.<br />

Cuticle is dry, separable, without remnants of veil at the<br />

edge, decorated with f<strong>in</strong>e radial fibrils which take the<br />

appearance of small scales, grey-whitish wh<strong>en</strong> young,<br />

th<strong>en</strong> grey.<br />

GILLS non-marg<strong>in</strong>ated and decurr<strong>en</strong>t with teeth, fairly<br />

crowded, th<strong>in</strong> and fragile, with numerous lamellule, white<br />

with greyish h<strong>in</strong>ts, not yellow<strong>in</strong>g with age or wh<strong>en</strong><br />

handled, the surface is undulated-cr<strong>en</strong>ulated, oft<strong>en</strong> a little<br />

serrated.<br />

STIPE 35-70 × 5-20 mm cyl<strong>in</strong>drical, slightly curv<strong>in</strong>g,<br />

lightly wid<strong>en</strong>ed at base, white, silky, oft<strong>en</strong> with remnants<br />

of veil, more visible <strong>in</strong> the apical part of young examples.<br />

FLESH compact th<strong>en</strong> soft <strong>in</strong> cap, firm <strong>in</strong> stipe th<strong>en</strong><br />

fibrous, white not yellow<strong>in</strong>g visibly after collection, with<br />

strong odour and flavour of fresh flour.<br />

Tricholoma argyraceum (Bull. : Fr.) Gillet<br />

MICROSCOPY: spores 5-6 × 2.5-3.5 µm, ellipsoidal,<br />

guttulate. clavate, tetrasporic basidia. Epicyte made from<br />

parallel, collated hyphae, fairly erect.<br />

HABITAT: rare and late species, grows <strong>in</strong> small numbers,<br />

on brok<strong>en</strong> ground normally near hardwood (hornbeam<br />

and hazel).<br />

EDIBILITY: edible<br />

NOTE - This is a species belong<strong>in</strong>g to the Section<br />

Scalpturatum, and is characterized by its odour and<br />

flavour, which recall fresh flour, and by the remnants of<br />

veil on its stipe. It differs from T. scalpturatum (Fr.) Quél.<br />

<strong>in</strong> its grey-silver cap and its non-yellow<strong>in</strong>g flesh, and can<br />

be dist<strong>in</strong>guished from the Terreum <strong>mushrooms</strong>, <strong>in</strong> that<br />

these do not have either a flavour or odour of flour.<br />

223


CAP 50-100 mm, convex or campanulate, th<strong>en</strong> flat and<br />

with a large umbo, the cuticle is dry, lightly viscous and<br />

sh<strong>in</strong>y with humidity, almost smooth or velvety on<br />

circumfer<strong>en</strong>ce <strong>in</strong> dry conditions, decorated with<br />

conc<strong>en</strong>tric brass brown scales or oft<strong>en</strong> with brown reddish<br />

fibrils darker <strong>in</strong> the c<strong>en</strong>tre, the marg<strong>in</strong> is convoluted<br />

l<strong>en</strong>gthwise, th<strong>en</strong> dist<strong>en</strong>ded, lobed and irregular, gold<strong>en</strong><br />

yellow with age.<br />

GILLS non-marg<strong>in</strong>ated or subfree, fairly crowded, <strong>in</strong>t<strong>en</strong>se<br />

yellow or citr<strong>in</strong>a yellow, t<strong>en</strong>d<strong>en</strong>cy to dark<strong>en</strong> with age, the<br />

whole surface is lightly undulated.<br />

STIPE 60-90 × 8-15 mm, subcyl<strong>in</strong>drical or with lightly<br />

clavate base, sometimes short and bulg<strong>in</strong>g, stocky, b<strong>en</strong>t,<br />

concolour with cap, with some sparse brown light reddish<br />

floccules towards base.<br />

FLESH ochre-ish-yellowish or brass colour under the<br />

cuticle of the cap or <strong>in</strong> stipe, with a pleasant, lightly<br />

floury or a little aromatic odour and sweet floury flavour,<br />

bitter if chewed.<br />

MICROSCOPY: spores mostly ellipsoidal or<br />

amygdalform, hyal<strong>in</strong>e, 6.0-7.5 × 3.5-4.5 µm. clavate,<br />

224<br />

Tricholoma equestre (L. : Fr.) Kummer<br />

tetrasporic basidia. Epicyte made from fairly erect,<br />

parallel <strong>in</strong>terwov<strong>en</strong> hyphae,<br />

HABITAT: <strong>in</strong> conifer and hardwood areas where it seems<br />

to prefer poplars.<br />

EDIBILITY: suspect<br />

NOTE – This species is fairly variable <strong>in</strong> its colour. Dry<br />

and completely yellow examples are confusable, at first<br />

glance, with T. sulphureum, which, however has spaced<br />

gills, a less <strong>in</strong>t<strong>en</strong>se yellow and unpleasant odour of coal<br />

gas. Known and valued as a choice edible up until a few<br />

years ago, they are today suspected of hav<strong>in</strong>g be<strong>en</strong><br />

