Academia.eduAcademia.edu
Report Number 697 Review of the diet and micro-habitat values for wildlife and the agronomic potential of selected grassland plant species English Nat ure Research Report s working today for nature tomorrow English Nature Research Reports Number 697 Review of the diet and micro-habitat values for wildlife and the agronomic potential of selected grassland plant species S.R. Mortimer, R. Kessock-Philip, S.G. Potts, A.J. Ramsay, S.P.M. Roberts & B.A. Woodcock Centre for Agri-Environmental Research University of Reading, PO Box 237, Earley Gate, Reading RG6 6AR A. Hopkins, A. Gundrey, R. Dunn & J. Tallowin Institute for Grassland and Environmental Research North Wyke Research Station, Okehampton, Devon EX20 2SB J. Vickery & S. Gough British Trust for Ornithology The Nunnery, Thetford, Norfolk IP24 2PU You may reproduce as many additional copies of this report as you like for non-commercial purposes, provided such copies stipulate that copyright remains with English Nature, Northminster House, Peterborough PE1 1UA. However, if you wish to use all or part of this report for commercial purposes, including publishing, you will need to apply for a licence by contacting the Enquiry Service at the above address. Please note this report may also contain third party copyright material. ISSN 0967-876X © Copyright English Nature 2006 Project officer Heather Robertson, Terrestrial Wildlife Team heather.robertson@english-nature.org.uk Contractor(s) (where appropriate) S.R. Mortimer, R. Kessock-Philip, S.G. Potts, A.J. Ramsay, S.P.M. Roberts & B.A. Woodcock Centre for Agri-Environmental Research, University of Reading, PO Box 237, Earley Gate, Reading RG6 6AR A. Hopkins, A. Gundrey, R. Dunn & J. Tallowin Institute for Grassland and Environmental Research, North Wyke Research Station, Okehampton, Devon EX20 2SB J. Vickery & S. Gough British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU The views in this report are those of the author(s) and do not necessarily represent those of English Nature This report should be cited as: MORTIMER, S.R. and others. 2006. Review of the diet and micro-habitat values for wildlifeand the agronomic potential of selected grassland plant specie . English Nature Research Reports, No 697. Acknowledgements This project was carried out for English Nature under contract VT0512. The authors are grateful to the following for their comments during the course of the project: Heather Robertson, David Sheppard and Phil Grice (English Nature), Steve Peel (Rural Development Service), Lois Philipps (Elm Farm Research Centre), Bill Bond (Henry Doubleday Research Association) and Elizabeth O’Beirne-Ranelagh (FWAG), and to Richard Jefferson (English Nature) for commenting on the final draft of the report. Summary Grasslands cover 5.6 million ha of agricultural land in the UK. The intensification of management practices over the last 50 years has increased productivity, but has had significant impacts on grassland biodiversity. Much work has focussed on the restoration of the remaining species-rich areas of grassland. However, in order to meet the requirements of wide-ranging farmland species, consideration needs to be given to methods of enhancing the diversity of species-poor grasslands dominated by ryegrass. The aim of the project was to review two important aspects of any attempts to increase wildlife on improved, relatively fertile grasslands. These issues are firstly, the value to invertebrates, birds and other vertebrates of particular grassland plants that could be introduced into such swards or maintained in them, and secondly the agronomic potential of such species, so that the fit of these swards into viable farming or equine business can begin to be assessed. A list of 56 plant species considered to be of wildlife value was selected, primarily comprising species that either occur in grasslands on soils of moderate to high fertility, or which studies have shown have the potential to establish and persist in such grasslands undergoing management for the enhancement of botanical diversity. The selected plant species consisted of 14 grass species, 11 legumes and 31 other forb species. Information was collected on the associations between the selected plant species and insects, including herbivores and pollinators. Data was also gathered on the value of the plant species to bird diets, both directly through the provision of foliage and seeds, and indirectly through the supply of invertebrate food. Information was also gathered from agronomic literature on the feed value of the plant species, any impacts on animal health and their productivity in grazed and mown grassland management systems. In addition, data on the success of establishment of the species in grassland restoration experiments was collected. Plant species supporting specialist associations with greater than 70 insect species were found among the grass species, the legumes and the other forb species. Most insects forming associations were classified as general shoot feeders, feeding on a range of above-ground plant parts. However, significant numbers of species dependent on the presence of stems or reproductive structures were found for the legumes (Fabaceae) and composite forbs (Asteraceae). Cirsium species, including pernicious grassland weed species included in the study supported some of the highest numbers of associated invertebrates. The review of the importance of the plant species for provision of direct (seeds, foliage) diet items for birds showed that large-seeded forb species, ie vetches (Vicia spp.) and smallerseeded species particularly docks (Rumex spp.), plantain (Plantago spp.) and buttercups (Ranunculus spp.) and the foliage of clover (Trifolium spp.) were important diet items for farmland bird species. The plant species with the highest number of specialist insect associations (Dactylis glomerata, Festuca ovina and Lotus corninculatus) provided one possible measure of the diversity of insect taxa important in bird diets, although different plant species had higher numbers of general insect associations (Taraxacum officinale and Rumex spp.). The review has highlighted a group of grassland species that have diet and microhabitat value for insects and birds and have useful agronomic characteristics in terms of productivity and feed value. This group includes grasses (Dactylis glomerata and Festuca spp.), and legumes (Lotus corniculatus, Trifolium pratense, T. repens and Vicia sativa). Some of these have been established successfully in experiments on the restoration of grassland diversity while others are agriculturally-sown species. Lotus corniculatus and Festuca ovina are probably the most difficult to establish in more fertile swards. Other forbs, such as Achillea millefolium, Centaurea nigra, and Plantago lanceolata are of high value for wildlife and are reasonably easy to establish but have lower values for livestock production. The Cirsium species have high value for wildlife but along with other pernicious grassland weeds are actual management problems rather than of being of benefit for livestock production. Rumex acetosa poses less of a weed problem than R. crispus and R. obtusifolius, if not present in quantity, and is able to grow in fertile grasslands. For a significant element of the diet and microhabitat value of the identified grasses, legumes and other forbs to be realised, it is necessary to allow them to develop stems, flowers and seed heads. Thus, rotational grazing and/or infrequent mowing are the optimum management regimes. However, allowing the development of structural heterogeneity in the sward canopy can compromise the agronomic value of the sward. Research is needed on the relative balance between potential biodiversity gains and agronomic implications of relaxing grazing, mowing and fertilizer inputs in areas of improved grassland. Given the management constraints on the provision of beneficial diet items and microhabitats, along with the high biodiversity value of some of the grassland weed species included in the study, it may be more beneficial to focus management aimed at promoting biodiversity on portions of fields, including field margins, for grasslands used for agricultural production. Research is needed to identify the optimal size, density and landscape positioning of such features. The study identified a large number of insect species for which only limited information on microhabitat requirements is available. Whilst systematically acquiring data on the ecology of insect species may be useful for species of conservation concern, it is clearly impractical for the large number of common or widespread insect species listed in this review. Research might be better focussed on providing management tools that promote spatial and temporal heterogeneity in grassland swards. Such tools might include modified mowing regimes, use of mixed stocking or particular livestock types (including horses), and the use of farm yard manure. Such heterogeneity is likely to lead to diversity in botanical composition, canopy structure and spatial patterning within fields, thus providing a range of microhabitats for associated species of grassland fauna. The review pointed to major gaps in the understanding of the value of grassland plant species beyond conventional livestock production, in particular their potential role in improving the sustainability of pastoral systems and value for enhancing the suitability of species-poor grasland for horse grazing. If the area devoted to livestock grazing declines, identifying opportunities for biodiversity enhancement in non-agricultural grasslands is likely to become increasingly important. There is now increasing interest in the secondary dietary attributes of pasture species in terms of their ability to contribute towards animal health and nutrition and to affect the qualities of meat and dairy products from livestock for human nutrition. There is also a need to identify livestock production systems that can meet the demands imposed by changes in climate. The role of multi-species swards is one promising area. Many forbs and some grasses can utilise lower soil horizons for water, or exploit temporal niches for regeneration, and thereby provide a degree of resilience to drought, or ability to recover from floods, compared to the predominant grassland species which are currently grown. This review has confirmed the high value of legumes for invertebrates and birds. The wider use of grass/legume mixes as forage crops has the potential for multiple benefits, including not only biodiversity benefits but also reduced fertilizer inputs and enhanced soil characteristics. Research is needed on the suitability of novel grass/legume mixes and their potential utility in the face of climate change. The introduction of legumes into established swards is likely to yield similar benefits. In this situation, research is needed on methods to promote the persistence of introduced legume species. Contents Acknowledgements Summary 1 Introduction..................................................................................................................13 1.1 1.2 2 Methods........................................................................................................................15 2.1 2.2 2.3 2.4 2.5 2.6 3 Agronomic value under ruminant livestock production ..................................50 Grassland managed for equines .......................................................................56 Conclusions and research requirements.......................................................................61 5.1 5.2 5.3 5.4 5.5 6 Ecological characteristics of selected plant species.........................................22 Identification of insect:plant associations........................................................26 Quantifying strength of insect associations with host plants ...........................36 Value for bird species ......................................................................................39 Caveats to the invertebrate and bird results .....................................................48 Agronomic potential of selected plant species.............................................................50 4.1 4.2 5 Selection of plant species.................................................................................15 Ecological characteristics of the selected plant species ...................................16 Diet and microhabitat value for invertebrates..................................................17 Diet value for birds ..........................................................................................18 Diet and microhabitat value for other vertebrates............................................21 Agronomic potential of selected plant species.................................................21 Diet and microhabitat value .........................................................................................22 3.1 3.2 3.3 3.4 3.5 4 Background ......................................................................................................13 Scope of the report ...........................................................................................14 Value of different grassland plant species for wildlife ....................................61 Management options to promote value for wildlife.........................................63 Research on underlying ecological mechanisms .............................................65 Research requirements at the farm and landscape scale ..................................66 Research on changing land use and its drivers ................................................67 Bibliography ................................................................................................................69 Appendix 1 Literature sources used for the review of insect:plant associations ....................77 Appendix 2 Literature sources used for the review of agronomic value ................................93 Appendix 3. Mono- and oligo-specific associations between the selected plant species andinsect species .......................................................................................................102 Appendix 4 The occurrence of different plant species in the diet of 42 farmland birds.......172 Appendix 5 Summary of agronomic and ecological information for the plant species........177 Research Information Note 1 Introduction 1.1 Background The management and productivity of lowland grassland in Britain has been transformed in the last 50 years largely through greater fertilizer inputs, improved drainage, reseeding with a small number of grass species and the replacement of hay with silage as the principal means of forage conservation (Frame 2000). Technological developments in silage production have enabled the harvesting of forages with a higher water content than hay, which in turn has allowed greater flexibility in the timing and frequency of cutting (Vickery and others 2001) Increased productivity has also allowed higher stocking densities to be supported. Such changes in management practice have had major impacts on the botanical composition and canopy structure of agricultural grasslands (Jones & Hayes 1999, Chamberlain and others 2000, Vickery and others 2001), creating species poor and structurally uniform swards of low conservation value (Tallowin and others 2005). Declines in populations of higher plants (Yeo and others 1998, Blackstock and others 1999, Jones & Hayes 1999), and farmland birds (Wilson and others 1999, Vickery and others 2001) have been attributed to intensification of grassland management. Invertebrates are a key functional component of grassland systems. In addition to their own intrinsic conservation value, they contribute to key ecosystem functions such as pollination, decomposition and nutrient cycling, and provide food resources for mammals and farmland birds. Coinciding with changes in grassland management over the last 50 years, invertebrates have shown a parallel decline in abundance and diversity (Duffey and others 1974, Morris 1978, Asher and others 2001). A wide range of declining farmland birds depend exclusively or partly on grassland habitats (Perkins and others 2000, Vickery and others 2001, Atkinson and others 2002). Intensification of grassland management over the last 50 years has undoubtedly played an important role in the recent declines of farmland birds (Chamberlain and others 2000, Fuller 2000). Reductions in the species diversity and structural complexity of grassland plant communities, along with declines in invertebrate abundance and diversity, have impoverished the nesting and foraging habitat for many bird species. A number of recent studies have improved our understanding of the relationship between grassland management and food resources for birds (eg Atkinson and others 2005, Buckingham and others 2006). In general, these suggest that species that feed on foliar invertebrates or forb seeds are negatively affected by modern grassland management practices that reduce the structural complexity and species diversity of the sward (Vickery and others 2001, Atkinson and others 2005). In contrast, birds that feed on soil invertebrates may be tolerant to modern management practices as these practices tend to maintain short swards so increase accessibility of the soil to birds. It is possible that soil compaction as a result of high stocking density and/or mechanical management may reduce the abundance, acitivity or accessibility of invertebrates, although rather little is known about this and bird habitat relationships suggest it may be relatively unimportant in dry grassland. Poor soil penetrability does reduce the foraging success of waders in wet grassland (eg Vickery and others 2001) and also of Yellow Wagtails Motacilla flava in arable systems (J. Gilroy, pers. comm.). 