27.05.2013 Views

Oddělení: Sinice – Cyanobacteria (syn. Cyanophyta ...

Oddělení: Sinice – Cyanobacteria (syn. Cyanophyta ...

Oddělení: Sinice – Cyanobacteria (syn. Cyanophyta ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Cyanobacteria</strong><br />

(<strong>syn</strong>. <strong>Cyanophyta</strong>, Cyanoprokaryota)<br />

Imperium: Prokaryota (Prokarya)<br />

Bacteria<br />

cyanos = bluegreen<br />

bluegreen algae<br />

prokaryotic cell eukaryotic cell


Principal characteristics<br />

coccoid (free living or colonial) or filamentous<br />

thylakoids posses photosystem I and II (also respiration<br />

chain on thylakoids)<br />

thylakoids separated or in lamelas (Gleobacter without<br />

thylak. <strong>–</strong> PS on plasmatic membrane)<br />

chlorophyll a (but also b, c or d)<br />

chromatic adaptation, phycobilisomes<br />

reserve substances <strong>–</strong> cyanophycean starch; cyanophycin<br />

granules (N) and polyphosphate granules (P)<br />

some are able to fix atmospheric nitrogen<br />

ubiquitous<br />

static evolution<br />

asexual reproduction by cell division<br />

horizontal gene transfer (plasmids)


<strong>Cyanobacteria</strong> = G - bakteria<br />

Cell wall structure<br />

Lipopolysacharidy<br />

murein


the cell wall composed of peptidoglycan (murein) similarily to<br />

the other G - bacteria<br />

CW cleaved by lysozym, penicillin prevent CW <strong>syn</strong>thesis<br />

2 sugar derivatives


<strong>Cyanobacteria</strong> = G - bacteria<br />

Arg; Asp<br />

N-reserve


Aerotops (gas vesicles)<br />

Gas vesicles are spindle-shaped structures provides buoancy to these<br />

cells by decreasing their overall cell density, glycoproteins<br />

(impermeable to water but permeable to most gases)<br />

• high light? increased PS → accumulation of polysaccharides → turgor<br />

increases → collaps of vesicles → the cell sinks out<br />

• low light? decreased PS → metabolism of polysaccharides → turgor<br />

decreases → vesicle production → the cell rises up<br />

Microcystis<br />

Tolypothrix, Calothrix <strong>–</strong> gas vesicules only in hormogonia <strong>–</strong> dispersal??


Reserve substances<br />

cyanophycean starch <strong>–</strong> small granules between thylakoids,<br />

-1,4 linked glucan<br />

cyanophycin granules (obr. - CY) <strong>–</strong> polymers of Arg, Asp<br />

polyphosphate granules (volutin) <strong>–</strong> highly polymerized<br />

polyphosphate<br />

Oscillatoria - polyphosphate granules in<br />

the hormogonium


Caboxysomes<br />

(polyhedral bodies) <strong>–</strong> Rubisco: CO 2 polysaccharides<br />

Enclosed in a proteinaceus cover, reserves of the enzymes<br />

RubisCO and carbonic anhydrase (HCO 3 - CO2)<br />

Proteinaceus cover of the carboxysome increases<br />

carboxylase activity of the RubisCO.<br />

Hypothesis: the enzym enclosed in the carboxysome is forced<br />

to the conformation, that prefers CO 2 to O 2.


Pigments<br />

phycobiliproteins<br />

phycobiliproteins fill the „gap“ in the absorbance<br />

spectrum of chlorophylls and carotenoids<br />

major pigments - Cha and phycobiliproteins


Light absorption by phycobiliproteins<br />

Blue, red: Chlorophyll a, (b,d)<br />

- caroten (much higher proportion than<br />

in euk. algae), echinenon, myxoxanthophyll<br />

green (500-600 nm): C-phycoerythrin *<br />

green - yellow (550-650 nm): C-phycocyanin<br />

orange - red (600-675 nm): allophycocyanin*<br />

phycoerythrocyanin (568 nm)<br />

combining of the pigments <strong>–</strong> absorption<br />

in the whole spectrum of visible light<br />

Absorption of light in<br />

a water column


Phycobilisome <strong>–</strong> light harvesting<br />

antenna<br />

for photosystem II and nitrogen reserve


Chromatic adaptation : the relative quantities of phycoerythrin and<br />

phycocyanin determines the color of the cell, dependent<br />

green light phycoerythrin phycocyanin<br />

red light phycocyanin phycoerythrin


Different photo<strong>syn</strong>t. apparatus<br />

Gloeobacter violaceus <strong>–</strong> primitive cyanobacteria, no thylakoids<br />