<strong>in</strong>volved <strong>in</strong> several cases of poison<strong>in</strong>g (and ev<strong>en</strong> death)<br />

after abundant consumption and <strong>in</strong> undercooked meals;<br />

the episodes under <strong>in</strong>vestigation all occurred <strong>in</strong> a certa<strong>in</strong><br />

area <strong>in</strong> France and today we are await<strong>in</strong>g further<br />

verification. In any case, as a precautionary measure, and<br />

<strong>in</strong> the abs<strong>en</strong>ce of certa<strong>in</strong>ty, the gather<strong>in</strong>g and consumption<br />

of this species (and of all the <strong>en</strong>tities belong<strong>in</strong>g to its<br />

immediate group – Ed.) is forbidd<strong>en</strong> (by law) throughout<br />

the <strong>en</strong>tire Italian and Fr<strong>en</strong>ch territories.


CAP 60-150 mm, convex, campanulate, with large obtuse<br />

umbo, th<strong>en</strong> flat, grey-ochre-ish, dark grey, slate grey,<br />

sooty blackish, with gre<strong>en</strong>ish or violet sta<strong>in</strong>s on a yellow<br />

background just visible towards the c<strong>en</strong>tre, but stands out<br />

at the marg<strong>in</strong> which is oft<strong>en</strong> clearly grey- citr<strong>in</strong>a yellow,<br />

the cuticle is fibrillated radially, a little viscous and sh<strong>in</strong>y<br />

<strong>in</strong> humid weather, otherwise silky, the edges are slightly<br />

supple th<strong>en</strong> lobed, cracked, oft<strong>en</strong> revoluted with age.<br />

GILLS non-marg<strong>in</strong>ated, a little crowded, fairly wide,<br />

slightly thick, s<strong>in</strong>uate, white, th<strong>en</strong> ash grey with yellowish<br />

sta<strong>in</strong>s, the edge is irregular and sometimes serrated.<br />

STIPE 50-110 × 8-20 mm, robust, cyl<strong>in</strong>drical or fusiform,<br />

sat<strong>in</strong>-fibrillated, whitish, always with yellow sta<strong>in</strong>s<br />

especially towards the top, the apex is dandruff white and<br />

sta<strong>in</strong>s yellow-brownish-olive to the touch<br />

FLESH firm <strong>in</strong> cap and fibrous <strong>in</strong> stipe, white, a little<br />

yellowish <strong>in</strong> the stipe, fairly greyish below the cuticle of<br />

the cap with a pleasant floury odour and taste.<br />

Tricholoma port<strong>en</strong>tosum (Fr. : Fr.) Quélet<br />

MICROSCOPY: ellipsoidal, hyal<strong>in</strong>e spores, 5.5-7.0 × 4.0-<br />

5.0 µm. Clavate, tetrasporic basidia. Epicyte made from<br />

an ixocutis of fairly erect, parallel <strong>in</strong>terwov<strong>en</strong> hyphae.<br />

HABITAT: <strong>in</strong> conifer and hardwood areas, <strong>in</strong> autumn<br />

ev<strong>en</strong> late on.<br />

EDIBILITY: edible<br />

NOTE - Wh<strong>en</strong> the cap fades, leav<strong>in</strong>g just a glimpse of the<br />

yellowish-ochraceous colour, it can be confused with T.<br />

sejunctum, which, however, has a bitter, floury taste. Also<br />

T. virgatum has a fibrillated-virgated cap but its flavour<br />

and odour are quite unpleasant. One should pay att<strong>en</strong>tion<br />

to avoid tak<strong>in</strong>g it for the toxic T. josserandii, which has a<br />

dry, velvety cap, and a characteristic <strong>in</strong>sect-like odour.<br />

225


CAP 30-90 mm, campanulate, conical, flat, oft<strong>en</strong><br />

irregular, obtusely umbonate, matt cuticle, almost smooth<br />

or slightly woolly-felted at first, th<strong>en</strong> bear<strong>in</strong>g thick fibrils,<br />