13 Until recently, most research on the conservation of grassland biodiversity has focussed on the restoration and maintenance of species-rich habitats. However, the Biodiversity Action Plan and the farmland birds PSA target relate to wide-ranging species of pastoral landscapes, such as skylark, yellowhammer, bats and bumblebees. Consequently, there is a need to identify management practices that promote faunal biodiversity on the vast area of agriculturally-improved grassland in the UK. Whilst management options for promoting the faunal diversity of arable landscapes have been well researched, and prescriptions developed for incorporation into agri-environment schemes, few options exist for enhancing the biodiversity of improved grasslands. Within the new Entry Level Environmental Stewardship Scheme, early uptake in pastoral areas has focussed on prescriptions for reduced inputs. However, the biodiversity benefits of such options may take a considerable time to become apparent. Consequently, there is a requirement to identify more interventionist methods for enhancing the diversity of agriculturally-improved grasslands, rather than relying on natural colonisation processes. 1.2 Scope of the report The aim of the project was to review two important aspects of any attempts to increase wildlife on improved, relatively fertile grassland, identified in the National Vegetation Classification (Rodwell 1992) as Lolium-Cynosurus or Lolium grasslands (MG6 and MG7). These issues are firstly, the value to invertebrates, birds and other vertebrates of particular grassland plants that could be introduced into such swards or maintained in them, and secondly the agronomic potential of such species, so that the fit of these swards into viable farming or equine business can begin to be assessed. The objectives of the project were: (a) (b) (c) To review, collate, summarise and interpret information in the literature and from other primary and secondary sources on the diet value and micro-habitat value of selected grassland plants for invertebrates, birds and other vertebrates. To assess the agronomic potential of these plant species including how their management for herbage production may need to be tailored to maximise their value for wildlife; From the information gained in the study, to produce recommendations for further research requirements and, if possible, outline novel management options to trial based on introduction of selected plant species, where necessary, and subsequent management to maintain their value for wildlife. 14 2 Methods 2.1 Selection of plant species In order to ensure that the species selected for consideration were relatively common on a range of soil types across the UK, data on the frequency of grassland plants in broad grassland habitats (improved, neutral, calcareous, acid, wet) sampled as part of the Countryside Survey 2000 were used to compile an initial list. The frequency of species in the main plots (X plots) was considered, as these were randomly positioned within each of the CS2000 survey squares (Haines-Young and others 2000). In addition, a number of forb species known to establish well in grassland enhancement schemes, along with some legumes of known agricultural value, were considered. A preliminary list of candidate species was drawn up, comprising relatively robust species that have the ability to establish and persist in managed grasslands of moderate to high fertility. In addition, a preliminary assessment of the value of each selected species to a number of taxa was carried out by team members, using a subjective scale reflecting the number of specialist associations with insects and value for providing food resources for birds. Candidate species were grouped into three categories: grasses, leguminous forbs and nonleguminous forbs. Criteria for selecting the final list of species were agreed by the project steering group which comprised plant, insect and bird ecologists and agronomists. The primary criterion was: • Ability to establish and persist in grasslands of reasonably high fertility, based on data from the National Vegetation Classification (Rodwell 1992), Countryside Survey 2000 (Haines-Young and others 2000) and previous research (Pywell and others 2003) Secondary criteria were: • Likely value as a diet item for grassland fauna, based on previous research, expert opinion and the Ecological Flora of the British Isles database (Fitter & Peat 1994). • Likely agronomic value (productivity, response to grazing/mowing), based on previous research (eg Isselstein 1993, Peeters 2004, Frame 2005) and expert opinion. Based on these criteria, the project group selected the final list of species. A total of 56 plant species were chosen and are listed in Table 1. The selected list included species typical of a range of edaphic conditions defined by soil moisture and pH. A few species were included that are only rarely found in more fertile grasslands, however they were regarded as worth investigating as borderline species for consideration in species-poor, semi-improved grasslands on low-fertility soils or where particular soil wetness characteristics occur. 15 Table 1 List of plant species selected for inclusion in the review (nomenclature follows Stace 1997 and Dony, Jury & Perring 1986). Grasses Agrostis capillaris L. Agrostis stolonifera L. Alopecurus pratensis L. Anthoxanthum odoratum L. Cynosurus cristatus L. Dactylis glomerata L. Festuca ovina L. Festuca pratensis Huds. Festuca rubra L. Holcus lanatus L. Lolium perenne L. Phleum pratense L. Poa pratensis L. Poa trivialis L. Common bent Creeping bent Meadow foxtail Sweet vernal-grass Crested Dog’s-tail Cock’s-foot Sheep’s-fescue Meadow fescue Red fescue Yorkshire-fog Perennial rye-grass Timothy Smooth meadow-grass Rough meadow-grass Legumes Lathyrus pratensis L. Lotus corniculatus L. Lotus pedunculatus Cav. Medicago lupulina L. Medicago sativa L. Onobrychis viciifolia Scop. Trifolium dubium Sibth. Trifolium pratense L. Trifolium repens L. Vicia cracca L. Vicia sativa L. Meadow vetchling Common Bird’s-foot-trefoil Greater Bird’s-foot-trefoil Black medick Lucerne Sainfoin Lesser trefoil Red clover White clover Tufted vetch Common vetch 2.2 Non leguminous forbs Achillea millefolium L. Cardamine pratensis L. Centaurea nigra L. Cerastium fontanum Baumg. Cirsium arvense (L.) Scop. Cirsium palustre (L.) Scop. Cirsium vulgare (Savi) Ten. Filipendula ulmaria (L.) Maxim Galium palustre L. Galium saxatile L. Galium verum L. Hypochaeris radicata L. Leontodon autumnalis L. Leontodon hispidus L. Leucanthemum vulgare Lam. Plantago lanceolata L. Potentilla reptans L. Primula veris L. Prunella vulgaris L. Ranunculus acris L. Ranunculus repens L. Rhinanthus minor L. Rumex acetosa L. Rumex acetosella L. Rumex crispus L. Rumex obtusifolius L. Sanguisorba minor Scop. Senecio jacobaea L. Taraxacum officinale agg. Urtica dioica L. Veronica chamaedrys L. Yarrow Cuckooflower Common knapweed Common mouse-ear Creeping thistle Marsh thistle Spear thistle Meadowsweet Common marsh-bedstraw Heath bedstraw Lady’s bedstraw Cat’s-ear Autumn hawkbit Rough hawkbit Oxeye daisy Ribwort plantain Creeping cinquefoil Cowslip Selfheal Meadow buttercup Creeping buttercup Yellow rattle Common sorrel Sheep’s sorrel Curled dock Broad-leaved dock Salad burnet Common ragwort Dandelion Common nettle Germander speedwell Ecological characteristics of the selected plant species Information on the ecological characteristics of the selected plant species was collated. This comprised information on: • The distribution of the plant species in relation to broad habitat types and edaphic conditions (Haines-Young and others 2000, Hill and others 1999, Rodwell 1992); • The size, canopy structure, leaf phenology, competitive ability and productivity of the species (Grime, Hodgson & Hunt 1988, Biological Flora of the British Isles); • The flowering phenology and regeneration strategy of the species (Grime, Hodgson & Hunt 1988, Biological Flora of the British Isles); • The success of establishment in grassland enhancement schemes and the availability of seed of wild and agricultural seed suppliers (Pywell and others 2003, Walker and others 2005). 16 2.3 Diet and microhabitat value for invertebrates The focus of the review was on the diet and microhabitat value of the selected plant species. General associations between invertebrate taxa and particular types of vegetation structure (eg flower stems, tussocks) were not considered as part of this review, unless the literature identified clear association with one of the selected plant species. Information on the species associated with the selected plant species was collected for the following insect taxa: Coleoptera, Diptera, Hemiptera (Auchenorrhyncha, Sternorrhyncha and Heteroptera), Hymenoptera (Aculeata and Symphyta), Lepidoptera and Thysanoptera. Phytophagous taxa comprising largely generalist feeders (eg Orthoptera, Mollusca) were excluded from the study, as were predatory groups (eg Araneae) and detritivores, as the occurrence of associations with particular plant species could not be established. For each of the selected groups, a range of sources was consulted, including standard monographs and keys and research papers published in scientific journals. The sources are listed in Appendix 1. Associations were recorded in a database if the source material mentioned the plant species or genus in the description of host plants. In addition to taxonomic information on the associated insects (including synonyms), the following data were collected, where available: • Host specificity, principal host, subsidiary hosts, plant microhabitat • Geographical distribution, conservation status, preferred habitats • Phenology, larval and pupal types • Adults visitation to flowers (Aculeata) To aid the collation and summarising of the data, information on associations was entered into an Access database. Each record in the database corresponds to an individual source of information for a particular association. Consequently, information about a single insect species may appear in more than one record. In addition, many insect species are associated with more than one host plant. The plant:insect associations identified were classified according to the degree of specificity. The following categories were used: • M Monophagous (or monolectic for Aculeata) • O Oligophagous (or oligolectic for Aculeata), subdivided into: OG OT • P Associated with species within a single Genus Associated with species within a single Tribe (Fabaceae and Asteraceae only) OF Associated with species within a single Family O Associated with fewer than five plant species in different families Polyphagous (or polylectic for Aculeata) Oligophagous insect species associated with a small number of plant species were noted using numerical subscripts (eg OG3 for an insect species associated with three plant species in the same genus; O2 for insect species associated with two plant species in different families). Polyphagous species were only recorded if at least one of the 56 plant species was listed as a 17 host in the source document. For the larger plant families, notably the grasses (Poaceae) and composites (Asteraceae), the use of this criteria means that the database underestimates the number of species which are restricted to feeding on a specific plant family (ie classified as OF). Such species were only recorded if one of the selected plant species was specifically listed in the source document. For example, a record stating ‘feeds on Festuca rubra and other grass species’ would have been recorded in the database, whereas a record stating ‘feeds on a range of grass species’ would not. The focus of the review was on characterising the diversity of specialist associations with the selected plant species, to provide an estimate of likely biodiversity benefits of the presence of the plant species in the sward. Information on the relationship between the abundance of the host plant and the abundance of its associated insect fauna is extremely rare in the published literature, as is data on the preferences of insect species with more than one associated plant species. However, insect abundance data from a number of grassland enhancement experiments was used to illustrate an approach for quantifying the relationship between the abundance of phytophagous insect species and their host plant species. 2.4 Diet value for birds This section of the study focussed on the relative benefits to birds of introducing certain key plant species into agricultural grass swards. Management practices that increase the species diversity of the grass sward are also likely to lead to increases in structural complexity and as such they may benefit birds in three ways. First, there may be a direct value of the plant as a food resource, either as seeds or green material. Second, there may be an indirect value of the plant as a food resource through increased abundance of the associated invertebrate fauna. Third, there may be changes in prey accessibility if the presence of the plant results in changes in sward structure. The direct and indirect food resource value of the 56 selected plant species were considered for a suite of farmland birds, encompassing a wide range of functional and ecological groups. Published information on plant and invertebrate components of the diet of farmland birds was consulted, along with information derived from the review of insect:plant associations, to derive a broad ranking of the plants in terms of their potential value to birds in grassland habitats. 2.4.1 Direct value of the selected plant species as food for birds The value of the 56 plant species as direct food resources for a total of 42 species of farmland birds was evaluated. These included bird species considered in a review by Wilson and others (1999), additional grassland species as defined by Atkinson and others (2002) and any other species present in the farmland bird indicator (Vickery and others 2004) that have been recorded as taking plant material (Table 2). In addition to considering this group as a whole we also considered separately the sub-set of species comprising the Farmland Bird Indicator. This is the group of birds used to define the Public Service Agreement (PSA), adopted by Defra in 2000 (Vickery and others 2004) and are referred to here as PSA species. The direct value of the selected plant species was assessed simply as the number of bird species for which it was present (or important) in the diet either as green material or seeds. 