phycobilisomes placed on plasmatic membrane, isolated from<br />

limestone, Switzerland<br />

former PROCHLOROPHYTES:<br />

no phycobiliproteins (neither phycobilisomes) posses additional<br />

pigments: chl. b, c, d; - caroten, zeaxanthin<br />

thylakoids organized in lamelae, lack of cyanophycin granules


Prochlorophyta <strong>–</strong> polyphyletic group<br />

Acaryochloris marina<br />

distantly related to other cyanobacteria


Prochlorophyta <strong>–</strong> polyphyletic group<br />

Prochloron didemni - Prochlorons are distributed<br />

within the tissues of didemnid ascidians, mainly<br />

in the cloacal cavities under the upper tunic,<br />

Pacific ocean, chlorophyll b<br />

Prochlorothrix hollandica <strong>–</strong> filamentous, in a<br />

brakish Lake Loosdrecht in Holand, masive mats<br />

Prochlorococcus marinus <strong>–</strong> marine picoplankton,<br />

omportant primary producer, chlorophyll a and b<br />

Acaryochloris marina <strong>–</strong> chlorophyll d<br />

Prochloron Prochlorococcus


400 BP of 16 S RNA sequences NJ<br />

Münchhoff et al.,2006<br />

stromatolites


Prochloron <strong>–</strong> phylogeny of 30 strains<br />

Münchhoff et al.,2006<br />

• all strains closely related, forming a single taxon<br />

• shown that there is no evident correlation between<br />

Prochloron sp. and its host or geographic origin.<br />

• Prochlorons isolated from stromatolites (probably<br />

nonsymbiotic origin) only 4 strains formed coherent<br />

group on a phylogenetic tree.<br />

• Phylogenetic analysis demonstrated that the<br />

prochlorophytes are a polyphyletic group within the<br />

cyanobacterial radiation, supporting the view that the<br />

ability to <strong>syn</strong>thesize chlorophyll b evolved several<br />

times separately with consequent loss of the ability to<br />

<strong>syn</strong>thesize phycobilins


• Furthermore, due to the low genetic diversity among<br />

Prochloron strains, this genus could be a relatively<br />

recent lineage thus contradicting the view that these<br />

prochlorophytes are descendants of the ancient<br />

organisms that gave rise to chloroplasts<br />

• In contrast, studies of the chlorophyll b <strong>syn</strong>thesis genes<br />

from P. didemni, Prochlorothrix hollandica and several<br />

green chloroplasts indicated a common origin for these<br />

genes in prochlorophytes and chloroplasts<br />

• It seems likely that horizontal gene transfer may<br />

account for the similarity among the chlorophyll b<br />

<strong>syn</strong>thesis genes in these organisms


Facultative phototrophic anaerobes<br />

both photoaerobic and photoanaerobic habitats<br />

electron donors?<br />

aerobic conditions e - donor water (O 2 production)<br />

2 H 2O+ CO 2 [CH 2O] + O 2 + H 2O<br />

anaerobic conditions e - donor hydrogen sulfide (no O 2 production)<br />

only PS I involved<br />

progenitors - purple bacteria -<br />

bacteriochlorophyll<br />

2 H 2S+ CO 2 [CH 2O] + 2S + H 2O


fill an important ecological niche, fluctuation between aerobic<br />

and anaerobic conditions<br />

Oscillatoria limnetica<br />

Solar Lake <strong>–</strong> small hyper<br />

saline lake (eastern coast<br />

of the Sinai peninsula<br />

(Israel)<br />

thermal stratification;<br />

winter <strong>–</strong> high<br />

concentrations of H 2S<br />

near the bottom<br />

Some species obligate autotrophs (=energy obtained by<br />

PS) or heterotrophs (= energy obtained from organic C)


they develope from<br />

vegetative cells<br />

thick-walled, full of<br />

reserve material<br />

may survive up to 86<br />

years in the sediment<br />

Akinetes <strong>–</strong> resting stages<br />

only in heterecyst forming cyanobacteria<br />

Anabaena<br />

Anabaena - klíčení<br />

Aphanizomenon<br />

sink, overwinter akinete differentiation stimulation


N 2 fixation<br />

fixation = N 2 (N≡N) from atmosphere is fixed into<br />

ammonium (NH 4 + )<br />

N 2 + 8 H + + 16 ATP 2 NH 3 + H 2+ 16 ADP + 16 P<br />

renewable energy source<br />

N <strong>–</strong> limiting element in the sea water, amino-acid's <strong>syn</strong>thesis<br />

only cyanobacteria and bacteria are able to fix nitrogen;<br />

cyanobacteria also produce O 2 → nitrogenase is inactivated<br />

by O 2<br />

spatial or temporal separation of both activities (except for<br />

Trichodesmium)<br />

The most metabolically expensive process in biology!!