almost uniform, smoke grey, dark brown or almost black<br />

<strong>in</strong> colour, the marg<strong>in</strong> is convoluted or curv<strong>in</strong>g for a long<br />

while, oft<strong>en</strong> with an overflow<strong>in</strong>g edge.<br />

GILLS non-marg<strong>in</strong>ated-adnate or hooked, slightly<br />

crowded, whitish or a little light grey<strong>in</strong>g, the surface<br />

lightly cr<strong>en</strong>ulated with age.<br />

STIPE 30-70 × 8-12 mm, cyl<strong>in</strong>drical, stocky, full and<br />

fibrous, fragile, hollow or a little fistular with age,<br />

smooth, silky, completely white or with light grey<strong>in</strong>g<br />

fibrils which dark<strong>en</strong> slightly <strong>in</strong> young specim<strong>en</strong>s.<br />

FLESH fibrous, fragile, white, greyish under the cuticle,<br />

with a light fungal odour, and a herby or light floury<br />

flavour .<br />

MICROSCOPY: spores mostly ellipsoidal, subglobulose,<br />

hyal<strong>in</strong>e, guttulate 6.0-7.5 × 4.5-5.5 µm. clavate,<br />

226<br />

Tricholoma terreum (Schaeff. : Fr.) Kummer<br />

tetrasporic basidia. Epicyte made from fairly erect,<br />

parallel <strong>in</strong>terwov<strong>en</strong>, hyphae.<br />

HABITAT: g<strong>en</strong>erally abundant <strong>in</strong> grow<strong>in</strong>g areas, found <strong>in</strong><br />

large groups; <strong>in</strong> conifer woods (p<strong>in</strong>e or fir), from the <strong>en</strong>d<br />

of summer until the first frosts.<br />

EDIBILITY: edible<br />

NOTE - This Terreum species iso ne of the most soughtafter<br />

<strong>mushrooms</strong> for human consumption and it is<br />

popularly known a “Moretta” (little brunette) <strong>in</strong> Italy. It is<br />

oft<strong>en</strong> confused with: T. myomyces which is smaller and<br />

more fragile with remnants of a silvery veil at the tip of<br />

its stipe and a floury odour; T. triste whose gill surface is<br />

darker and which has a stipe with brown-blackish shades;<br />

or else it is mixed up with grey-toned species of the<br />

scalpturatum and atrosquamosum groups, but which have<br />

almost no odour, non-wide, white or more or less grey<br />

gills, and whose stipe is whitish with no veil; <strong>in</strong> the field<br />

they can be told apart very easily.


CAP 50-120 mm, hemispheric, convex, th<strong>en</strong> a little flat,<br />

f<strong>in</strong>ally depressed, vivid red-brown, the cuticle is very<br />

viscous or glut<strong>in</strong>ous, <strong>in</strong> dry conditions it t<strong>en</strong>ds to sta<strong>in</strong> and<br />

discolour towards the marg<strong>in</strong> with shades of ochreorange,<br />

the marg<strong>in</strong> is convoluted at the extremes, with<br />

very evid<strong>en</strong>t ribs.<br />

GILLS hooked, s<strong>in</strong>uate-adnate, not very crowded, close,<br />

white, sta<strong>in</strong>ed reddish <strong>in</strong> adult specim<strong>en</strong>s, the surface is a<br />

little s<strong>in</strong>uous.<br />

STIPE 50-120 × 10-20 mm, cyl<strong>in</strong>drical or fairly clavate<br />

or fusiform full th<strong>en</strong> hollow, white dandruff at tip, sta<strong>in</strong>ed<br />

brown-reddish to from the annular l<strong>in</strong>e which is more<br />

evid<strong>en</strong>t <strong>in</strong> young specim<strong>en</strong>s, with fibrils coloured or oft<strong>en</strong><br />

lighter, a little viscous with humid weather.<br />

FLESH firm white, with strong smell of flour or<br />

cucumber and floury flavour.<br />

MICROSCOPY: spores subglobose, suboval hyal<strong>in</strong>e,<br />

guttulate 5.5-6.5 × 4.5-5.0 µm. clavate, tetrasporic<br />

Tricholoma ustaloides Romagnesi<br />

basidia. Epicyte made from an ixotrichoderma of fairly<br />

erect, <strong>in</strong>terwov<strong>en</strong>, parallel hyphae.<br />

HABITAT: under hardwood (oak, chestnut, beech,<br />

hornbeam), <strong>in</strong> autumn; fairly common.<br />

EDIBILITY: not edible<br />

NOTE - This species is characterised by a slimy cuticle<br />

that, on dry<strong>in</strong>g, t<strong>en</strong>ds to leave traces of mucus grouped<br />