18 Table 2 Farmland bird species known to include plants in the diet (green material or seeds) considered in the assessment of the direct food value of the 56 selected plant species. These species are defined as farmland birds either in Wilson and others 1999 or Atkinson and others 2002. Species Status Long-term trend1 UK listing2 Blue tit Parus caeruleus Resident Shallow increase Green Brambling Fringilla montifringilla Winter Green Brent goose Branta bernicla Winter Amber Bullfinch Pyrrhula pyrrhula Resident Rapid decline Red Carrion crow Corvus corone Resident Rapid increase Green Chaffinch Fringilla coelebs Resident Shallow increase Green Cirl bunting Emberiza cirlus Resident Increase after steep decline* Red Collared dove Streptopelia decaocto Resident Rapid increase Green Corn bunting Milaria calandra Resident Rapid decline Red (P) Curlew Numenius arquata Resident Possible decline Amber Dunnock Prunella modularis Resident Moderate decline Amber Fieldfare Turdus pilaris Winter Amber Golden plover Pluvialis apricaria Winter Possible decline Green Goldfinch Carduelis carduelis Resident No trend Green (P) Great tit Parus major Resident Moderate increase Green Greenfinch Carduelis chloris Resident Shallow increase Green (P) Grey partridge Perdix perdix Resident Rapid decline Red (P) House sparrow Passer domesticus Resident Rapid decline Red Jackdaw Corvus monedula Resident Moderate increase Green (P) Lapwing Vanellus vanellus Resident Moderate decline Amber (P) Linnet Acanthis cannabina Resident Rapid decline Red (P) Magpie Pica pica Resident Rapid increase Green Meadow pipit Anthus pratensis Resident Moderate decline Amber Mistle thrush Turdus viscivorus Resident Moderate decline Amber Pheasant Phasianus colchicus Resident Moderate increase Stocked sp Quail Coturnix coturnix Summer Fluctuating* Red Red-legged partridge Alectoris rufa Resident Moderate decline Stocked sp Reed bunting Emberiza schoeniclus Resident Moderate decline Red (P) Rook Corvus frugilegus Resident Moderate increase Green (P) Skylark Alauda arvensis Resident Rapid decline Red (P) Snipe Gallinago gallinago Resident Possible decline Amber Song thrush Turdus philomelos Resident Rapid decline Red Starling Sturnus vulgaris Resident Rapid decline Red (P) Stock dove Columba oenas Resident Rapid increase Amber (P) Stone curlew Burhinus oedicnemus Summer Increase after steep decline* Red Tree pipit Anthus trivialis Summer Rapid decline Amber Tree sparrow Passer montanus Resident Rapid decline Red (P) Turtle dove Streptopelia turtur Summer Rapid decline Red (P) Whitethroat Sylvia communis Summer Rapid decline Green (P) Wood pigeon Columba palumbus Resident Rapid increase Green (P) Woodlark Lullula arborea Summer Increase Red Yellowhammer Emberiza citrinella Resident Rapid decline Red (P) Sources: 1. Long term breeding population trend is taken from http://www.bto.org/birdtrends2004/index.htm Blanks signify no trend data available (wintering populations) 2. UK listing from http://www.bto.org/research/pop_trends/state_uk_birds.htm and *RSPB P= PSA species (see Vickery and others 2004). 19 Ref/source Atkinson Wilson Atkinson Wilson Atkinson Wilson Wilson Wilson Wilson Atkinson Wilson Atkinson Wilson Wilson Atkinson Wilson Wilson Wilson Atkinson Wilson Wilson Atkinson Wilson Wilson Wilson Wilson Wilson Wilson Atkinson Wilson Atkinson Wilson Wilson Wilson Wilson Atkinson Wilson Wilson Vickery Wilson Atkinson Wilson Several sources of published information relating to bird diet were used. First, previous reviews by Buxton and others (1998), Wilson and others (1999 and updated), Boatman (2001) and Holland and others (2006). In many cases the primary literature was also consulted, usually to ascertain whether a particular plant species, rather than family or genera, had been recorded in the diet. The main primary literature was the Handbook of the Birds of Europe, the Middle East and North Africa; The Birds of the Western Palearctic (BWP) (Cramp 1985, 1988, Cramp & Perrins 1994a, b, Cramp & Simmons 1983). Many of the most recent single species studies were reviewed in Holland and others (2006), but experts in farmland bird research at the Central Science Laboratory, Game Conservancy Trust Royal Society for the Protection of Birds and the Universities of Oxford, East Anglia, Newcastle, Reading and Leeds were also consulted to ensure any more recent studies or information in press has been included. Following the procedure adopted by Wilson and others (1999), a food taxon was considered present in the diet of a bird species if it was recorded in any of the studies reviewed. A food taxon was considered as important either if it comprised a mean of at least 5% of the diet over all quantitative studies reviewed, or if any descriptive study considered it of dietary importance at some point in the year. The inherent biases in this approach are described in detail in Wilson and others (1999). Essentially they arise from the fact that different studies use different methods and have been carried out in different seasons, geographical locations and habitats. There is no simple way to correct for these differences but over a large number of studies they are unlikely to bias the broad patterns in the results. 2.4.2 Indirect value of selected plant species as food The indirect value of a plant species will depend on its value as a host plant for insects known to be important in the diet of farmland birds. To quantify this indirect value we used results presented in previous sections documenting the number of mono- and oligo-specific insect species associations identified for each plant species. Using data presented in Wilson and others (1999) and Holland and others (2006) insects that are not known to be important in the diet of farmland birds were excluded from these data. This resulted in a figure for the number of insects known to be important prey for birds associated with each of the 56 plant species. It is possible to use these data to derive similar scores as those used for the direct value by converting these data into the number of bird species known to take these insects. However, a lack of taxonomic detail for insects means this would reduce differences between plant species and represent a poorer index of the relative value. For example, suppose two plant species supported insects within three taxa, say Chrysomelidae, Auchenorrhyncha and Lepidoptera, but one supported a much larger number of species within one of these groups. Since invertebrate prey are rarely, if ever recorded, in bird diets at species level both these plants would be scored as indirectly providing for the same number of farmland bird species. For this reason, we have used data on the number of invertebrate prey species associated with each plant as an index of the indirect food value of each species. The suitability of this as an index of diet quality or quantity, is difficult to assess. The optimal measure would be abundance or biomass but these data are not available. Few studies have related the diversity of species in the diet to the quality of that diet. Instead, work has tended to focus on key species rather than diet breadth. Higher diversity may result in food being available for a longer period of time with seasonal peaks in different invertebrate species. In general, for the 20 purpose of this study it represents the best quantitative index that can be derived from available data. 2.5 Diet and microhabitat value for other vertebrates Consideration of the literature revealed no relevant information on the diet or microhabitat value of the selected plant species for mammals, such as Roe Deer Capreolus capreolus, Brown Hare Lepus europaeus, bats and a range of small mammals such as Field Vole Microtus agrestis and Wood Mouse Apodemus sylvaticus. The following sources on small mammal populations in UK farmland were consulted Corbet & Harris (1991), Jensen (1993), Macdonald and others (2000), Tattersall and others (1997, 1998, 1999, 2000, 2001, 2002, 2003), Tew and others (1992) and Todd and others (2000). Most small mammals are generalist feeders and populations are related to habitat structure and surrounding land use, rather than the particular botanical composition of grassland swards. 2.6 Agronomic potential of selected plant species Standard ecological reference sources, such as the Biological Flora of the British Isles and Comparative Plant Ecology (Grime and others 1988), were used to gather information on some characteristics of agronomic importance. Nineteen of the selected species have BFBI accounts. All but three of the selected species have a Comparative Plant Ecology account (Grime and others 1996). All of the Poaceae are covered in Wild and Sown Grasses (Peeters, 2004). In addition, a comprehensive search of bibliographic databases (eg ISI Web of Science, CAB Abstracts) was undertaken, supplemented by a search of “grey” literature. Information on the following agronomic characteristics was extracted: • Productivity, diet value for livestock, nutrient content • Seasonality of forage availability • Effects on silage production • Ability to regrow/reflower after grazing or cutting • Rooting depth, drought tolerance, effects on soil structure • Presence of health promoting compounds • Problems for livestock (toxicity, other impacts on animal health) The literature searched for the review is listed in Appendix 2. 21 3 Diet and microhabitat value 3.1 Ecological characteristics of selected plant species Characteristics of the selected plant species relating to morphology, productivity and phenology are summarised as part of the review of agronomic potential in Section 5. 3.1.1 Distribution in agriculturally improved grasslands With some exceptions, the selected species occur in the samples of agriculturally-improved or semi-improved grasslands in the National Vegetation Classification (NVC) tables and / or Countryside Survey 2000 (CS2000) datasets (Table 3). The two legume species lucerne (Medicago sativa) and sainfoin (Onobrychis viciifolia), which are not in these datasets, were included in the selected list because of their potential to combine both biodiversity and agronomic value. Three forb species in the selected list occur in neither the NVC tables for MG6 and MG7, nor the improved grassland samples of the CS2000 (Leucanthemum vulgare, Primula veris, Sanguisorba minor). These were retained in the list of plant species used for this review as they are widely sown in grassland enhancement schemes, the first two species relatively successfully in neutral grasslands. Some species are relatively rarely encountered in more fertile grasslands, eg Galium spp., but were included as borderline species for consideration in species-poor, semi-improved grasslands on low-fertility soils or where particular soil wetness conditions occur. The most frequent species in the CS2000 samples that were not included in the selected list were Bellis perennis and Stellaria media. Preliminary analysis suggested that Bellis perennis has few specific faunal associations, while Stellaria media is more associated with regularly-disturbed arable habitats rather than grasslands. 3.1.2 Success of use in enhancement of grassland diversity Seed of native forb and grass species has been used in grassland habitat restoration for a number of decades. In the early years, the use of such practices was confined to land undergoing reclamation from extractive industries or in urban areas (Gilbert & Anderson 1998). From the mid 1980s, an increasing amount of seed has been sown in order to enhance the diversity of agricultural grasslands, promoted by agri-environment scheme payments. However, the use of native provenances of forb and grass seed is limited, with annual sales of approximately 20-30 tonnes between 1993 and 2002, compared with 20,000 tonnes of agricultural seed (Walker and others 2004). A considerable body of research has been carried out on the enhancement of botanical diversity in agricultural grasslands since the introduction of the agri-environment schemes. A recent review of 25 experiments concerned with restoration of species-rich grassland on exarable land or agriculturally-improved grassland has quantified the performance of sown species (Pywell and others 2003). The results of the study for the species selected for this review are shown in Table 4. Data are provided on seed supply along with the persistence in the sward and temporal trend in abundance. Although management regimes differed between the sites used for the experiments, all of the sites were undergoing management for the promotion of botanical diversity. 22 Table 3 Occurrence of selected species in different types of grassland and with Ellenberg indicator values for soil conditions (see legend on following page for details). NVC tables MG6 MG7 Grasses Agrostis capillaris Agrostis stolonifera Alopecurus pratensis Anthoxanthum odoratum Cynosurus cristatus Dactylis glomerata Festuca ovina Festuca pratensis Festuca rubra Holcus lanatus Lolium perenne Phleum pratense pratense Poa pratensis Poa trivialis Legumes Lathyrus pratensis Lotus corniculatus Lotus pedunculatus Medicago lupulina Medicago sativa Onobrychis viciifolia Trifolium dubium Trifolium pratense Trifolium repens Vicia cracca Vicia sativa Non leguminous forbs Achillea millefolium Cardamine pratensis Centaurea nigra Cerastium fontanum Cirsium arvense Cirsium palustre Cirsium vulgare Filipendula ulmaria Galium palustre Galium saxatile Galium verum Hypochaeris radicata Leontodon autumnalis Leontodon hispidus Leucanthemum vulgare Plantago lanceolata Potentilla reptans Primula veris Prunella vulgaris Ranunculus acris Ranunculus repens Rhinanthus minor Rumex acetosa Rumex acetosella Rumex crispus Rumex obtusifolius Sanguisorba minor Senecio jacobaea Taraxacum officinale agg. Urtica dioica Veronica chamaedrys III (1-8) I (1-9) I (1-7) II (1-7) V (2-8) III (1-8) I (2-7) I (1-4) IV (1-9) IV (1-8) V (1-8) I (1-4) III (1-5) II (1-7) 41 43 15 21 36 46 3 2 25 66 92 40 26 39 37 65 47 12 15 30 I (2-4) 2 8 2 2 8 14 5 3 I (2-8) II (1-7) V (1-9) I (1-8) II (1-7) III (1-8) I (2-4) I (1-5) 8 18 81 1 1 5 10 35 3 2 II (1-5) I (1-2) I (1-4) IV (1-5) III (1-5) I (1-9) I (1-3) II (1-4) I (1-6) I (1-3) I (1-4) I (2-5) II (1-4) I (1-6) I (2-3) 21 9 4 54 41 5 27 9 2 3 1 9 11 3 11 7 12 27 28 5 9 6 4 4 2 8 8 4 III (1-6) I (2-7) II (1-5) 23 4 25 7 14 29 69 10 15 43 33 5 44 14 30 5 3 13 10 66 21 10 10 29 24 11 I (1-5) II (2-7) I (1-8) II (1-8) I (3-8) CS2000 (frequency) X plots Y plots IV (1-8) II (1-8) II (1-8) III (1-8) V (1-9) II (1-7) II (1-9) II (2-8) I (1-5) I (1-5) III (1-5) I (1-7) I (3-5) II (1-4) II (1-4) I (1-4) I (1-6) II (1-3) III (1-5) I (1-2) I (1-6) I (1-8) 23 34 36 5 21 20 40 6 Ellenberg indicator values Water pH Nitrogen 5 6 5 6 5 5 5 6 5 6 5 5 5 6 4 7 6 4 6 7 4 6 6 6 6 7 6 6 4 6 7 3 4 6 2 6 5 5 6 6 5 6 6 4 8 4 4 4 4 5 5 6 4 6 6 6 8 6 8 6 7 6 7 7 5 2 4 4 5 3 5 5 6 5 4 5 8 5 5 6 8 5 8 9 6 4 4 6 4 4 5 5 4 5 6 7 5 5 5 6 5 4 4 5 6 5 6 5 6 5 7 5 6 6 5 3 6 5 6 7 7 6 7 7 6 6 6 6 5 4 7 7 8 6 7 7 6 4 4 5 4 6 4 6 5 4 3 2 3 4 3 4 4 5 3 4 4 7 4 4 3 6 9 3 4 6 8 5 Table 3 Legend National Vegetation Classification Figures show the frequency and abundance of the selcted plant species in the tables for NVC communities MG6 (Cynosurus cristatus-Centaurea nigra grassland) and MG7 (Lolium perenne grasslamds) (Rodwell 1992). No values for overall frequency are given in Rodwell (1992) for MG7, so a weighted average of the frequencies of each sub-community is given instead. Note that a species has to occur at 5% frequency or more in a subcommunity to be included in the tables. Frequency based on frequency of occurrence in 155 (MG6) and 111 (MG7) samples: I 1-20% of samples II 21-40% of samples III 41-60% of samples IV 61-80% of samples V 81-100% of samples Abundance showing the range of cover values in the same samples using the Domin abundance scale: 1 <4% with few individuals 2 <4% with several individuals 3 <4% with many individuals 4 4-10% 5 11-25% 6 26-33% 7 34-50% 8 51-75% 9 76-90% 10 91-100% Countryside Survey 2000 Figures show the frequency of occurrence in vegetation samples from improved grassland in England and Wales. The ‘X’ plots comprise a sample of 595 plots of 200m2, randomly positioned within the 1km grid squares used for the survey, and the ‘Y’ plots comprise a sample of 305 plots of 4m2 in targeted locations within the 1km grid squares (Haines-Young and others 2000). Ellenberg Values Ellenberg soil indicator values for British plants (Hill and others 1999) for the selected species. Values between the numbers listed below represent intermediate scores: Moisture 3 Dry site indicator, more often found on dry ground than in moist places 5 Moist site indicator, manily on fresh soils of average dampness 7 Dampness indicator, mainly on constantly moist or damp, but not on wet soils 9 Wet site indicator, often on water saturated, badly aerated soils Reaction 3 Acidity indicator, mainly on acid soils, but exceptionally also on nearly neutral ones 5 Indicator of moderately acidic soils, only occasionally found on very acid or on neutral to basic soils 7 Indicator of weakly acid to weakly basic conditions, never found on very acid soils 9 Indicator of basic reaction, always found on calcareous or other high pH soils Nitrogen 3 Indicator of more or less infertile soils 5 Indicator of sites of intermediate fertility 7 Plant often found in richly fertile places 9 Indicator of extremely rich situations, such as cattle resting places or near polluted rivers 24 Table 4 Seed supply and success in grassland enhancement schemes of some of the selected plant species (data from reviews by Pywell and others 2003 and Walker and others 2004). Selected species not included in these reviews are not listed, blank cells mean no data available. Grasses Agrostis capillaris Agrostis stolonifera Alopecurus pratensis Anthoxanthum odoratum Cynosurus cristatus Dactylis glomerata Festuca ovina Festuca pratensis Festuca rubra Holcus lanatus Lolium perenne Phleum pratense pratense Poa pratensis Poa trivialis Legumes Lathyrus pratensis Lotus corniculatus Lotus pedunculatus Medicago lupulina Medicago sativa Onobrychis viciifolia Trifolium dubium Trifolium pratense Trifolium repens Vicia cracca Vicia sativa Non legume Forbs Achillea millefolium Cardamine pratensis Centaurea nigra Filipendula ulmaria Galium saxatile Galium verum Hypochaeris radicata Leontodon autumnalis Leontodon hispidus Leucanthemum vulgare Plantago lanceolata Primula veris Prunella vulgaris Ranunculus acris Rhinanthus minor Rumex acetosa Rumex acetosella Sanguisorba minor Veronica chamaedrys Seeds /g Agric varieties? 