Spatial separation - heterocysts<br />

Nostocales, Stigonematales<br />

• thick wall, bigger than<br />

vegetative cells<br />

• differentiation from vegetative<br />

cells<br />

• in heterocysts PSII is<br />

lacking nitrogenase<br />

protection from O2<br />

• they do not fix C, C is<br />

transported in a form of<br />

disaccharides from veg. cells<br />

through the pore channel<br />

heterocysts in<br />

distinctive patterns differentiation of heterocysts, apoptosis


Temporal separatoin<br />

Fix N at night, foto<strong>syn</strong>thesis during the day<br />

In the evening phycobiliprotein's degradation PSII switch off O2<br />

production stopped fast nitrogenase <strong>syn</strong>thesis N2 fixation over night<br />

nitrogenase <strong>syn</strong>thesis stopped, the enzyme is disintegrated by oxygen,<br />

that penetrates to cells re<strong>syn</strong>thesis of phycobiliproteins functional<br />

PSII in the morning the photo<strong>syn</strong>thesis may begin again.<br />

Lyngbya aestuarii


Trichodesmium - diazocytes<br />

Trichodesmium <strong>–</strong> sea water filamentous species, N2 fixation<br />

in the light under aerobic conditions <strong>–</strong> specialized cells <strong>–</strong><br />

diazocytes (contain nitrogenase, adjacent to one another)<br />

anti-nifH <strong>–</strong> přítomnost<br />

nitrogenázy ve fluorescenci<br />

Katagnymene


Morfology of cyanobacteria<br />

• row of cells = trichom<br />

• trichom in the slime sheath = filament<br />

• the filament may be composed by more<br />

trichomes<br />

Microcoleus<br />

Phormidium<br />

• mucilage sheath - movement, UV protection, colony<br />

addition, capacity to capture micronutrients


• gliding<br />

Movement<br />

Oscillatoria<br />

• buoancy change <strong>–</strong> gas vesicles<br />

Merismopedia Waden See <strong>–</strong><br />

migrate within the substrate<br />

Cyanothece aeruginosa


Gliding motion<br />

oscillin<br />

junctional pores<br />

junctional pores<br />

orientation<br />

of oscillin<br />

proteins<br />

reversal of<br />

gliding<br />

active movement on a solid substrate (up to 600 m/sec.)


Morphology and cell division<br />

centripetal (Synechoccocus, Cyanothece)<br />

nanocytes (Aphanothece)


Morphology and cell division<br />

endospores-baeocytes<br />

(Cyanocystis)<br />

exocytes, exospores (Chamaesiphon)


division in 2 or 3 directions plate-like colonies (Merismopedia)<br />

or irregular colonies (Microcystis) embedded in a mucilage<br />

M. flos-aque<br />

Morphology and cell division<br />

Merismopedia Microcystis<br />

M. aeruginosa


Morphology and cell division<br />

division of truly filamentous cyanobacteria (trichomes)<br />

<strong>–</strong>hormogonia = short pieces of trichomes, move away<br />

by gliding (trichomes fragmentation or necridia<br />

formation)<br />

Lyngbya<br />

change in environmental parameters, gliding stage<br />

36-48hrs, secretion of mucilage


Trichomes and branching<br />

false branching = trichome breaks within the mucilage sheath<br />

(Scytonema,Tolypothrix)<br />

Scytonema


Trichomes and branching<br />

true branching = change of the plain of the cell division<br />

(Stigonema, Hapalosiphon)


DNA transfer<br />

horizontal gene transfer: ca 10-16% genes obtained<br />

by horizontal transfer by means of plasmids or<br />

viruses (cyanophages)<br />

conjugation not known<br />

cyanophages may serve as a „reservoir“ of genes<br />

for the host <strong>–</strong> enable the host to adapt to the<br />

changing environmental conditions


analyzed 11 genomes of cyanobacteria, 1128 genes; left half <strong>–</strong> congruent<br />

topology (only one the most parsimony tree exists), right half -685 genes -<br />