around the edges. It is oft<strong>en</strong> confused with T. ustale,<br />

which, however has a smooth marg<strong>in</strong>, a stipe devoid of a<br />

delimited annulus zone and the flesh of the base of the<br />

stipe right up to the gill edge is a reddish-brown. It can<br />

also be confused with T. fracticum and T. striatum with<br />

smooth caps bear<strong>in</strong>g radial fibrils and which pr<strong>in</strong>cipally<br />

grow under mounta<strong>in</strong> conifers. T. ustaloides, however, it<br />

can easily be recognised <strong>in</strong> the field by its flavour and<br />

odour.<br />

227


CAP 30-140 mm, conical, hemispheric, th<strong>en</strong> flat, oft<strong>en</strong><br />

with obtuse umbo, v<strong>in</strong>ous red, p<strong>in</strong>k-red <strong>in</strong>t<strong>en</strong>se purple on<br />

a vivid yellow or gold<strong>en</strong> yellow background, the cuticle<br />

bear<strong>in</strong>g adpressed woolly decorations <strong>in</strong> the c<strong>en</strong>tre and<br />

small scales which are adpressed gradually and radially<br />

towards the edges, the marg<strong>in</strong> is convoluted for a long<br />

time.<br />

GILLS from non-marg<strong>in</strong>ated to mostly adnate, partly<br />

anastomosed, wide, moderately crowded, <strong>in</strong>t<strong>en</strong>se sulphur<br />

yellow or gold<strong>en</strong> yellow, the surface is f<strong>in</strong>ely floccose or<br />

fimbriated.<br />

STIPE 50-120 × 10-25 mm, cyl<strong>in</strong>drical or fusiform oft<strong>en</strong><br />

s<strong>in</strong>uous, full, hollow with age, concolour with cap or<br />

lighter, decorated with scales, more fleet<strong>in</strong>g towards the<br />

base which ev<strong>en</strong>tually becomes yellow, the apex is whiteyellowish.<br />

FLESH soft, thick <strong>in</strong> the c<strong>en</strong>tre, yellow-cream, with sour<br />

mould or light odour, like wood, and sweet light flavour,<br />

like hazelnut or a little bitter.<br />

228<br />

Tricholomopsis rutilans (Schaeffer : Fr.) S<strong>in</strong>ger<br />

MICROSCOPY: spores mostly ellipsoidal, hyal<strong>in</strong>e,<br />

guttulate 7.0-8.5 × 5.5-6.5 µm. clavate, tetrasporic<br />

basidia. Epicyte made from fairly erect, parallel,<br />

<strong>in</strong>terwov<strong>en</strong> hyphae.<br />

HABITAT: grows collated or <strong>in</strong> groups on rott<strong>in</strong>g parts of<br />

conifers especially fir and p<strong>in</strong>e.<br />

EDIBILITY: of no value<br />

NOTE - This is an unmistakeable species thanks to its<br />

lignicole habitat and its yellow gills which contrast with<br />

the w<strong>in</strong>e colour of its cap. T. decora can be found <strong>in</strong> the<br />

same habitat, but has a lighter cap which bears no w<strong>in</strong>ey<br />

tones and is g<strong>en</strong>erally more sl<strong>en</strong>der. T. flammula is a very<br />

small species, with a cap diameter that reaches only up<br />

until 15 mm, purplish-brown fibrillated scales and a<br />

yellow stipe; T. ornata has a yellow-olivish cap with<br />

fairly sparse, <strong>in</strong>t<strong>en</strong>se reddish-brown scales, a pale yellow<br />

stipe with fibrils, and grows on woody debris.