15,000 15,000 500 1,000 1,500 1,000 1,000 500 1,000 4,000 500 2,000 3,000 4,000 Yes Yes Yes 60 500 2,000 400 750 60 50 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Cost (£/kg) Cost (£/kg) Supply* 50 80 150 50 30 45 50 45 45 5 5 50 320 190 190 85 61 84 85 4 3 3 4 5 4 5 4 5 85 400 1,000 150 140 1,900 85 280 160 320 85 60 240 105 85 190 150 390 85 2500 * Trend*** 4 5 5 + ++ ++ 2 - 5 + 5 4 0 - 10 2 3 -- 7 2 -- 2 3 + 0 1 0 4 ++ 3 + 1 1 3 + -+ 2 5 4 1 4 1 -++ + ++ + - 4 1 1 0 + -- 8 5 6 5 5 20 5 5 5 5 4 3 4 8 12 16 270 90 6,000 900 2,000 300 1,000 1,000 400 300 2,000 2,500 300 16 15 60 Establ** 1 1 3 2 3 1 2 4 2 1 3 3 2 3 Average annual supply of native provenance seed from wildflower seed suppliers (Walker and others 2004) 1, <500 kg; 2, 50-1000 kg; 3, 1000-1500 kg 4, 1500-2000 kg 5, >2000 kg nd, no data ** Success of establishment index after 4 years (Pywell and others 2003): 1, 0.02-0.05 (low); 2, 0.05-0.10; 3, 0.10-0.25; 4, 0.25-0.50; 5, 0.50-1.00 (high) *** Trend in abundance (Pywell and others 2003): --, < -0.75 -, -0.75 to -0.25 0, -0.25 to 0.25 +, 0.25 to 0.75 ++, >0.75 25 3.2 Identification of insect:plant associations As a result of the literature review, a total of 5,268 references to interactions between the 56 plant species and insect species in the 9 selected taxa were identified. From these, a total of 2,603 monophagous/monolectic or oligophagous/oligolectic associations between an insect species and a plant species were identified. This total underestimates the number of oligophagous species feeding on a broad range of grasses, as such species were only included if one or more of the selected grass species was specifically mentioned in the source. Monophagous/monolectic or oligophagous/oligolectic associations are hereafter referred to as ‘specific associations’. Polyphagous/polylectic associations are considered later in this section. 3.2.1 Distribution of specific associations between insect taxa Plant species supporting a wide range of specific associations with insects were identified in all three plant groups. Of the 56 plant species considered, 12 had 70 or more associations (Table 5). Full details of the associations are given in Appendix 3. Table 5 Plant species from the four groups with the highest numbers of mono- or oligospecific associations (number of specific associations in parentheses). Grasses Dactylis glomerata (105) Festuca ovina (98) Festuca rubra (91) Poa pratensis (75) Festuca pratensis (65) Legumes Lotus corniculatus (104) Trifolium repens (93) Trifolium pratense (90) Trifolium dubium (70) Lotus pedunculatus (59) Non leguminous forbs Cirsium arvense (87) Cirsium vulgare (76) Achillea millefolium (74) Cirsium palustre (70) Rumex acetosella (64) Lolium perenne, the most widespread and abundant agricultural grass in improved grassland, had one of the lowest numbers of insect associations among the grasses, although Alopercurus pratensis, Anthoxanthum odoratum and Cynosurus cristatus had fewer associations. In contrast, Trifolium repens, the most commonly sown agricultural legume, had the second highest number of associations among the legumes. Overall, across the groups, the grasses and legume groups contained a greater proportion of representatives having high numbers of insect associations, compared to the other forbs group. The largest number of reported specific associations was between plants and Lepidopteran larvae (Table 6), comprising 30% of all associations. The plant species with the greatest diversity in such associations were grasses (Poaceae), legumes (Fabaceae), composites (Asteraceae), bedstraws (Galium spp.) and docks or sorrels (Rumex spp.). The number of specific associations with grass species was high among the Elachistidae, Noctuidae, Pyralidae and Satyridae. Amongst the forbs, the families Geometridae and Gelechiidae contributed to the high number of associations with Galium spp and Rumex spp. respectively. Associations between plants and phytophagous beetles comprised 21% of all specific associations identified in the review. The diversity of specialist herbivores was greatest for the legumes, especially Lotus corniculatus, Trifolium pratense and Trifolium repens, with most of the species being weevils (Apionidae and Curculionidae). Amongst the forbs, Rumex spp., Cirsium spp., and Plantago lanceolata all had large numbers of associated beetles, comprising a diverse range of weevils and leaf beetles (Chrysomelidae). 26 Of the remaining groups, members of the Asteraceae supported the greatest diversity of specific associations with flies (Diptera), grasses had the highest numbers of specific associations with leafhoppers (Auchenorrhyncha) and aphids (Sternorrhyncha), while Galium spp. had the largest number of specific associations with true bugs (Heteroptera). Filipendula ulmaria was the only plant species associated with a diverse assemblage of Symphyta. Ranunculus spp. and Taraxacum officinale had the highest numbers of monolectic and oligolectic aculeates (Aculeata). Table 6 All specific associations (monospecific and oligospecific) of the 56 plant species arranged by insect taxa. Coleo. Grasses Agrostis capillaris Agrostis stolonifera Alopecurus pratensis Anthoxanthum odoratum Cynosurus cristatus Dactylis glomerata Festuca ovina Festuca pratensis Festuca rubra Holcus lanatus Lolium perenne Phleum pratense pratense Poa pratensis Poa trivialis Legumes Lathyrus pratensis Lotus corniculatus Lotus pedunculatus Medicago lupulina Medicago sativa Onobrychis viciifolia Trifolium dubium Trifolium pratense Trifolium repens Vicia cracca Vicia sativa Non leguminous forbs Achillea millefolium Cardamine pratensis Centaurea nigra Cerastium fontanum Cirsium arvense Cirsium palustre Cirsium vulgare Filipendula ulmaria Galium palustre Galium saxatile Galium verum Hypochaeris radicata Leontodon autumnalis Leontodon hispidus Leucanthemum vulgare Plantago lanceolata Potentilla reptans Primula veris Prunella vulgaris Ranunculus acris Ranunculus repens Rhinanthus minor Dipter. 3 1 4 3 3 1 17 6 7 7 14 9 7 7 10 19 37 21 16 15 7 35 40 39 28 28 10 8 3 5 6 2 8 12 14 9 6 10 6 9 21 1 21 26 21 21 2 3 3 3 3 2 1 7 25 2 25 18 21 6 5 3 3 15 10 7 20 2 2 1 1 14 12 1 2 2 2 2 1 2 8 9 Hemiptera Auch. Heter. 18 3 6 1 3 2 13 21 9 21 14 4 2 9 6 1 1 1 4 3 1 4 2 2 Stern. 19 20 7 3 1 16 26 22 28 13 7 9 20 15 1 6 4 2 6 4 2 3 2 3 5 1 4 12 3 2 6 7 6 3 1 9 6 6 1 6 6 7 5 5 3 11 4 1 1 1 3 5 1 2 8 9 10 3 1 1 27 1 6 4 2 1 Hymenoptera Acul. other Lepid. Thysa. 11 12 1 1 1 1 1 2 3 2 4 1 1 1 5 4 4 2 1 2 2 2 1 4 3 1 2 2 9 1 2 1 2 2 1 3 1 7 7 3 3 2 1 51 41 23 28 14 3 8 31 26 4 1 11 44 28 8 12 3 24 25 27 12 9 2 4 1 21 5 23 8 17 16 19 3 22 21 22 1 3 10 9 3 2 2 1 1 4 4 4 1 1 1 3 1 2 2 1 1 Total 51 43 14 10 3 105 98 65 91 59 25 32 75 62 45 104 59 37 45 16 70 90 93 56 50 74 13 63 11 87 70 76 25 47 43 48 28 18 13 53 43 12 4 4 36 38 6 Rumex acetosa Rumex acetosella Rumex crispus Rumex obtusifolius Sanguisorba minor Senecio jacobaea Taraxacum officinale Urtica dioica Veronica chamaedrys Coleo. 17 20 16 14 1 8 3 7 6 Dipter. 5 4 6 6 2 22 13 7 2 Hemiptera 1 1 1 1 Hymenoptera 9 `1 9 9 2 1 8 4 1 1 4 1 12 2 2 2 2 8 7 2 Lepid. 18 25 14 14 3 12 14 13 2 Thysa. 3 3 5 2 1 Total 52 64 51 49 8 57 47 48 14 Table 7 Monospecific (monophagous and monolectic) associations of the 56 plant species arranged by insect taxa. Coleo. Grasses Agrostis capillaris Agrostis stolonifera Alopecurus pratensis Anthoxanthum odoratum Cynosurus cristatus Dactylis glomerata Festuca ovina Festuca pratensis Festuca rubra Holcus lanatus Lolium perenne Phleum pratense pratense Poa pratensis Poa trivialis Legumes Lathyrus pratensis Lotus corniculatus Lotus pedunculatus Medicago lupulina Medicago sativa Onobrychis viciifolia Trifolium dubium Trifolium pratense Trifolium repens Vicia cracca Vicia sativa Non leguminous forbs Achillea millefolium Cardamine pratensis Centaurea nigra Cerastium fontanum Cirsium arvense Cirsium palustre Cirsium vulgare Filipendula ulmaria Galium palustre Galium saxatile Galium verum Hypochaeris radicata Leontodon autumnalis Leontodon hispidus Leucanthemum vulgare Plantago lanceolata Potentilla reptans Primula veris Prunella vulgaris Ranunculus acris Ranunculus repens Dipt. Auch. Hemiptera Heter. Stern. Hymenoptera Acul. other Lepid. Thysa. 1 1 1 1 8 1 1 1 1 1 1 1 2 1 1 1 1 1 3 1 2 1 2 5 4 1 3 2 1 1 1 2 1 1 1 1 1 2 1 1 2 1 3 1 1 1 5 1 1 1 6 1 1 1 3 1 2 1 1 1 5 1 1 2 2 5 1 1 1 2 1 1 1 1 28 7 16 2 6 3 4 5 2 1 2 3 6 1 1 1 1 2 1 11 3 1 1 4 Total 1 1 4 6 4 1 13 3 1 1 7 1 6 1 2 1 1 1 1 12 3 1 4 6 2 1 1 4 1 14 6 1 4 3 4 1 Coleo. Rhinanthus minor Rumex acetosa Rumex acetosella Rumex crispus Rumex obtusifolius Sanguisorba minor Senecio jacobaea Taraxacum officinale Urtica dioica Veronica chamaedrys 3.2.2 Dipt. Hemiptera Hymenoptera 1 3 2 Lepid. 2 Thysa. 7 1 1 1 1 1 1 3 1 1 2 1 4 1 3 1 Total 2 1 12 1 1 1 6 3 10 1 Degree of specificity in plant:insect associations Monophagous or monolectic associations were found for 46 of the 56 selected plant species (Table 7). In general, the plant species with the greatest number of specific (ie mono- or oligo-specific) associations also had the highest number of monospecific associations (Dactylis glomerata 11 out of 105 associations; Lotus corniculatus 16/104; Achillea millefolium 13/74; Rumex acetosella 12/64). Monospecific associations were underrepresented in common pasture legumes (Trifolium pratense 4/90, T. repens 6/93). The proportion of specific associations that were monospecific was high for a number of selected forbs with few congeneric species in the UK flora (Table 8). Overall across groups, the grasses group had the smallest proportion of representatives with high numbers of monospecific associations, compared to legumes and other forbs. Table 8 Selected plant species with the highest proportion of monospecific associations. Plant species Prunella vulgaris Filipendula ulmaria Rhinanthus minor Leucanthemum vulgare Onobrychis viciifolia Hypochaeris radicata 3.2.3 No. monospecific associations 4 12 2 14 4 6 Total number of mono- and oligospecific associations 4 25 6 53 16 28 % monospecific 100% 48% 33% 26% 25% 21% Feeding locations on the selected plant species Of the specific associations recorded for the selected plant species, 2,504 (96%) were phytophagous, the remainder comprising associations with pollen and nectar feeding aculeate Hymenoptera. For each phytophagous insect:plant association, the feeding locations within the plant were categorised (Table 9). The majority of insect associations (59%) were classified as ‘general/unspecified’, that is, the literature source did not identify a specific feeding location or microhabitat within the plant. This reflects the large number of insect species feeding generally across a range of above-ground plant parts, including leaves, stems, buds and inflorescences. Such associations were especially frequent amongst Lepidopteran larvae feeding on grasses (Poaceae), bedstraws (Galium spp.) and docks and sorrels (Rumex spp.). The numbers of associations in this category is also high as it was used if the source material did not identify a particular microhabitat for above-ground feeding taxa. The category also includes insect species using different parts of the plant during different stages in their life history, for example weevils with foliar-feeding adults and root-feeding larvae. The next most frequent group, comprising 11% of associations, were those involving insects feeding on inflorescences, seedheads or seeds. Many species feeding on these structures have larvae which develop as the inflorescence and seed head develop. For simplicity, these 29 feeding locations have been combined for presentation in Table 9. Information on species feeding exclusively on flowers or seeds is given in Appendix 3. The numbers of insect species in this group was greatest for plants in the Asteraceae (eg Achillea millefolium, Centaurea nigra, Cirsium arvense, Senecio jacobaea) and Fabaceae (eg Lotus corniculatus, Trifolium pratense, Trifolium repens, Vicia cracca, Vicia sativa). Of those plant species with a less diverse fauna, seed- and flower- feeders comprised an important proportion of reported associations for Cerastium fontanum and Rhinanthus minor. Reported flower / seed associations were generally low for grasses compared to the other groups. Table 9 Feeding location for the 2,504 monophagous and oligophagous associations, showing number of insect species and percentage of specialist phytophagous insect fauna. Feeding location: Grasses Agrostis capillaris Agrostis stolonifera Alopecurus pratensis Anthoxanthum odoratum Cynosurus cristatus Dactylis glomerata Festuca ovina Festuca pratensis Festuca rubra Holcus lanatus Lolium perenne Phleum pratense pratense Poa pratensis Poa trivialis Legumes Lathyrus pratensis Lotus corniculatus Lotus pedunculatus Medicago lupulina Medicago sativa Onobrychis viciifolia Trifolium dubium Trifolium pratense Trifolium repens Vicia cracca Vicia sativa Non leguminous forbs Achillea millefolium Cardamine pratensis Centaurea nigra Cerastium fontanum Cirsium arvense Cirsium palustre Cirsium vulgare Filipendula ulmaria Galium palustre Galium saxatile Galium verum Hypochaeris radicata Leontodon autumnalis Leontodon hispidus Leucanthemum vulgare Plantago lanceolata Potentilla reptans Primula veris Prunella vulgaris Ranunculus acris Flower/ seedhead 2 4% 2 14% 6 6% 1 1% 3 9% 11 18 8 1 2 4 6 13 17 13 13 Leaf miner 27% 18% 14% 3% 5% 33% 9% 15% 19% 24% 31% 13 18% 16 5 16 13 2 27% 45% 19% 19% 4% 1 1 1 9 4 3 11 3 2% 2% 2% 35% 24% 27% 22% 7% 1 17% 1 25% 1 3% Leaf Stem 6 12% 6 14% 1 7% 1 10% General/ unspecified 3 3 6% 7% 78% 70% 64% 60% 67% 61% 74% 71% 73% 61% 60% 72% 69% 68% 7 7% 3 3% 2 3% 3 3% 4 7% 4 16% 6 3 1 4 6% 3% 2% 4% 1 4 4 4 1 1 1% 4% 6% 4% 2% 4% 2 2 3% 3% 3 1 4% 2% 2 2 3% 3% 1 2 2% 2% 1 1% 1 3% 1 3% 2 17% 2 3% 3 3% 2 2% 4 7% 3 6% 1 3% 1 1 1% 1% 3 16 10 5 6 2 7 8 7 7 5 7% 16% 17% 14% 15% 17% 10% 9% 8% 13% 10% 24 59 36 21 22 3 45 51 53 25 21 53% 59% 62% 57% 55% 25% 64% 59% 58% 45% 44% 6 8% 3 4% 3 5% 2 3% 3 4% 2 17% 5 8% 4 5% 5 7% 4 7% 4 17% 1 2% 1 2% 1 2% 1 4% 3 3 3 1 1 4% 4% 5% 4% 2% 3 3 3 4% 4% 5% 8 10% 6 9% 6 11% 1 4% 3 6% 2 5% 1 11% 2 4% 1 2% 1 11% 1 4% 1 6% 1 9% 4 8% 9 21% 1 11% 7% 7 24% 34 6 23 6 40 33 33 16 43 40 45 7 6 4 25 20 4 4 2 11 47% 50% 39% 55% 70% 48% 64% 70% 91% 93% 94% 27% 35% 36% 49% 47% 44% 67% 50% 38% 9% 14% 10% 33% 8% 4% 8% 4% 14% 16% 9% 9% 15% 3 1 7% 1% 2 3 5% 8% 2 2 3 3 2 3% 2% 3% 5% 4% 2 4% 3 3% 4 7% 6 16% 6 15% 1 8% 8 11% 8 9% 8 9% 3 5% 2 4% 6 8% 1 8% 6 10% 7 10% 1 8% 4 7% 12% 9% 9% 9% 2% 2% 2% 27% 35% 27% 8% 7% 22% 17% 5 17% Root 40 30 9 6 2 64 73 46 66 36 15 23 52 42 4 2 1 1 8 4 5 4 8 4 3 7 9 10 6 5 2 1 1 1 7 6 3 4 3 2 1 Stem base/ root crown 13 11 7 9 10 1 3 9 6 2 30 12% 11% 11% 10% 17% 4% 9% 12% 10% 2 20% 2 4% 5 12% 1 25% 3 10% Feeding location: Ranunculus repens Rhinanthus minor Rumex acetosa Rumex acetosella Rumex crispus Rumex obtusifolius Sanguisorba minor Senecio jacobaea Taraxacum officinale Urtica dioica Veronica chamaedrys TOTAL Flower/ Leaf miner seedhead 1 3% 5 16% 4 67% 2 4% 4 8% 2 3% 4 6% 1 2% 5 10% 1 2% 4 8% 2 25% 12 25% 7 15% 6 15% 9 23% 3 6% 3 6% 2 17% 2 17% 11% 8% Leaf Stem 3 10% 5 16% 5 10% 5 8% 4 8% 4 8% 2 4% 2 3% 3 6% 3 6% 1 13% 4 8% 2 4% 2 5% 1 2% 2 17% 8% 4 Stem base/ root crown Root 3 10% 5 10% 6 9% 3 6% 3 6% 8% 3 6% 5 8% 3 6% 3 6% 1 13% 2 4% 1 3% 1 2% 4% 3% 7% 6 13% 4 10% 2 4% General/ unspecified 14 45% 2 33% 31 60% 40 63% 32 60% 31 67% 4 50% 15 61% 18 45% 34 74% 6 50% 59% Leaf miners, free-living foliar feeders and stem feeders collectively comprised c. 20% of reported associations. Leaf mining associations were most abundant in the broad-leaved grasses (eg Dactylis glomerata, Holcus lanatus) and members of the Asteraceae, especially those with a large basal rosette (Cirsium spp. Hypochaeris radicata, Taraxacum officinale). Free-living foliar feeders were most frequent in the grasses and legumes, whilst high numbers of specialist stem feeding species were for Dactylis glomerata, Achillea millefolium and Ranunculus spp.. Root feeding species comprised an important component of the specialist fauna for many legume species (especially Lotus spp., Medicago spp. and Vicia spp.), and a number of rosette forming forbs with large rootstocks (eg Cirsium vulgare, Plantago lanceolata, Senecio jacobaea). A small number of insect species had feeding sites at the base of the stem or the top of the root stock. These were most frequent amongst rosette forming forbs (eg Plantago lanceolata, Cirsium vulgare), but also a significant component of the fauna of the tussock-forming grass Dactylis glomerata. 