61% - conflict with majority signal


Example of intraphylum transfer:<br />

a hemolysin-like protein.<br />

(A) Anabaena sp.; (Tr) Trichodesmium<br />

erythraeum; (S) Synechocystis sp.; (1P)<br />

Prochlorococcus marinus; (2P) Prochlorococcus<br />

marinus; (3P) Prochlorococcus marinus; (mS)<br />

marine Synechococcus ; (Th)<br />

Thermo<strong>syn</strong>echococcus elongatus; (G)<br />

Gloeobacter violaceus; (N) Nostoc<br />

punctiforme; (C) Crocosphaera watsonii


Castenholz (1992)<br />

Static evolution<br />

Why the precambric cyanobacteria look like present-day<br />

ones?<br />

• long generation time and larger genome size compared to bacteria<br />

• often polyploidy <strong>–</strong> mutation in a single allele will not be expressed (x<br />

haploid eukaryotes)<br />

• reparation mechanisms are probably involved (shown in a chloroplast)<br />

• low rate of spontaneous mutations (also under mutagenesis)


věk sinic 2,5-0,6<br />

Van den Hoek, s. 36


Stromatolites<br />

stromatolites <strong>–</strong> trapping and binding of the sdiments as well as carbonate<br />

precipitation in cyanobacterial sheaths (from 2.7 mld) or „grain trapping“ <strong>–</strong><br />

Precambrium - 3,5 mld years old<br />

Québec - Kanada


heliotropic <strong>–</strong><br />

grow toward<br />

sunlight<br />

Eoentophysalis<br />

Stromatolites<br />

Paleolyngbia<br />

Oscollatoriopsis<br />

fosil cyanobacteria from the stromatolite, 1.4 mld years old<br />

Counting of the<br />

number of laminae<br />

solar year varied considerably<br />

1billion y ago <strong>–</strong> 435 days


Stromatolites<br />

live stromatolites <strong>–</strong> Western Australia, Shark‘s Bay<br />

hypersaline<br />

2 billion y ago <strong>–</strong> no grazers


Stromatolites<br />

live stromatolites <strong>–</strong> southern Florida, Bahamas<br />

Schizothrix<br />

high tidal current


Heterocystous cyanobacteria phylogeny<br />

recentní fosil akinetes<br />

1,5 mld<br />

1,65 mld<br />

2,1 mld<br />

Tomitani et al. 2006


Heterocystous cyanobacteria phylogeny<br />

Tomitani et al. 2006


The systematics of <strong>Cyanobacteria</strong><br />

Castenholz (1992): only genera, so called static evolution<br />

Van den Hoek et al. (1995): 2000 species in 150 genera<br />

Komárek & Anagnostidis (1999): thousands of species


The systematics of <strong>Cyanobacteria</strong><br />

Taxonomic scheme according to Bergey's Manual of<br />

Systematic Bacteriology 2nd Edition<br />

D.R. BOONE, R.W. CASTENHOLZ, G.M. GARRITY (eds), 2001.<br />

not congruent with a molecular phylogeny<br />

I. Chroococcales <strong>–</strong> single celled, free living or colonial, binary fission<br />

II. Pleurocapsales <strong>–</strong> multiple fission, baeocytes<br />

III. Oscillatoriales <strong>–</strong> simple filamentous cyanobacteria without<br />

heterocysts and akinetes<br />

IV. Nostocales - filamentous cyanobacteria with heterocysts and akinetes,<br />

some of them with false branching<br />

V. Stigonematales - filamentous cyanobacteria with heterocysts and true<br />

branching


Microbial Genome Sequencing<br />

Project, 2007


Tomitani et al.2006


Gloeobacter violaceus<br />

Chroococcales<br />

Synechoccocus <strong>–</strong>picoplanktonic, freshwater/marine, eutrophic,<br />

Synechocystis <strong>–</strong> marine/mineral waters<br />

Synechocystis


Chroococcales<br />

Chroococcus <strong>–</strong> marine/freshwater, soil, damp rocks<br />

Cyanothece <strong>–</strong> peat bogs<br />

C. turgidus<br />

C. limneticus


Chroococcales<br />

Aphanothece <strong>–</strong> mucilage colonies, subaerical<br />

(A. castagnei, lime stone), benthos (A. stagnina, eutrophic ponds)<br />

(A. microscopica, acidic waters)<br />

Gloeocapsa <strong>–</strong> concentrically layered slime, damp rocks (granite)<br />