CAP 50-120 (150) mm, fleshy, from hemispheric to<br />

convex, pulv<strong>in</strong>ate, f<strong>in</strong>ally flat; edge very soon becom<strong>in</strong>g<br />

regularly dist<strong>en</strong>ded or a little undulated; cuticle is velvety<br />

wh<strong>en</strong> young, dry, sometimes dimpled; with very variable<br />

colourations, from pure yellow, to yellow with citr<strong>in</strong>a<br />

t<strong>in</strong>ges, to alutaceous brown with gre<strong>en</strong>ish h<strong>in</strong>ts, brown<br />

orange <strong>in</strong> dry weather, rusty brown, brown reddish, up to<br />

liver red <strong>in</strong> humid weather. Scratch<strong>in</strong>g the cuticle with the<br />

f<strong>in</strong>ger wh<strong>en</strong> it is <strong>in</strong> its dry state it is possible to observe a<br />

rusty Brown subcuticular layer.<br />

TUBES up to 15 mm, adnate and sometimes<br />

subdecurr<strong>en</strong>t, chrome yellow, th<strong>en</strong> with gre<strong>en</strong>ish h<strong>in</strong>ts,<br />

f<strong>in</strong>ally olivish, slowly turn<strong>in</strong>g blue at gill edge; pores are<br />

concolour with tubes, round, soon becom<strong>in</strong>g op<strong>en</strong>, th<strong>en</strong><br />

large and angular, turn<strong>in</strong>g blue to the touch.<br />

STIPE 50-80 (100) × 10-20 (25) mm, cyl<strong>in</strong>drical, curv<strong>in</strong>g<br />

at base, supple, almost always dilated at tip and att<strong>en</strong>uated<br />

at base; very pale yellow, t<strong>en</strong>d<strong>en</strong>cy to turn brown slowly<br />

dur<strong>in</strong>g maturity; f<strong>in</strong>e po<strong>in</strong>ts or l<strong>en</strong>gthwise ribs are oft<strong>en</strong><br />

found which form a sort of lattice.<br />

FLESH firm and compact, soon becom<strong>in</strong>g soft <strong>in</strong> cap and<br />

fibrous <strong>in</strong> stipe, pale chrome yellow, typically ochre at<br />

Xerocomus subtom<strong>en</strong>tosus (L. : Fr.) Quélet<br />

base of stipe, more evid<strong>en</strong>t <strong>in</strong> humid weather; slowly<br />

turns blue at gill edge; weak slightly acidic odour; sweet<br />

flavour.<br />

MICROSCOPY: ellipsoidal fusiform spores with superior<br />

depression, 10.6-13.2 × 4.3-5.0 µm, pale yellow under<br />

microscope, olive brown <strong>in</strong> mass.<br />

HABITAT: <strong>in</strong> relatively low numbers, fairly <strong>in</strong>differ<strong>en</strong>t to<br />

substrate, isolated or <strong>in</strong> small groups; recurr<strong>en</strong>tly<br />

associated with oak and chestnut; summer-autumn.<br />

EDIBILITY: edible<br />

NOTE - This is one of the most noted and common<br />

Xerocomus species. The chromatic variability of its cap is<br />

ma<strong>in</strong>ly due to climatic-<strong>en</strong>vironm<strong>en</strong>tal conditions:<br />

examples with a reddish-brown cap are common after it<br />

ra<strong>in</strong>s, ev<strong>en</strong> <strong>in</strong> the same places where one usually f<strong>in</strong>ds<br />

carpophores with olive-brown caps. The variants with<br />

yellow caps should probably be considered as <strong>in</strong>traspecial<br />

varieties. X. ferrug<strong>in</strong>eus is very similar, but<br />

prefers to grow on siliceous ground and, g<strong>en</strong>erally, at<br />

higher altitudes.<br />

229


230


European Commission<br />

EUR <strong>24415</strong> EN – Jo<strong>in</strong>t Research C<strong>en</strong>tre – Institute for Environm<strong>en</strong>t and Susta<strong>in</strong>ability<br />

Title: Chemical <strong>elem<strong>en</strong>ts</strong> <strong>in</strong> Ascomycetes and Basidiomycetes – The refer<strong>en</strong>ce <strong>mushrooms</strong><br />

as an <strong>in</strong>strum<strong>en</strong>t for <strong>in</strong>vestigat<strong>in</strong>g bio<strong>in</strong>dication and biodiversity<br />

Authors: R. M. C<strong>en</strong>ci, L. Cocchi, O. Petr<strong>in</strong>i, F. S<strong>en</strong>a, C. S<strong>in</strong>iscalco, L. Vescovi<br />

Luxembourg: <strong>Publications</strong> Office of the European Union<br />

2011 – 232 pp. – 18 x 24 cm<br />

EUR – Sci<strong>en</strong>tific and Technical Research series – ISSN 1018-5593<br />