3.2.4 Conservation status of associated specialist insects The conservation status of the insect species identified as having specific associations with the selected plant species was recorded for all groups except the aphids (Sternorrhyncha) and thrips (Thysanoptera), for which no conservation status has been published. The largest numbers of Red Data Book or Nationally Notable/Scarce species were found on the legume species (Lotus corniculatus, L. pedunculatus, Trifolium pratense, T. repens). A high percentage of the insects forming specialist associations with the forb Plantago lanceolata were also of RDB or Nationally Scarce status (Table 10). Rare and scarce species made a significant contribution to the total specialist fauna associated with Anthoxanthum odoratum (3 out of 10 associations), Cerastium fontanum (4/11), Onobrychis viciifolia (7/16) and Prunella vulgaris (2/4). Overall across the groups, grasses had generally lower numbers of nationally rare and scarce insect species associated with them, particularly compared to legumes. 3.2.5 Number of associations with widespread specialist species alone Given the objectives of the review, the number of widespread insect species forming specialist associations with the selected plant species may provide a better quantification of the likely biodiversity gains from enhancing the botanical diversity of improved agricultural grasslands. Once a plant species has established in the sward, colonisation by its associated fauna may be a slow process. Firstly, the plant population may unsuitable as a habitat for 31 associaed insect species, either because the population size is too small or has not developed the age structure necessary to provide the microhabitats the insect requires (eg inflorescences or leaves, stems and roots of the right size (Mortimer and others 1998). Secondly, colonisation will be dispersal limited as a result of the paucity of sources of colonists in the surrounding landscape (Mortimer and others 2002). This latter factor is likely to be especially true for RDB and Nationally Scarce species. When the numbers of associations with widespread (ie non-RDB/Nationally Scarce) species are considered, the identity of species with the most diverse associated insect fauna remains largely unchanged (Table 11, cf. Table 5). Table 10 Number of Red Data Book and Nationally Notable/Scarce insect species showing specific associations with the 56 selected plant species (Nationally Notable/Scarce species are shown in parentheses). Coleopt. Grasses Agrostis capillaris Agrostis stolonifera Alopecurus pratensis Anthoxanthum odoratum Cynosurus cristatus Dactylis glomerata Festuca ovina Festuca pratensis Festuca rubra Holcus lanatus Lolium perenne Phleum pratense pratense Poa pratensis Poa trivialis Legumes Lathyrus pratensis Lotus corniculatus Lotus pedunculatus Medicago lupulina Medicago sativa Onobrychis viciifolia Trifolium dubium Trifolium pratense Trifolium repens Vicia cracca Vicia sativa Non leguminous forbs Achillea millefolium Cardamine pratensis Centaurea nigra Cerastium fontanum Cirsium arvense Cirsium palustre Cirsium vulgare Filipendula ulmaria Galium palustre Galium saxatile Galium verum Hypochaeris radicata Leontodon autumnalis Leontodon hispidus Leucanthemum vulgare Plantago lanceolata 1 (2) 6 (10) 4 (7) 2 (5) 2 (4) 1 (3) 1 (10) 2 (11) 1 (11) 1 (6) 1 (5) 1 (5) (2) 1 (4) 2 (7) 1 (7) 1 (7) (1) (1) (1) (1) 2 1 (5) 6 (11) Diptera. Hemiptera Hymen. Lepidopt. Auchen. Heterop. Aculeat. Total RDB 1 1 1 1 Total Notable Total 1 1 (1) (1) 1 1 2 3 (1) 1 1 1 1 1 (1) 1 (1) 1 (2) 4 1 (6) (4) (4) 1 3 2 2 5 7 5 6 6 10 7 8 (1) (1) (1) (1) 4 (3) 3 (2) 4 3 1 1 4 3 1 1 8 6 4 16 10 4 4 4 4 7 5 2 2 2 18 9 7 9 3 12 15 14 6 6 6 34 19 11 13 7 16 22 19 8 8 8 2 10 1 9 9 10 2 4 4 4 2 1 1 9 12 13 2 18 4 16 14 14 3 5 5 5 2 3 3 10 22 1 (1) 1 1 (1) 1 (4) 3 (1) 1 1 1 (3) (1) 3 9 (7) 5 (2) 1 (1) 1 (1) 3 (1) 3 (1) 3 (2) 1 1 (1) 2 (1) 3 (2) 1 1 1 1 1 (1) 2 (1) 1 (1) 1 1 (2) 5 1 (2) 3 (2) 2 (1) 2 (1) 1 (1) 1 (2) 1 (2) 1 (3) 1 (2) 1 (2) 8 3 7 5 4 1 1 1 1 (2) 4 (1) 2 2 1 10 1 1 (1) (1) (1) (1) (1) (2) 1 1 32 Coleopt. Potentilla reptans Primula veris Prunella vulgaris Ranunculus acris Ranunculus repens Rhinanthus minor Rumex acetosa Rumex acetosella Rumex crispus Rumex obtusifolius Sanguisorba minor Senecio jacobaea Taraxacum officinale Urtica dioica Veronica chamaedrys Diptera. (1) Hemiptera Hymen. Lepidopt. Auchen. Heterop. Aculeat. (1) 1 (2) 2 (2) 2 (2) 1 2 (6) (6) (4) 3 1 (2) (3) 1 (3) 3 4 (1) 5 (2) 5 (3) 4 (2) 1 (4) (1) (1) (1) (1) 2 (1) 1 (1) (4) Total RDB 1 1 (3) 4 (2) 1 5 5 4 4 5 4 2 1 Total Notable 2 Total 2 2 2 1 9 10 7 5 2 5 6 1 12 15 11 9 10 6 15 10 3 3 2 3 Table 11 Plant species from the three plant groups with the highest numbers of mono- or oligo-specific associations, excluding RDB and Nationally Scarce insect species (number of associations in parentheses). Grasses Legumes Other forbs Dactylis glomerata (99) Festuca ovina (88) Festuca rubra (83) Poa pratensis (67) Holcus lanatus (59) Festuca pratensis (58) Poa trivialis (56) Agrostis capillaris (50) Agrostis stolonifera (42) Lotus corniculatus (74) Trifolium repens (70) Trifolium pratense (68) Trifolium dubium (54) Vicia cracca (48) Vicia sativa (42) Lotus pedunculatus (40) Lathyrus pratensis (39) Medicago sativa (32) Cirsium arvense (71) Cirsium vulgare (62) Achillea millefolium (61) Cirsium palustre (56) Rumex acetosella (49) Centaurea nigra (45) Urtica dioica (45) Leucanthemum vulgare (43) Galium verum (43) 3.2.6 Polyphagous and polylectic associations The review of insect:plant associations identified a total of 5,268 references to interactions between the 56 plant species and insect species in the 9 selected taxa. Approximately half (2,603) of these associations were classified as specific (that is monophagous/monolectic or oligophagous/oligolectic). The remaining 2,665 associations comprise records for polyphagous polylectic or other associations with well documented host plants (eg some predatory bugs, cleptoparasitic bees, etc.) Associations in this group result from records where the source material specifically identifies one of the selected plant species as a host, but where more than 4 other hosts are listed and these alternative hosts are from different plant families. As a result of the criteria used in the search for associations, the database underestimates the total number of insect species utilising each of the selected plant species. For example, a record stating ‘feeds on Taraxacum officinale and a range of herbaceous species’ would have been recorded in the database, whereas a record stating ‘feeds on a range of herbaceous species’ would not. In addition, the standard reference sources used for each insect taxa vary in the level of precision adopted in listing host plants. Consequently, the figures for polyphagous and polylectic associations presented here (Table 12) are underestimates of the numbers of insect species utilising each plant species. In spite of these limitations, the figures presented for the number of specific associations (Tables 5-11), along with the restricted data for more general associations (Table 12) provide a guide to the likely benefits for insect diversity resulting from the presence or introduction of each plant species. 33 The summary of general associations listed in the database highlight the potential for benefits to insect diversity resulting from the introduction of legume and other forb species into species-poor, grass-dominated agriculturally-improved grasslands. In particular, a large number of general associations between the selected plant species and aculeate Hymenoptera and Lepidoptera were identified in the literature search, representing 35% and 36% of the listed general associations repectively. These associations included many with Red Data Book or Nationally Notable/Scarce insect species. The forbs Taraxacum officinale, Plantago lanceolata and Rumex acetosa had particularly high numbers of general associations with Lepidoptera of RDB or Nationally Scarce status, whilst Lotus corniculatus, Cirsium arvense and Taraxacum officinale had the highest numbers of general associations with aculeate Hymenoptera. Table 12 Number of insect species showing polyphagous, polylectic or other general associations with the 56 selected plant species identified in the literature review for this study (number of RDB/Nationally Notable/Scarce species are shown in parentheses). Coleo Dipter Auch Grasses Agrostis capillaris Agrostis stolonifera Alopecurus pratensis Anthoxanthum odoratum Cynosurus cristatus Dactylis glomerata Festuca ovina Festuca pratensis Festuca rubra Holcus lanatus Lolium perenne Phleum pratense pratense Poa pratensis Poa trivialis Legumes Lathyrus pratensis Lotus corniculatus Lotus pedunculatus Medicago lupulina Medicago sativa Onobrychis viciifolia Trifolium dubium Trifolium pratense Trifolium repens Vicia cracca Vicia sativa Non legume Forbs Achillea millefolium Cardamine pratensis Centaurea nigra Cerastium fontanum Cirsium arvense Cirsium palustre Cirsium vulgare Filipendula ulmaria Galium palustre Galium saxatile Galium verum Hypochaeris radicata Leontodon autumnalis Hemiptera Heter Stern 1 2 1 1 3 1 2 2 1 1 2 (1) 2 (1) 2 2 2 (1) 1 1 1 7 (2) 2 (1) 1 1 2 2 2 3 1 1 1 2 3 2 2 7 (3) 2 4 (3) 1 10 (3) 9 (3) 9 (3) 3 1 1 1 5 2 4 1 1 1 1 1 3 2 4 3 1 (1) 6 (2) 5 (2) 5 (2) 2 (1) 1 5 4 3 5 2 2 2 2 1 1 1 5 4 1 Hymenoptera Acul other 2 4 2 2 4 13 6 6 6 11 (3) 11 (3) 11 (3) 8 (2) 8 (2) 13 13 35 (12) 7 (1) 7 41 (6) 6 9 71 (16) 7 37 (4) 7 54 (8) 4 5 (1) 9 3 (1) 9 3 (1) 10 3 (1) 6 21 (5) 2 27 (9) 8 (1) 6 (1) 6 (1) 2 10 10 10 1 34 Thysa 1 9 (1) 7 (1) 3 (1) 3 (1) 1 1 1 18 (7) 12 (5) 1 18 (6) 20 (6) 19 (7) 1 1 2 16 (4) 1 (1) 7 (1) 2 6 4 5 13 (2) 24 (5) 24 (5) 24 (5) 1 Total 3 6 2 3 5 28 17 13 13 7 6 8 14 14 1 7 9 9 7 12 (2) 3 56 (16) 2 16 (1) 6 8 (2) 8 20 (4) 2 21 (4) 7 13 (3) 14 39 (9) 10 45 (13) 5 18 (3) 7 9 (1) 3 3 2 2 Lepid 2 1 20 93 37 22 35 26 58 93 56 35 29 88 2 67 8 114 69 89 34 50 50 52 28 30 Coleo Leontodon hispidus Leucanthemum vulgare Plantago lanceolata Potentilla reptans Primula veris Prunella vulgaris Ranunculus acris Ranunculus repens Rhinanthus minor Rumex acetosa Rumex acetosella Rumex crispus Rumex obtusifolius Sanguisorba minor Senecio jacobaea Taraxacum officinale Urtica dioica Veronica chamaedrys 1 (1) 6 (3) 2 1 (1) 3 (2) 4 5 2 3 4 (1) 3 3 1 2 (2) 2 3 (1) 3 (3) Dipter Hemiptera Hymenoptera Lepid Heter Stern Acul other 1 2 15 (5) 8 (2) 13 16 (5) 8 (2) 6 5 (1) 6 69 (10) 3 27 (8) 1 6 (3) 1 5 1 6 (2) 1 4 10 (1) 1 1 8 41 (8) 2 6 (2) 3 1 10 35 (8) 3 6 (2) 1 6 (1) 1 1 (1) 5 12 1 112 (9) 2 (1) 5 12 2 109 (7) 1 (1) 5 14 1 109 (7) 1 (1) 5 13 2 109 (7) 1 1 1 2 2 11 9 67 (14) 1 15 (1) 2 (1) 3 11 81 (15) 107(17) 12 (1) 20 (1) 9 29 (2) 13 36 (10) 1 2 (1) Thysa Total Auch 1 2 1 2 1 2 2 1 2 19 48 93 39 14 18 65 64 10 134 134 133 133 6 111 206 75 56 Given the general paucity of pollen and nectar sources in agriculturally improved grasslands, the provision of any species of forb from a range of families will benefit aculeates. To illustrate this, the host plants listed in the database for Red Data Book or Nationally Notable/Scarce species of polylectic bees (Apidae) are listed in Table 13. Within this group, the bumble bees (Bombus spp.) visit a wide range of plant species for pollen. However, the scarcer bumble bees tend to emerge later in the season, utilise more protein-rich pollens for feeding their brood and feed on a narrower range of species at any given time of the year. The numbers of bee species visiting particular plant species may reflect abundances of plants rather than preferences (see 4.3 below) but from the observations collated in Table 13, Taraxacum officinale has the highest number of bee species recorded as visiting, followed, in order, by Lotus corniculatus, Potentilla reptans and Ranunculus acris. Table 13 Host plant associations of polylectic bees (Apidae) of Red Data Book or Nationally Scarce status in the UK identified in the database. Host plant abbreviations are the first 4 letters of genus and species, see Table 1 for full names. Species Andrena labiata Fabricius Andrena nigriceps (Kirby) Andrena simillima Smith Andrena varians (Kirby) Anthophora retusa (Linnaeus) Bombus cullumanus (Kirby) Bombus distinguendus (Morawitz) Bombus pomorum (Panzer) Bombus ruderatus (Fabricius) Ceratina cyanea (Kirby) Halictus confusus Smith Halictus eurygnathus Bluthgen Halictus maculatus Smith Hoplitis leucomelana (Kirby) Host plants listed in database Vero cham (+ Leon hisp, Tara offi, Hypo radi, Ranu acri, Leuc vulg, Ranu repe Cent nigr, Cirs palu, Cirs vulg, Fili ulma, Galium Cirs arve Ranu acri, Tara offi Vici sati Trif repe, Cent nigr + Asteraceae, Lamiaceae Cent nigr, Cirsium, Trif repe Cirsium, Leon autu, Lotu corn, Tara offi, Trif prat Cirs palu, Trif prat + Apiaceae, Boraginaceae, Fabaceae, Lamiaceae, Liliaceae, Oleaceae, Papaveraceae, Ranunculaceae, Rosaceae, Scrophulariaceae Achi mill, Cent nigr, Cirs arve, Hypo radi, Leon hisp, Lotu corn, Medi sati, Pote rept, Prun vulg, Rhin mino, Sene jaco, Tara offi, Trif prat, Vero cham Card prat, Leontodon, Pote rept, Sene jaco, Tara offi, Trif repe, Vero cham Cent nigr Achi mill, Cirs vulg, Leuc vulg, Ranu repe, Tara offi, Trif repe Leon autu, Leon hisp , Lotu corn, Medicago, Onob vici, Trif prat, Trif repe + Lamiaceae 35 Conservation status RDB3 Nationally Scarce b RDB3 Nationally Scarce b RDB3 RDB1+ RDB1 RDB1+ Nationally Scarce b RDB3 RDB3 RDB1+ RDB1+ RDB1+ Species Hylaeus cornutus Curtis Hylaeus gibbus Saunders Lasioglossum angusticeps (Perkins) Lasioglossum laticeps (Schenck) Lasioglossum malachura (Kirby) Lasioglossum pauxillum (Kirby) Lasioglossum quadrinotatum (Kirby) Lasioglossum sexnotatum (Kirby) Megachile dorsalis Perez Megachile lapponica Thomson Osmia bicolor (Schrank) Osmia parietina Curtis 3.3 Host plants listed in database Apiaceae (+ Achi mill, Brassicaceae, Euphorbiaceae, Apiaceae, Lamiaceae, Asteraceae) Cirs