Aphanothece<br />

A. microscopica<br />

A. castagnei<br />

A. stagnina


Chroococcales<br />

Merismopedia <strong>–</strong> plate-like colonies embeded in mucilage<br />

Chamaesiphon <strong>–</strong> freshwater, pear-shaped cells, stones in fastflowing<br />

streams<br />

Chroococcidiopsis <strong>–</strong> extreme biotopes, NASA<br />

M. angularis<br />

C. rostafinski<br />

C. amathystinus


Chroococcales<br />

Microcystis <strong>–</strong> irregular colonies in mucilage, aerotopes,<br />

only planktonic, cyanotoxines, water blooms


M. ichtyoblabe<br />

M. ichtyoblabe<br />

Chroococcales


Chroococcales


Otsuda et al. 2001 (IJSEM)<br />

proposed to unify these five species into M. aeruginosa under the<br />

Rules of the Bacteriological Code


M. viridis<br />

M. wesenbergii<br />

Chroococcales<br />

M. viridis<br />

M. wesenbergii


Chroococcales<br />

Woronichinia <strong>–</strong> b. v kolonii spoj. sliz. trubičkami, toxická, vod. květ<br />

Gomphosphaeria <strong>–</strong> slizovité kolonie, b. na obvodě, plankton<br />

rybníků, údolní nádrže<br />

Woronichinia naegeliana<br />

Gomphosphaeria<br />

G.<br />

G. semen-vitis


Pleurocapsa<br />

II. Pleurocapsales<br />

freahwater/marine, in alkalic waters calcification <strong>–</strong><br />

stromatolite-like structures, containes scytonemin<br />

(UV filter)<br />

Stanieria


III. Oscillatoriales <strong>–</strong> trichomy v pochvě<br />

Lyngbya <strong>–</strong> metafyton, sladk., hodně moř., povlaky, toxické,<br />

široká pochva (nad 1 μm), trichomy nad 8 μm


Oscillatoriales <strong>–</strong> trichomy v pochvě<br />

Microcoleus <strong>–</strong> svazky vláken s tenkými pochvami, málo pohyblivý,<br />

bez hormogonií, kalyptra, typický pro slané vody, v půdě M.<br />

vaginatus


Oscillatoriales <strong>–</strong> trichomy v pochvě<br />

Phormidium <strong>–</strong> tenké slizovité pochvy (nad 3 μm), ale ne u všech<br />

vláken, bentický, nárosty, půdní, mnoho druhů<br />

P. foveolarum<br />

P. tenue<br />

P. vulgare


Oscillatoriales <strong>–</strong> trichomy v pochvě<br />

Leptolyngbya <strong>–</strong> tenké slizovité pochvy, drobná (do 3 μm),<br />

nepohyblivá, ubikvitní (mnoho typů), bentická, nárosty, půdní<br />

L. fovearum<br />

L. africana<br />

L. fovearum<br />

L. fragilis<br />

L. tenuis<br />

L. tenuis


Oscillatoriales <strong>–</strong> neperzistující pochvy,<br />

b. delší než širší<br />

Limnothrix <strong>–</strong> jednotlivá vlákna v planktonu, nezaškrcovaná<br />

vlákna, nepatrný sliz, aerotopy na přepážkách<br />

Pseudanabaena, Dolichospermum <strong>–</strong> zaškrcovaná vlákna, plankton<br />

Limnothrix Pseudanabaena


Oscillatoriales <strong>–</strong> neperzistující pochvy,<br />

b. kratší než širší<br />

Oscillatoria <strong>–</strong> pohyblivá vlákna, pochvy za stresu, metafyton,<br />

nárosty, vod. květy<br />

O. limosa<br />

O. limosa


Oscillatoriales <strong>–</strong> neperzistující pochvy,<br />

b. kratší než širší<br />

Planktothrix <strong>–</strong> vlákna mírně pohyblivá, aerotopy, eutr. vody,<br />

plankton, vodní květ<br />

P. aghardii<br />

P. aghardii<br />

P. rubescens


Oscillatoriales <strong>–</strong> neperzistující pochvy,<br />

b. kratší než širší<br />

Trichodesmium <strong>–</strong> vlákna tvoří kulovité či svazečkovité kolonie<br />