ISBN 978-92-79-20395-4<br />

doi:10.2788/22228<br />

Abstract<br />

Fungi <strong>in</strong> the wild are among the pr<strong>in</strong>cipal ag<strong>en</strong>ts <strong>in</strong> biogeochemical cycles; those cycles of<br />

matter and <strong>en</strong>ergy which <strong>en</strong>able ecosystems to work.<br />

By <strong>in</strong>vestigat<strong>in</strong>g the biodiversity of Italian fungal species and conc<strong>en</strong>tration levels of chemical<br />

<strong>elem<strong>en</strong>ts</strong> <strong>in</strong> them, it may be possible to employ these fungi as biological <strong>in</strong>dicators for the<br />

quality of forest, woodland and semi-natural <strong>en</strong>vironm<strong>en</strong>ts. The data archives of EUR<br />

Reports record the dry-material conc<strong>en</strong>trations, of 35 chemical <strong>elem<strong>en</strong>ts</strong>, <strong>in</strong>clud<strong>in</strong>g heavy<br />

metals, <strong>in</strong> over 9000 samples of higher <strong>mushrooms</strong>. These samples repres<strong>en</strong>t around 200<br />

g<strong>en</strong>era and a thousand species. As the archive has atta<strong>in</strong>ed statistical stability it has be<strong>en</strong><br />

possible to def<strong>in</strong>e the concept of a “refer<strong>en</strong>ce mushroom”. The use of a “refer<strong>en</strong>ce<br />

mushroom” may br<strong>in</strong>g b<strong>en</strong>efits – perhaps only as a methodological approach – <strong>in</strong> various<br />

fields of mycological and <strong>en</strong>vironm<strong>en</strong>tal research; from biodiversity and bio<strong>in</strong>dication,<br />

through taxonomy right up to health and sanitation issues.<br />

The sheer volume of the collected data may prove to be useful as a comparison for data<br />

collected <strong>in</strong> the future; such results would also allow a better and more-exhaustive<br />

<strong>in</strong>terpretation of the effects of <strong>en</strong>vironm<strong>en</strong>tal-protection laws which have be<strong>en</strong> <strong>en</strong>acted over<br />

the years <strong>in</strong> order to reduce or remedy curr<strong>en</strong>t climate-change ph<strong>en</strong>om<strong>en</strong>a and the<br />

<strong>en</strong>vironm<strong>en</strong>tal damage caused by human activity. Studies perta<strong>in</strong><strong>in</strong>g to the frequ<strong>en</strong>cy of<br />

occurr<strong>en</strong>ce and the ecology of the various fungal species found on Italian soil have t<strong>en</strong>ded to<br />

l<strong>in</strong>k the refer<strong>en</strong>ce habitats used to European classification guidel<strong>in</strong>es (Natura 2000, CORINE<br />

Land Cover, CORINE Biotopes and EUNIS). Thereby the foundations have be<strong>en</strong> la<strong>in</strong> for the<br />

use of <strong>mushrooms</strong> as biological <strong>in</strong>dicators for the measurem<strong>en</strong>t of soil and ecosystem<br />

quality.<br />

How to obta<strong>in</strong> EU publications<br />

Our priced publications are available from EU Bookshop (http://bookshop.europa.eu),<br />

where you can place an order with the sales ag<strong>en</strong>t of your choice.<br />

The <strong>Publications</strong> Office has to worldwide network of sales ag<strong>en</strong>ts. You can obta<strong>in</strong> their<br />

contact details by s<strong>en</strong>d<strong>in</strong>g to fax to (352) 29 29-42758.<br />

231


The mission of the <strong>JRC</strong> is to provide customer-driv<strong>en</strong> sci<strong>en</strong>tific and technical<br />

support for the conception, developm<strong>en</strong>t, implem<strong>en</strong>tation and monitor<strong>in</strong>g<br />

of EU policies. As to service of the European Commission, the <strong>JRC</strong> functions<br />

as to refer<strong>en</strong>ce c<strong>en</strong>tre of sci<strong>en</strong>ce and technology for the Union. Close to the<br />

policy-mak<strong>in</strong>g process, it serves the common <strong>in</strong>terest of the Member States,<br />

while be<strong>in</strong>g <strong>in</strong>dep<strong>en</strong>d<strong>en</strong>t of special <strong>in</strong>terests, whether private or national.<br />

232<br />

LB-NA-<strong>24415</strong>-EN-C

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!