arve, Achi mill, Pote rept, Leon autu + Apiaceae, Boraginaceae, Campanulaceae, Crassulaceae, Lamiaceae, Polygonaceae, Rosaceae Lotu corn Cent nigr, Pote rept, Ranu acri, Sene jaco, Tara offi Achi mill, Cirs arve, Cirs vulg, Hypo radi, Leon autu, Leuc vulg, Medi sati, Pote rept, Ranu acri, Ranu repe, Sene jaco, Tara offi, Trif repe Card prat, Cirs arve, Cirs vulg, Leon autu, Leon hisp, Leuc vulg, Lotu corn, Medi lupu, Pote rept, Ranu acri, Ranu repe, Tara offi Vero cham Achi mill, Ranu acri, Sene jaco, Tara offi, Vero cham Cirs vulg, Lotu corn, Plan lanc, Pote rept, Sene jaco, Trif repe Chamerion angustifolium (+ Lath prat, Lotu corn, Trifolium, Vici crac) Lotu corn, Onob vici, Ranu acri, Ranu repe, Tara offi Lotu corn, Trif prat, Vero cham Conservation status RDB3 RDB3 RDB3 RDB2 Nationally Scarce a Nationally Scarce a Nationally Scarce a RDB1+ Nationally Scarce b RDB1+ Nationally Scarce b RDB3 Quantifying strength of insect associations with host plants The vast majority of records of plant:insect interactions identified in this review represent non-quantitative observations. While such records have provided the basis of the analysis presented so far, they have a number of failings, the most obvious of which is there is no direct measure of the strength of the relationship between individual species and host plants. While this is of limited importance for monophagous species, for insects with multiple hosts the identification of host plant preferences is invaluable in predicting the likely biodiversity gains from introducing particular plant species into agriculturally-improved grassland swards. Assessing the extent of such associations is, however, problematic, not least because of the paucity of data sets available. It is also possible that considerable variation in the strength of associations with different host plants may exist between different sites, reflecting local environmental conditions as well as the availability of alternative host plants. A single study detailing the correlation between insect species and potential host plants based on a single site may therefore be unreliable. For this reason it would be preferential to assess the strength and direction of correlations between insect and host plant abundance based on multiple studies. While it is out of the scope of this review to assess such host plant associations for all oligophagous insects, (both in terms of the paucity of data sets and available time) an approach is presented here to illustrate a method for assessing the strength of these associations for one subset guild of the beetles. A good example of such species where a number of potential host plants exist can be found in the Apionidae weevils, for example those feeding on clovers (Trifolium spp.). While some information is available on Trifolium spp. host plant preferences, this is largely anecdotal. For this reason we have focused on identifying specific Trifolium spp. host plant associations with the common weevil species Protapion apricans (Herbst), P. assimile (Kirby), P. trifolii (L.), P. dichroum (Bedel) and Ischnopterapion virens (Herbst). Only three species of Trifolium were considered as potential hosts, T. repens (white clover), T. pratense (red clover) and T. dubium (lesser trefoil). These species represent either common components of existing improved grasslands (T. repens) or have some potential to be introduced in to improved grasslands (T. pratense and T. dubium). While other species of Trifolium may be 36 potential hosts of these species of weevil, their occurrence in available data sets was too infrequent to make them useful in any quantitative analysis. 3.3.1 Study sites In all cases study sites were considered suitable for inclusion in the analysis if adult beetles had been sampled using suction samplers (a quantitative sampling method suitable for grassland invertebrates (Southwood & Henderson 2000)) and sampling points were matched with data on the abundance (percentage cover) of plant species. Within individual sites the specific nature of the sampling regime for both the beetles and plants was not necessarily consistent in its duration and intensity. There was also variation in the types of grasslands, which included lowland improved grasslands (MG6 and MG7), chalk grasslands (CG3), lowland hay meadows (MG5) flood plain meadows (MG4) and grass field margins established on sandy soils (for NVC clasifications see Rodwell 1992). The ten sites included in the analysis were: Salisbury Plain, Salisbury (51:11:52N, 1:57:32W); North Meadow, Cricklade (51:38:17N, 1:51:23W); Somerford Mead, Oxford (51:46:28N, 1:18:19W); Rocks Farm, East Sussex (50:55:56N, 0:24:13E); Dancers End, Buckinghamshire (51:46:29N, 0:41:29W), Bickenhall Farm, Somerset (50:58:47N, 2:59:29W) South Hill Farm, Somerset (50:57:40N, 3:02:53W); Heywoods Farm, Devon (50:48:38N, 3:55:40W) North Wyke Farm, Devon (50:46:4N, 3:55:46W) and ADAS Gleadthorpe, Nottinghamshire (53:13:28N, 1:06:45W). 3.3.2 Statistical analysis For each study site, the correlation between the abundance of each beetle species and that of potential Trifolium spp. host plants was calculated using Pearson’s correlation coefficient (Krebs 1999). Within an individual site it was normal for only a subset of the weevil and Trifolium species to be present. All correlations were based on loge (N+1) values of both individual beetle species abundances and the abundance (percentage cover) of the Trifolium spp. in the sward. To assess the overall responses of each weevil species to the host plant, a statistical approach called meta-analysis was subsequently used. This approach is useful in ecological research as different studies often produce conflicting conclusions in terms of the direction of responses of individual species to environmental gradients, such as host plant abundance. Metaanalysis was used to provide a robust statistical approach to assess the overall population level direction of correlations between weevils and their host plants derived from these studies. The analysis is performed using summary statistics derived from each of these studies (the correlation coefficient, r, between beetle and host plant abundance) to determine the direction and strength of the population level response. This response was weighted in each case by the sample size of the individual studies involved. Although population level responses can be derived using this method for the relationship between beetle and host plant abundance, it is possible that other unconsidered factors may result in a high degree of variation in the individual correlations seen between the individual studies. For example, differences in geographical region or grassland type may have a large effect on the direction of the correlations shown by individual species to host plants. Where this variation between the study sites is minimal the meta-analysis is said to be homogeneous. Where this is not the case, and secondary environmental factors characteristic of each study site result in a large degree of variation in the individual site beetle:host plant correlations, 37 then the population level response is said to be heterogeneous. Only where homogeneity in the population level response was found can a consistent response to the abundance of a particular host plant across all studies be assumed. Direct tests of homogeneity were therefore made in all cases. These meta-analyses were performed in Meta-Analysis Programs, Version 5.3 (Schwarzer 1989). 3.3.3 Results and discussion Homogeneity in the population level response of the weevil species to the percentage cover of the T. dubium was found for all five weevil species considered (Table 14). For three of the five species this population level response showed a correlation coefficient between weevil abundance and T. dubium percentage cover that differed little from zero (r ranging between 0.02 and 0.05). The exceptions to this were for P. apricans and P. trifolii, both of which showed positive correlations with T. dubium percentage cover (r>0.15). Population level responses of the weevils to the percentage cover of T. pratense and T. repens tended to be more heterogeneous. This suggested that there were additional factors characteristic of individual sites that were creating a large degree of variation in the correlation coefficients between weevil abundances and T. pratense and T. repens percentage cover. These additional site moderators may include aspects such as geographical location, the combinations of species present within individual sites (both beetles and host plant species) or the local soil and weather conditions. Only in the case of P. apricans on white clover and P. dichroum on red clover were homogenous population responses found. Identifying what the factors were that resulted in heterogeneity in the population level responses was not practical given the relatively small number of studies included in these analyses. What this illustrative example demonstrates is that the characterisation of host preferences for oligophagous species may not be a simple procedure. Local site differences may result in unpredictable responses to changes in the abundance of potential host plants. The degree to which this heterogeneity in insect responses to host plant abundance occurs is unclear. It is possible that for the many other oligophagous insects not considered here there are more homogenous population level responses to the abundance of different potential host plants. It should also be noted that the meta-analyses performed for these five species of Apionidae were based on adult and not larval distributions. It is possible that the distribution of adults would not necessarily reflect that of the larvae. Table 14 Results for the meta-analyses assessing the population level responses in terms of correlation coefficients (r) of five species of Apionidae with three potential host plants from the genus Trifolium spp.. For all cases the estimated population effect sizes (r) are given as weighted means with an R2 value and the observed variance of the effect size expressed as a standard deviation (SD). In all correlations estimated population effect sizes reflect the direction and extent of correlations between the abundance of beetle species and each potential host plant, ranging from -1.0 to 1.0. Using χ2 tests, the degree of homogeneity in the estimated population level response were assessed, where homogeneity is rejected if p<0.05. The number of studies used in each meta-analysis is given in the column N. The percentage of variance explained by the sampling error is given in parenthesis for the test of homogeneity. 38 Species Protapion apricans (Herbst) Population level effect N White clover (T. repens L.) N Red clover (T .pratense L.) N Lesser trefoil (T.dubium Sibth.) 2 r = 0.42 R2 = 0.18 SD = 0.18 χ21 = 1.94 p = 0.16 (100.0 %) r = -0.06 R2 = 0.01 SD = 0.23 χ25=27.6 p < 0.001 (21.7 %) r = 0.09 R2 = 0.01 SD = 0.20 χ27 = 27.5 p < 0.001 (29.0 %) r = 0.36 R2 = 0.13 SD = 0.29 χ27=67.5 p < 0.001 (11.8 %) r = 0.31 R2 = 0.09 SD = 0.27 χ29=70.5 p < 0.001 (14.1 %) 2 r = 0.64 R2 = 0.41 SD = 0.23 χ21 = 5.95 p = 0.01 (33.6 %) r = 0.28, R2 = 0.08 SD = 0.21 χ25= 28.1 p < 0.00 (21.2 %) r = 0.29 R2 = 0.08 SD = 0.23 χ25=35.9 p < 0.001 (16.6 %) r = 0.04 R2 = 0.00 SD = 0.12 χ25=6.73 p = 0.24 (89.0 %) r = 0.03 R2 = 0.00 SD = 0.17 χ27=18.5 p = 0.01 (43.0 %) 2 r = 0.27 R2 = 0.07 SD =0.07 χ21= 0.19 p = 0.65 (100.0 %) r = 0.05, R2 = 0.01 SD = 0.08 χ24=2.23 p = 0.52 (100.0%) r = 0.15 R2 = 0.02 SD = 0.11 χ22=4.97 p = 0.08 (60.2 %) r = -0.02 R2 = 0.00 SD = 0.16 χ22=4.89 p = 0.08 (61.2 %) r = 0.01, R2 = 0.00 SD = 0.08 χ23=2.33 p = 0.50 (100.0 %) Homogeneity Protapion assimile (Kirby) Population level effect 6 Homogeneity Protapion trifolii (L.) Population level effect 8 Homogeneity Protapion dichroum (Bedel) Population level effect 8 Homogeneity Ischnopterapion virens (Herbst) Population level effect Homogeneity 10 6 6 6 8 4 3 3 4 3.4 Value for bird species 3.4.1 Value of selected plant species as direct food resources for birds In most cases dietary information on the use of plant material by birds is only recorded by family or genus, primarily because of the difficulty of identification to species level from plant remains in bird droppings. The relative importance of the 56 plant species for 42 bird species was thus considered in terms of whether the family (Figure 1a-1c) or genus (Figure 2a-2c) was recorded as present or important in bird diets. Appendix 4 gives the bird speciesspecific information underlying the Figures and the families of all the plant species. Six families were recorded as present in the diet of 20 or more bird species; Poaceae (present in the diet of 34 species), Polygonaceae (29 species), Fabaceae (28), Asteraceae (26), Caryophyllaceae (23) and Ranunulaceae (20) (see Appendix 4 for details). Only four plant families were important in the diet of more than five bird species; Caryophyllaceae (important in the diet of 12 species) Poaceae (10 species), Polygonaceae (8), Brassicaceae (7). It is important to note, however, that data for ‘presence’ in the diet is almost certainly more reliable than that of ‘importance’ as the latter tends to be less systematically recorded and is derived from far fewer studies. Results were generally similar when considering the sub-set of the 17 PSA or Farmland Bird Indicator species. In this case six plant families were present in the diet of 10 or more farmland birds; Asteraceae (present in the diet of 16 species), Poaceae and Fabaceae (14 species), Polygonaceae and Ranunulaceae (13) and Caryophyllaceae (11) and three were considered important in the diet of more than five species; Poaceae and Caryophyllaceae 39 (important in the diet of 7 species) and Brassicaceae (6). Focussing on the nine declining PSA species three families were present in the diet of eight bird species; Poaceae, Fabaceae and Polygonaceae and four were present in the diet of six bird species; Caryophyllaceae, Lamiaceae, Ranunulaceae and Urticaceae. Only four families were important in the diet of three or more species Poaceae (important in the diet of 6 species), Caryophyllaceae (4 species) Brassicaceae and Polygonaceae (3 species). An important caveat should be made in relation to these results. In many diet studies plants are only mentioned by family or genus so the species within the family actually taken may not be the grassland species selected for this study. For example, many birds take Caryophyllaceae. The only member of this family/genus on the list of selected plant species is Cerastium fontanum, but it is more likely that many of the records of Caryophyllaceae in bird diets will have been Stellaria spp., which are the commonest members of the family mentioned when genus is given. Similarly, the family Lamiaceae, present in the diet of 12 bird species (Figure 1a) is a large one and the single species on the selected list, Prunella vulgaris, is rarely mentioned, if species is given in the diet, so it is likely to be rather unimportant Considering the selected plants at the level of genus overcomes this problem for some but not all species (Fig 2a-2c). For all 42 bird species only five genera were present in the diet of more than 15 species (Table 15); Rumex spp. (21 species) Trifolium spp., Vicia spp., Plantago spp. (16 species) and Ranunculus spp. (15 species). Four other genera present in the diet of 10 or more species; Poa spp., and Centaurea spp. (13 species) and Taraxacum spp. and Cerastium spp. (10 species). Only three genera were classed as important in the diet of five or more bird species; Poa spp. (9 species) and Senecio spp. and Trifolium spp. (5 species). 