dominantní pigment fykoerythrin, moř., tropické, subtropické obl.,<br />

vodní květ <strong>–</strong> největší „vazač“ N v otevřeném oceánu<br />

fluorescence<br />

pobřeží záp. Austrálie


Nostocales <strong>–</strong> interkalární heterocyty,<br />

Anabaena <strong>–</strong> druhově bohatý rod, bentické a planktonní (aerotopy),<br />

vodní květ, některé toxické, citlivost na nadměrné hnojení, nádrže<br />

A. planktonica<br />

A. spiroides<br />

A. flos-aqaue<br />

A. compacta<br />

A. affinis


Nostocales <strong>–</strong> interkalární heterocyty,<br />

Aphanizomenon <strong>–</strong> vlákna na koncích rovnoměrně zúžená, vodní<br />

květ „jehličí na hladině“ <strong>–</strong> A. flos-aque<br />

A. flos-aque<br />

A. gracile


Nostocales <strong>–</strong> interkalární heterocyty<br />

Nostoc <strong>–</strong> stočená nevětvená vlákna uložená ve slizu, akinety ze<br />

všech vegetativních buněk, sladkovodní, půdní, symbiont


Nostocales <strong>–</strong> interkalární heterocyty<br />

Nodularia <strong>–</strong> b. kratší než širší, akinety v řadě za sebou, bentické<br />

i planktonní, povlaky, sladk., moř., vodní květ, tox.<br />

N. spumigena<br />

Soos<br />

N. harveyana


Nostocales <strong>–</strong> terminální heterocyty<br />

Cylindrospermopsis <strong>–</strong> heterocyty kuželovité, asymetrické dělení<br />

konc. b., eutr. vody, mírné pásmo - tropy, vod. květ, toxický


Cylindrospermopsis raciborskii<br />

Invasion to temperate localities<br />

France 1994<br />

Bloom in the Northern Argentina


Nostocales <strong>–</strong> terminální heterocyty<br />

Cylindrospermum <strong>–</strong> tenká slizová pochva, heterocyty kulovité<br />

až oválné, litorál vod, vlhká půda<br />

klíčení akinet - hormogonia


Nostocales <strong>–</strong> bazální heterocyty<br />

Calothrix <strong>–</strong> vlákna jednotlivá nebo tvoří chomáče, slizové pochvy,<br />

ponořené substráty, půdní<br />

Dichothrix <strong>–</strong> svazky (trsy) vláken ve slizu, často žlutohnědé barvy<br />

Dichothrix<br />

C. parietina<br />

Calothrix


Nostocales <strong>–</strong> bazální heterocyty<br />

Gloeotrichia <strong>–</strong> kulovité kolonie, makroskopické, ponořené<br />

substráty, i v planktonu


Nostocales <strong>–</strong> basal heterocysts<br />

Rivularia <strong>–</strong> tuhé kulovité kolonie, makroskopické, ponořené<br />

substráty, kalcifikace krusty, travertiny<br />

Baltic sea-Hiddensee


Nostocales <strong>–</strong> false branching<br />

Tolypothrix <strong>–</strong> boční vlákna vyrůstají po jednom, podélně vrstevnatá<br />

pochva či bez pochvy, epifyt, kameny potoků, ponořené rostliny<br />

Hasallia <strong>–</strong> vzácná, aerofytická, chladící věže<br />

Tolypothrix Hasallia


Scytonema <strong>–</strong> slizová pochva, boční větévky po dvou, ojediněle<br />

po jednom, převážně sladkovodní, inkrustace CaCO 3 travertin<br />

Petalonema <strong>–</strong> šikmo vrstevnatá pochva, apikálně hormogonie<br />

Petalonema<br />

Nostocales <strong>–</strong> false branching<br />

S. crispata


Stigonematales <strong>–</strong> true branching<br />

Stigonema <strong>–</strong> výrazný sliz, vlákna uni či polyseriátní, větvení na<br />

všechny strany, subaericky, půda, nárosty, hl. tropy<br />

S. ocellatum S. ocellatum<br />

S. ocellatum


Hapalosiphon <strong>–</strong> uniseriátní, větvení jen na jednu stranu v pravém<br />

úhlu, metafyton, rašeliniště<br />

Fischerella - hlavní vlákno víceřadé, boční jednořadé, větvení<br />

jednostrannné, půda<br />

Hapalosiphon<br />

Stigonematales <strong>–</strong> true branching<br />

Hapalosiphon<br />

Fischerella<br />

F.<br />

Fischerella


Stigonematales <strong>–</strong> true branching<br />

Mastigocladus <strong>–</strong> vlákna uniseriátní, nepravidelně stočená, M.<br />

laminosus obligátní thermofil (teplota od 45 do 60°C, pH > 7,5,<br />

nízká salinita), 1862 Karlovy Vary


Ekology of <strong>Cyanobacteria</strong><br />

ubiquists, predominantly freshwaters, but also marine <strong>–</strong><br />

pikoplanktonic, extreme biotopes (glaciers, desert soil<br />

crusts, hot springs)<br />

colonization success they may survive in low light<br />

intensities in epilimnium, phenoplastic, produce toxins<br />

Why there are predominantly small species in the<br />

sea?


Eutrophication<br />

nutrient excess<br />

freshwater <strong>–</strong> P- limiting nutrient<br />

marine env. <strong>–</strong> N <strong>–</strong> limiting nutr.<br />

nutrient runoff from human<br />

activities:<br />

N <strong>–</strong> surface runoff, erosion<br />

P <strong>–</strong> industry, household


Eutrophication<br />

Czech republic 1985 - 2002


Water blooms


Cyanotoxins<br />

• alkaloid neurotoxins (block transmission<br />

of the signal from neuron to neurom<br />

(muscle)<br />

anatoxin, saxitoxin, aphanotoxin<br />

cylindrospermopsin<br />

microcystin, nodularin<br />

• alkaloid hepatotoxins<br />

• peptidic hepatotoxins<br />

• lipopolysaccharides<br />

component of cell walls in all cyanobacteria, alergenic


Cyanotoxins <strong>–</strong> over 50 species produced them<br />

Genus Produced toxins<br />

Anabaena anatoxins, microcystins, saxitoxins, LPS<br />

Aphanizomenon saxitoxins, cylindrospermopsins, LPS<br />

Cylindrospermopsis cylindrospermopsins, saxitoxins, LPS<br />

Hapalosiphon microcystins, LPS<br />

Lyngbya aplysiatoxins, Lyngbyatoxin-a, LPS<br />

Microcystis microcystins, LPS<br />

Nodularia nodularins, LPS<br />

Nostoc microcystins, LPS<br />

Phormidium (Oscillatoria) anatoxins, LPS<br />

Planktothrix (Oscillatoria)<br />

anatoxins, aplysiatoxins, microcystins,<br />

saxitoxins, LPS


• anti-herbivore chemicals<br />

• allelopatic interactions (affection of growth of other<br />

organisms)


Cyanotoxins<br />

Microcystis a Anabaena<br />

Microcystin<br />

peptidic hepatotoxin


Cyanotoxins<br />

peptidic hepatotoxin


Cyanotoxins<br />

Trichodesmium <strong>–</strong> Cook 200 years ago, extensive water bloos (10 <strong>–</strong><br />

100 km wide), saxitoxin, fish death<br />

alkaloid neurotoxin<br />

Pohled z družice


Epilitic cyanobacteria<br />

dark colour, UV protection<br />

Calothrix<br />

High scytonemin content<br />

(UV A protection) correlated with the<br />

magnitude


Epilitic cyanobacteria<br />

granite<br />

Quartz<br />

Chroococcidiopsis <strong>–</strong> underside of translucent stones


Epilitic cyanobacteria<br />

Chroococcidiopsis <strong>–</strong>able to survive extreme environments; NASA<br />

project <strong>–</strong> Mars colonization, E.I.Friedmann, astrobiologist<br />

lives in deserts under the<br />

translucent stones<br />

(humidity collectors, UV<br />

protection)<br />

Microbial ecology of absolute<br />

extreme environments<br />

Grilli-Caiola, M., D. Billi and E. I. Friedmann. 1996. Effect of desiccation on envelopes of the<br />

cyanobacterium Chroococcidiopsis sp. (Chroococcales). Eur. J. Phycol. 31:97-105.