40 AC AS EA TE E R B AC R A C EA SS AR E IC YO PH AC EA YL E LA C E FA AE B AC EA LA PL E M IA AN C TA EA E PO GIN AC LY EA G O E N A PR C E IM AE U R LA AN C U EA N U E LA C R EA O SE E AC SC EA R U R E B O IA PH C U L A EA E R IA U C R EA TI E C AC EA E PO Number of bird species AC AS EA TE E R B AC R A C EA SS AR E IC YO PH AC EA YL E LA C E FA AE B AC EA LA PL E M IA AN C TA EA E PO GIN AC LY EA G O E N A PR C E IM AE U R LA AN C U EA N U E LA C R EA O SE E AC SC EA R U R E B O IA PH C U LA E A E R IA U C R EA TI E C AC EA E PO Number of bird species AC AS EA TE E R B AC R A C EA SS AR E IC YO PH AC EA YL E LA C E FA AE B AC EA LA PL E M IA AN C TA EA E PO GIN AC LY EA G O E N A PR C E IM AE U R LA AN C U EA N U E LA C R EA O SE E AC SC EA R U R E B O IA PH C U LA E A E R IA U C R EA TI E C AC EA E PO Number of bird species Fig 1a 35 30 25 20 15 10 5 0 Fig 1b Fig 1c Plant families 18 16 14 12 10 8 6 4 2 0 Plant families 9 8 7 6 5 4 3 2 1 0 Plant families Figure 1 The number of bird species for which plant families (containing the 56 target species) have been recorded as present (filled bars) and important (open bars) in the diet of (a) all farmland bird species, n=42 (for definition see text) (b) PSA bird species n=17 and (c) declining PSA species n=9 (data are presented in Appendix 4). 41 op Ag e ros D curu tis ac s s ty p p. l r ( Fe is g ate 2) s lo n H tuc me sis ol a ra L cu s ta Pholiu s la p. ( An le m na 3) th um pe tu ox p re s a C nth P rat nne yn u oa e n Ac osu m o sp se hi ru do . (2 C llea s c rat ) en m ris u ta i ta m H C ure llefo tus yp ir a l i s Le L och ium sp. um uc eo ae s (1 an nt ris p. ) th od sp (3 em on . ) S u s (1 Ta en m p. ) Ca ra ec vu (2) rd xa io lga a c s r Cemin um p. ( e ra e sp 1) La stiupra . (1 th m ten ) yr s s M L us p. ( is O edi otu sp. 1) no ca s (1 br go sp ) Tr ych sp. (2 ifo is . ) liu sp (2) Pr V m . ( un ici sp 1) Pl ell a s . (3 an a p. ) t v ( R ago ulga 2) u R P me sp ris an rim x . u s (1 Fi nc ula p. ) lip ul s (4 en us p. ) P Sa ot dul sp. (1) ng ent a s (2 ui illa p. ) so s (1 G R al rba p. ( ) hi iu m 1 na m i ) Ve nt sp no ro hus . ( r 3 n U ica min ) rti sp o ca . r sp (1) .( 1) Al Number of bird species op Ag e ros D curu tis ac s s ty p p. l r ( Fe is g ate 2) s lo n H tuc me sis ol a ra L cu s ta Pholiu s la p. ( An le m na 3) th um pe tu ox p re s a C nth P rat nne yn u oa e n Ac osu m o sp se hi ru do . (2 C llea s c rat ) en m ris u ta i ta m H C urellefo tus yp ir a l i s Le L och ium sp. um uc eo ae s (1 an nt ris p. ) th od sp (3 em on . ) S u s (1 T e m p. ) Ca ara nec vu (2) rd xa io lga a c s r Cemin um p. ( e ra e sp 1) La stiupra . (1 th m ten ) yr s s M L us p. ( is O edi otu sp. 1) no ca s (1 br go sp ) Tr ych sp. (2 ifo is . ) liu sp (2) Pr V m . ( un ici sp 1) Pl ell a s . (3 an a p. ) t v ( R ago ulga 2) u R P me sp ris an rim x . u s (1 Fi nc ula p. ) lip ul s (4 en us p. ) P Sa ot dul sp. (1) ng ent a s (2 ui illa p. ) so s (1 G R al rba p. ( ) hi iu m 1 na m i ) Ve nt sp no ro hus . ( r 3 n U ica min ) rti sp o ca . r sp (1) .( 1) Al Number of bird species op Ag e ros D curu tis ac s s ty p p. l r ( Fe is g ate 2) s lo n H tuc me sis ol a ra L cu s ta Pholiu s la p. ( An le m na 3) th um pe tu ox p re s a C nth P rat nne yn u oa e n Ac osu m o sp se hi ru do . (2 C llea s c rat ) en m ris u ta i ta m H C urellefo tus yp ir a l i s Le L och ium sp. um uc eo ae s (1 an nt ris p. ) th od sp (3 em on . ) S u s (1 T e m p. ) Ca ara nec vu (2) rd xa io lga a c s r Cemin um p. ( e ra e sp 1) La stiupra . (1 th m ten ) yr s s M L us p. ( is O edi otu sp. 1) no ca s (1 br go sp ) Tr ych sp. (2 ifo is . ) liu sp (2) Pr V m . ( un ici sp 1) Pl ell a s . (3 an a p. ) t v ( R ago ulga 2) u R P me sp ris an rim x . u s (1 Fi nc ula p. ) lip ul s (4 en us p. ) P Sa ot dul sp. (1) ng ent a s (2 ui illa p. ) so s (1 G R al rba p. ( ) hi iu m 1 na m i ) Ve nt sp no ro hus . ( r 3 n U ica min ) rti sp o ca . r sp (1) .( 1) Al Number of bird species Fig 2a 25 20 15 10 5 0 Fig 2b Fig 2c Plant genera 12 10 8 6 4 2 0 Plant genera 7 6 5 4 3 2 1 0 Plant genera Figure 2The number of bird species for which plant genera (containing the 56 target species) or species have been recorded as present (filled bars) and important (open bars) in the diet of (a) all farmland bird species, n=42 (for definition see text) (b) PSA bird species n=17 and (c) declining PSA species n=9. Genera /species in grey were not recorded in the diet of any of the birds considered. Numbers in parenthesis represent the number of selected plant species in each genus (data are presented in Appendix 4). 42 Table 15 Plant genera ranked in order of importance as direct sources of food for farmland bird species and species included in the PSA target (for bird species included see Table 2). Rank 1 = the plant genus that was present in the diet of the largest number of birds, n= number of bird species for which each genus was recorded in the diet. 1 2 3 4 5 6 7 8 9 10 11 All bird species (42) Rumex 21 Trifolium 16 Vicia 16 Plantago 16 Ranunculus 15 Poa 13 Centaurea 13 Taraxacum 10 Cerastium 10 Urtica 8 PSA species (17) Rumex Centaurea Trifolium Vicia Plantago Ranunculus Taraxacum Cerastium Poa Cirsium 11 9 9 9 9 9 8 6 6 6 Declining PSA species (9) Rumex 6 Poa 5 Plantago 5 Festuca 4 Lolium 4 Centaurea 4 Vicia 4 Taraxacum 3 Cerastium 3 Trifolium 3 Ranunculus 3 Table 16 The 11 plant genera recorded as present in the diet of more than 8 PSA species and/or important in the diet of more than 3 PSA species. The common names of the bird species relating to each plant genera are listed (see Appendix 4). Plant genera Festuca spp. Lolium spp. Present Important Turtle dove, yellowhammer, reed bunting Tree sparrow, yellowhammer, reed bunting Grey partridge, tree sparrow, linnet, yellowhammer, reed bunting Poa spp. Centaurea spp. Senecio spp. Taraxacum spp. Trifolium spp. Vicia spp. Plantago spp. Rumex spp. Ranunculus spp. Grey partridge, stock dove, turtle dove, rook, jackdaw, linnet, greenfinch, goldfinch, yellowhammer Grey partridge, stock dove, wood pigeon, rook, jackdaw, linnet, greenfinch, goldfinch, yellowhammer Grey partridge, stock dove, wood pigeon, turtle dove, rook, jackdaw, starling, greenfinch, yellowhammer Wood pigeon, rook, starling, tree sparrow, linnet, greenfinch, goldfinch, yellowhammer, reed bunting Grey partridge, lapwing, stock dove, skylark, jackdaw, linnet, greenfinch, goldfinch, yellowhammer, reed bunting, corn bunting Stock dove, wood pigeon, rook, starling, linnet, greenfinch, goldfinch, yellowhammer Linnet, greenfinch, goldfinch Linnet, greenfinch, goldfinch Grey partridge, stock dove, wood pigeon Similar genera emerge as being those most frequently present in the diet of PSA species. In this case, seven genera were present in the diet of more than eight species Rumex spp. (11 species), Centaurea spp., Trifolium spp., Vicia spp., Plantago spp. Ranunculus spp. (9 species) and Taraxacum spp. (8 species, see Table 16). However, more grass species were considered important in the diet of these PSA species, Poa pratensis (important for 5 species) and Festuca spp. and Lolium spp. (3 species) as well as the forbs Senecio spp., Taraxacum spp., and Trifolium spp. (3 species). 43 Once again, there are a number of important caveats associated with the plant genera results. First, plants are very rarely recorded in bird diets at species level. Where more than one possible plant species occurs in the list this number is shown in brackets at the end of the genus name (Figure 2a-2c). The literature may, however, refer to any of the species on the list and there are three instances where we feel this may be particularly misleading. The first is for Poa spp., there are two selected species of Poa (P. pratensis and P. trivialis) but when plant species is mentioned in the literature it is usually Poa annua. Similarly, Senecio spp. is another apparently important plant genus, but the selected Senecio is S. jacobaea (ragwort) whereas most, if not all, references to Senecio actually refer to S. vulgaris (groundsel). Finally, the species of Urtica on the list is U. dioica (common nettle) and when species is mentioned within this genus it is almost always U. urens (annual nettle). The ranking of the plant genera/species in relation to presence in the diet are summarised in Table 15 for all species, all PSA species and declining (Red List) PSA species. Based on these data, Rumex spp. emerge as consistently of the highest value as a direct food source for birds. The selected species within this genus being two pernicious weeds R. crispus (curled dock) and R. obtusifolius (broad-leaved dock) and R. acetosa and R. acetosella (common and sheep’s sorrel respectively). The other genera that emerge as important across all three groups of birds are non-legume forbs; Centaurea spp. (C. nigra common knapweed), Plantago spp. (P. lanceolata ribwort plantain), the legumes Trifolium spp. (selected species T. dubium lesser trefoil, T. pratense red clover, T. repens white clover) and Vicia spp. (V. cracca tufted vetch, V. sativa common vetch) and grasses Poa spp. (P. pratensis and P trivialis smooth and rough meadow-grass). The primary sources of data (see Appendix 4) rarely distinguish between seeds or green material. Green material is only mentioned specifically in relation to clovers and legumes (Cramp, 1985, 1988, Cramp & Perrins 1994a, 1994b, Cramp & Simmons 1983). In addition, only a small number species will graze on green vegetation, species such as Woodpigeon and Skylark for example. Thus, the majority of occurrences of these target plants in the diet of farmland birds will be seeds. 3.4.2 Value of selected plant species as indirect food resources for birds The indirect food resource value of these selected plant species for birds was considered using a slightly different approach than that adopted for the direct value. The number of insect species known to be important (from Wilson and others 1999) in the diet of farmland birds and having specialist associations with each of the 56 plant species was derived from data presented in previous sections (Figure 3). These data suggest that nine of the selected plant species have specific associations with 50 or more insect prey species, all of which have been recorded as important in the diet of farmland birds; Dactylis glomerata (cock’s-foot) (69 species), Lotus corniculatus (common bird’s-foot-trefoil) (67), Festuca ovina (sheep’s fescue) (66), Trifolium pratense (red clover) and T. repens (white clover) (59), and, Festuca rubra (red fescue) (55), Poa pratensis (smooth meadow-grass) (53), and Rumex acetosella (sheep’s sorrel) (50). To rank these plants in the same way as for their direct value we assigned a rank based on the maximum number of insects recorded on any one species within the genera. This resulted in the following species as being ranked as the top five for their indirect food resource value for birds Dactylis glomerata, Lotus spp., Festuca spp., Trifolium spp., and Poa spp. (Table 17). 44 The most important caveat to these results relates to the relationship between number of insect species with specialist associations with each of the plant species and the potential variability in the relative abundances of these species on their host plants, and thus their potential value as a prey item. Whilst prey diversity is likely to be important for farmland birds, abundance is almost certainly more important. Thus the use of diversity as an index of plant value may be misleading. This is illustrated by contrasting the ranking of insect associations in the table of polyphagous and general associations with the selected plants (Table 12) to gauge their possible importance for birds. In this table, the descending order of importance of the top ten genera based on the number of associated insects would be: Taraxacum, Rumex, Cirsium, Senecio, then equal Plantago, Lotus, Trifolium, followed by Achillea, Urtica and Centaurea. Table 17 Plant genera ranked in order of importance as direct and indirect sources of food for farmland bird species (for bird species included see Table 2). Rank 1 (invertebrates) is the genus (ranked by the individual plant species within the genus) having the largest number of specific invertebrate associations among species. Rank 1 for plant food as for Table 14. Rank 1 2 3 4 5 6 7 8 9 10 Direct (seeds, leaves) Rumex Trifolium Vicia Plantago Ranunculus Poa Centaurea Taraxacum Cerastium Urtica Indirect (specific invertebrates) Dactylis Lotus Festuca Trifolium Poa Rumex Cirsium Achillea Galium Vicia 45 Number of specific associations 0 10 20 30 GRASSES Grasses Agrostis capillaris Agrostis stolonifera Agrostis stolonifera Alopecurus pratensis Anthoxanthum odoratum Anthoxanthum odoratum Cynosurus cristatus Dactylis glomerata Dactylis glomerata Festuca ovina Festuca pratensis Festuca pratensis Festuca rubra Holcus lanatus Holcus lanatus Lolium perenne pratense Phleum pratensePhleum pratense Poa pratensis Poa trivialis Poa trivialis Legumes Lathyrus pratensis Lathyrus pratensis Lotus corniculatus Lotus pedunculatus Lotus pedunculatus Medicago lupulina Medicago sativaMedicago sativa Onobrychis viciifolia Trifolium dubium Trifolium dubium Trifolium pratense Trifolium repensTrifolium repens Vicia cracca Vicia sativa Vicia sativa Non leguminous forbs Achillea millefolium Achillea millefolium Cardamine pratensis Centaurea nigra Centaurea nigra Cerastium fontanum Cirsium arvense Cirsium arvense Cirsium palustre Cirsium vulgare Cirsium vulgare Filipendula ulmaria Galium palustre Galium palustre Galium saxatile Galium verum Galium verum Hypochaeris radicata Leontodon autumnalis Leontodon autumnalis Leontodon hispidus Leucanthemum Leucanthemum vulgarevulgare Plantago lanceolata Potentilla reptans Potentilla reptans Primula veris Prunella vulgaris Prunella vulgaris Ranunculus acris Ranunculus repens Ranunculus repens Rhinanthus minor Rumex acetosa Rumex acetosa Rumex acetosella Rumex crispus Rumex crispus Rumex obtusifolius Sanguisorba minor Sanguisorba minor Senecio jacobaea Taraxacum officinale Taraxacum officinale Urtica dioica Veronica chamaedrys Veronica chamaedrys 40 50 60 70 80 Number of specific associations with aboveground feeding species in the following insect taxa: Chrysomelidae Curculionoidea Lepidoptera Sternorrhyncha Symphyta Figure 3 Number specific associations (monophagous or oligophagous) with above-ground feeding insect species in five taxa known to be important in the diet of farmland birds. 46 3.4.3 Conclusions on diet value for birds The nature of dietary studies for birds limits the robustness of the conclusions we can make about the potential value of the selected plant species as food sources in grassland. In general the direct value of these plants derives from their seeds and as many of these, eg Polygonaceae and Caryophyllaceae, are considered weed species within agricultural systems, there may be considerable resistance to management options in which these plants are able to set seed. Furthermore, to significantly increase the seed resources for birds these plants would need to be present in large numbers and/or over large areas. In terms of cost effectiveness, two approaches seem likely to provide more cost effective approach to enhancing seed food resources for birds. The first option is to plant fields, within-field plots or margins with arable crops or wild bird cover crops to create a very high density of seed throughout the winter. These have been shown to attract a wide range of passerine and game birds (Robinson and others 2001, Henderson and others 2004) and trials of sown margins (undersown cereal and wildbird cover crops) in grassland systems have been shown to attract good numbers of granivorous passerines (Defra project BD 1444). A second option is that of leaving final-cut grass silage in situ over winter as a seed resource (Buckingham et al 2004, Buckingham & Peach in prep). Trials have shown that fertile ryegrass (Lolium spp.) swards left to set seed attract high numbers of yellowhammers and reed buntings, but not finches. This method of providing seed in winter would be less costly as an agri-environmental option than wild bird cover crops (currently £510/ha compared to £250/ha paid to farmers trialling uncut silage) and as an option that would utilise fertile ryegrass swards would have wide applicability. However, the accumulation of senescent foliage on these ungrazed and uncut swards can result in significant loss in silage yield the following season and further research is ongoing to minimise sward damage and agricultural costs. Promoting invertebrate prey in grassland depends on the balance between promoting abundance and accessibility of prey (Vickery and others 2001, Atkinson and others 2005). Tall swards can support abundant insect communities but these are often inaccessible to birds. Many studies have recommended that management should seek to deliver a mosaic of tall and short swards (eg Devereux and others 2004, Atkinson and others 2005, Buckingham and others 2006) but the scale at which this should be done remains unclear. Increasing the species complexity of swards through the addition of some of the plant species considered here will undoubtedly enhance food abundance for birds. However the relative benefits for birds of increasing the species diversity as opposed to the structural complexity remain unclear. The two are of course related, but structural complexity could be altered relatively simply, for example by modifying mowing or grazing regimes. In summary, increasing sward species richness with plants was shown to be valuable as direct and indirect sources of food for birds will undoubtedly benefit farmland birds in grass systems. The direct benefits are likely to be relatively small compared, for example, with options such as wild bird cover crops or whole crop silage, as these options have been ‘tailor made’ for birds and provide much higher seed densities for birds. The indirect benefits, in terms of invertebrate prey availability, could be much greater because of the nature and range of grassland invertebrates the target plant species support but this will depend crucially on the spatial scale at which these plants are introduced, both in terms of area and distribution at the field and landscape scale. 