<strong>Cyanobacteria</strong> in microbial crusts<br />

• bind particles <strong>–</strong> soil stabilisation prevent erosion<br />

• retain humidity, warming of the soil surface<br />

• nitrogen enrichment of the soil (10-25 kg/ha/year) nutrient<br />

imput


Soil crusts<br />

cyanobacteria, algae, mosses, lichens, fungi<br />

cyanobacteria and lichens dominant in hot deserts<br />

cyanobacteria to algae ratio changes with pH ( pH <strong>–</strong> green<br />

algae dominate)<br />

typical genera: Scytonema, Lyngbya, Oscillatoria, Microcoleus,<br />

Nostoc, Calothrix, Aphanocapsa, Chroococcidiopsis<br />

Microcoleus vaginatus


Termophilic cyanobacteria <strong>–</strong> hot springs<br />

extreme 70-73°C<br />

enzymes stable at higher temp.<br />

Synechococcus , Phormidium<br />

Octopus Spring, Yellowstone National<br />

Phormidium


M. laminosus is found in thermal areas<br />

throughout the world<br />

populations are typically genetically<br />

differentiated on local geographic scales<br />

suggests the existence of dispersal barriers<br />

conclusion corroborated by evidence for<br />

genetic isolation by distance<br />

a common ancestor associated with the<br />

western North American hot spot currently<br />

located below Yellowstone National Park<br />

Mastigocladus<br />

laminosus<br />

Miller et al. 2007, APPLIED<br />

AND ENVIRONMENTAL<br />

MICROBIOLOGY


Spirulina - Arthrospira<br />

tropical lakes, large-scale cultivations, dietary sypplements


history<br />

Spirulina - Arthospira<br />

Aztecs collected Spirulina<br />

already in the 16. century<br />

(Mexico)<br />

collection and drying of Spirulina<br />

near Chad Lake (Africa) - Dihé


Texcoco Lake, Mexico<br />

Spirulina - Arthrospira<br />

Earthrise Company, Hawaii USA<br />

• contains essential amino-acids<br />

• high protein and chlorophyll<br />

content<br />

• digestible cell wall<br />

• vitamins (B 12), carotenoids, Fe


origin of plastids<br />

Symbiotic interactions<br />

with algae <strong>–</strong> diatoms, dinophytes, Glaucophyta (cyanels)<br />

with fungi <strong>–</strong> lichens, Geosiphon<br />

with Bryophytes <strong>–</strong> Blasia, hornworts<br />

with ferns <strong>–</strong> Azolla<br />

with cycas<br />

Gunnera<br />

different degree of assimilation, it may be isolated into the<br />

culture


with algae <strong>–</strong> Glaucophyta (cyanels), diatoms<br />

Cyanophora<br />

paradoxa<br />

Richelia intracellularis<br />

Symbiotic interactions<br />

Glaucocystis<br />

nostochinearum


with fungi <strong>–</strong> lichens<br />

Symbiotic interactions<br />

Lobaria <strong>–</strong> cephalodium, Nostoc<br />

(sorál)<br />

Collema - Nostoc<br />

Peltula - Chroococcidiopsis


Symbiotic interactions<br />

with fungi<strong>–</strong> Geosiphon <strong>–</strong> Glomeromycota


Symbiotic interactions<br />

with Bryophytes <strong>–</strong> Blasia, hornworts Anthoceros<br />

Blasia Anthoceros<br />

liverworts and hornworts


Symbiotic interactions<br />

with ferns <strong>–</strong> Azolla has Nostoc in meristems<br />

biofertilizer in rice paddies, fixation 20 x higher within Azolla,<br />

Anabaena in Azolla has different surface antigens


with cycases (Nostoc)<br />

Cycas - roots<br />

Symbiotic interactions<br />

cortex of aboveground roots<br />

Salvinia


Symbiotic interactions<br />

Gunnera chilensis (mucillage-filled glands in the stems)- Nostoc<br />

heterocyty<br />

BS - Gunnera<br />

Stem


Prochloron and ascidians:<br />

Algae and symbioses str. 218


Prochloron and ascidians


Prochloron + Didemnum (Chordata, Tunicata)


Symbiotic interactions<br />

with fungi <strong>–</strong> Geosiphon <strong>–</strong> Glomeromycota


Why are cyanobacteria important?<br />

• the only one prokaryotes, that produce O 2 by water splitting<br />

in the light reaction of photo<strong>syn</strong>thesis<br />

• first terrestrial organisms<br />

• ability of cyanobacteria to perform oxygenic photo<strong>syn</strong>thesis<br />

is thought to have converted the early reducing atmosphere<br />

into an oxidizing one<br />

• cyanobacerial ancestor <strong>–</strong> actor of endosymbioses <br />

chloroplast of other algal groups (including vascullar plants)<br />

• the simplest organisms with circadian rythmus<br />

• favourite symbioses partners

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!