47 3.5 Caveats to the invertebrate and bird results We have adopted a relatively simple, but pragmatic, approach to rank the selected plant species in terms of their diet and microhabitat value for invertebrates and their direct (green material and seed) and indirect (associated insects) food value for birds. However, there are a number of important caveats to these results. 3.5.1 Poor data on microhabitat requirements and phenology of insect species Data on over 2,600 associations between insect species and the selected plant species was collected for this study. However, the quantity and quality of data varied considerably between taxonomic groups. For some taxa, such as the Lepidoptera, it was easy to gather consistent information on feeding location and insect phenology. However, for several taxa (eg Sternorrhyncha) this data was absent or based on casual or unique observations. Information on the host plant preferences of different insect taxa also varies in quality, with little known about the preferences of many oligophagous and polyphagous species. In addition, the geographical distribution of the species in many taxa in the UK is poorly known and in the case of some groups (eg Heteroptera) changes in the accepted distributions of species are being observed at present, while long term changes in the distribution of most taxa are probable. In addition information on the conservation status for many taxa is either poor or, at present, undescribed. This is again a reflection of the poor distributional information avaliable for many species, eg the Cecidomyiidae. Data on how each invertberate species utilised their host plant(s) was limited by the level of detail of the information available in the literature. For these practical reasons therefore it was necessary to assign invertebrates according to their functional usage of plant structure to a series of relatively broad catagories, the broadest of which being general shoot feeders. Whilst this may be a useful description, it masks that fact that many of the constituent species will have preferences for different microhabitats. Whilst systematically acquiring data on the ecology of insect species may be useful for species of conservation concern, it is clearly impractical for the large number of common or widespread insect species listed in this review. 3.5.2 Absence of data on population distribution and density The review of insect requirements has focussed on the mono- and oligo-specific associations between insect and plant species. Whilst the data gathered allows comparison of the number of species of specialist insects associated with each plant species, it may not provide a good estimate of the likely gains in insect species richness if the plant species were to be introduced into a grassland sward. Firstly, it takes no account of the geographical distribution of the associated insect species. Colonisation of newly-established populations of plant species by their associated fauna is influenced by the local and regional species pool. Secondly, no information is available on the plant population characteristics necessary for a particular insect association to occur. The value of a particular plant population to an associated insect will depend on the size, age structure, architecture and spatial distribution of the host plant. 48 3.5.3 Taxonomic detail of bird diet The level lack of taxonomic detail in many bird diet studies undoubtedly limits the robustness of the approach. Plants are rarely if ever recorded in the diet of birds at species level, most studies only recording to genus or family level. This makes it impossible to assess the particular value of the selected plant species, since many genera contain more than one species. As outlined above there are three genera for which this may be particularly important; Poa, Senecio and Urtica. In each of these cases the selected plant species are unlikely to be the ones taken by birds. Senecio spp., and Urtica spp. did not commonly feature as important in the review, but the apparent importance of Poa spp. should be interpreted with caution. Invertebrates are also rarely recorded in the diet of birds to species level and so the lack of taxonomic detail also limits the accuracy of the assessment of the value of plants in terms of the insects they support. 3.5.4 Differences in the relative value of bird diet items The measures of food value used for birds could bias the results in several ways. In the case of plants , we have scored importance according to how frequently it appears in the diet of 42 bird species. Based on expert knowledge of the ecology of these birds, it is highly likely that the occurrence will frequently refer to seeds rather than green material. The method we have used to score value ignores differences between plants in terms of timing and level of seed production and seed weight. For example a single plant of Plantago lanceolata produces 1000-10000 seed per plant compared with 100-1000 per plant for Ranunculus repens and although these plants have seeds of similar weights (c. 2.0 mg) seeds of Vicia sativa and V. cracca are markedly bigger (mean weight 18 and 14 mg respectively) (Grime, Hodgson & Hunt 1988). We have not weighted scores in relation to these differences and so these biases are not accounted for in the results. Overall differences in seed size may result in overestimation of the importance of small seeds and an under-estimation of the importance of larger ones. In the case of insects eaten by birds, we have attributed the highest indirect food value to the species supporting the greatest number of specialist associations with insects. However, absolute abundance is almost certainly more important than diversity per se (eg Brickle and others 2000, Hart and others 2006) and the relationship between the two is complex such that abundance cannot be used as an index of diversity or vice versa. Two species of insect associated with the same plant species may occur at very different population densities, reflecting not only differences in the population ecology of the two species, but also the prevailing environmental conditions. Even if it were possible to score plants for abundance these data would still suffer the same bias as the seed data, namely that size of the insect prey (and so profitability) cannot be accounted for readily. 49 4 Agronomic potential of selected plant species 4.1 Agronomic value under ruminant livestock production The results of the review of the agronomic properties of the selected plant species are shown in Appendix 5 and summarised in Tables 18 and 19. The implications of the findings are considered further below. The term ‘agronomic value’ is considered here in its widest sense. First, there are the conventional measurable attributes of sward species that relate to herbage mass and its basic feed value: production and utilization as harvested dry matter under cutting and/or grazing; responsiveness to fertilizers; seasonality of herbage accumulation; digestible organic matter content and crude protein content; and, in the case of legumes, the ability to supply nitrogen (N) to the sward through biological fixation. Secondly, there are additional management characteristics of sward species, such as the availability of seed at affordable prices; ease of sward and plant species establishment; ability of the species to maintain agriculturally-useful forage when required and be persistent and resilient to stresses due to environmental perturbation (drought, frost, inundation etc) or to management stress (periodic over- or under-grazing, poaching); and flexibility of use in terms of suitability for mowing and grazing, including grazing by different types of livestock and ease of ensilabilty. These attributes and management characteristics have underpinned the requirements of the ‘productionist’ model of grassland use that developed in Britain in the post-Second World War period (ie maximizing herbage production and utilization in order to improve the reliability of food production, increase national self-sufficiency in agricultural commodities and to provide farmers with improved incomes). Since ryegrass (Lolium spp.) and, to a lesser extent, white clover (Trifolium repens) and a few other sown grasses (cock’s-foot Dactylis glomerata, timothy Phleum pratense, meadow fescue Festuca pratensis, tall fescue Festuca arundinacea) provide a ‘good fit’ in terms of matching plant and sward characteristics to most farmers’ (and advisers’) perceived requirements, the potential agronomic value of most other grasses and almost all forb species (including many legumes) has largely been ignored. For many farmers, particularly dairy producers and lowland beef and sheep producers selling into a commodity-based market (ie one without opportunity for higher prices associated with quality product differentiation) herbage mass and forage utilization are particularly important issues. Swards based on N-fertilized ryegrass are comparatively easy to manage under grazing by cattle and sheep, as well as for silage or hay, but are becoming increasingly expensive to maintain under current cost and price structures. There is some farmer interest (and this is probably increasing) in swards containing legumes, particularly white clover (Trifolium repens), because of their superior feed value, their ability to maintain a high level of digestibility over a longer period than pure grass swards, and through the potential to support biological N fixation and thereby reduce or even eliminate the need for nitrogen fertilizer. Legumes have a pivotal role in most organic livestock farms, and although clover-based swards are regarded as unreliable or risky by many livestock farmers inexperienced in their use, the present high price of fertilizer N is serving as an impetus to their wider adoption in mainstream farming. Red clover (Trifolium pratense) and lucerne (Medicago sativa) have more precise edaphic and management requirements than white clover, but have also proved their value as low input yet highly productive forage crops, particularly for silage. Where there is a requirement for short duration leys (2-3 harvest years) they outperform most N50 fertilized grass systems in terms of herbage mass, forage quality and animal response, and are superior in economic terms (Wilkins and Paul, 2002). There is a clearly defined role for these three legume species within mainstream dairy, beef and sheep production, as well as for organic and other low-input systems, at least on land that meets their growth requirements. Other legumes, notably bird’s-foot trefoil (Lotus corniculatus and its related species L. pedunculatus) have a niche rôle and increased potential, particularly in the context of fields with lower nutrient status, with increasingly recognized nutritional and/or advantages associated with condensed tannins (discussed below). Sainfoin (Onobrychis vicifolia) also has good agronomic characteristics, highly suited to organic and low input systems on freedraining alkaline soils, with very high nutritional values, drought resistance, and ideally suited to mowing with some rotational grazing. Thus, we have six legume species that can be regarded as having very good agronomic properties and potential for a wider use in grassland farming. The other legumes considered in this review (Lathyrus pratensis, Medicago lupulina, Trifolium dubium, Vicia cracca and V. sativa) are essentially non-crop species, for which there is little agronomic information, and while they may be expected to contribute to forage resources and N fixation on swards where they occur, their contributions will usually be minor, of interest more for their conservation value than their production. In the context of this review we also considered the properties of sward species that might have a role in grassland over and beyond their interest to conservationists, including agricultural management consistent with the more sustainable and multi-functional model of agriculture envisaged in the latest CAP Reform measures (Defra/ HM Treasury, 2005). This includes the need for compliance with environmental regulations, and opportunities for additional payments from Environmental Stewardship and other management agreements that help deliver environmental benefits, improved animal health and welfare, and measures to improve the sustainability of rural economies. Drivers for biodiversity protection within the farmed landscape have hitherto resulted from environmental policies (Habitats Directive 92/43/EEC, etc) which have often been at odds with agricultural policy drivers. CAP Reform, with its decoupling of payments from agricultural production, combined with a range of new measures introduced under the amended Rural Development Regulation (EC) No 1257/1999 - including incentive payments for improvements in the quality of agricultural products and assurance schemes, and financial support to help farmers meet statutory standards not yet included in national legislation extends the scope for multiple objectives from agricultural land. In the context of farmed grassland, plant species whose agronomic attributes as sward constituents under relatively high nutrient input systems may have been considered undesirable to farmers, might now be re-evaluated for agronomic attributes other than just herbage productivity and digestibility. Examples include: • Effects on soil structure associated with different rooting structure and development, eg species that develop deep roots, with associated implications for drainage and uptake of water and nutrients, and resilience to environmental stresses such as drought; • Potential for complementarity in terms of niche exploitation, enabling greater resource use under low inputs than for botanically simple swards (Loreau and Hector, 2001); 51 • Different concentrations of macro- and micro-nutrients to those present in the herbage of the main sown grassland species; • The presence of complex phytochemicals (eg alkaloids, glucosides, tannins) that may have either positive or negative impacts on animal health and nutrition; • Variation between different sward components in the n-3/n-6 fatty-acid ratio, with consequent implications for food products and human nutrion. 4.1.1 Productivity and feed value Several issues limit the ability to carry out quantitative comparisons of the characteristics of the various species under consideration. Although, with few exceptions, information on the grass and legume species is readily available, information on the productivity, feed value, animal health impacts and other variables describing agronomic value is absent from the literature for most of the selected non-leguminous forbs (see Appendix 5 and summaries in Tables 18 and 19). Secondly, the methods employed to quantify some of the important characteristics vary between studies. For example, data on productivity is derived from studies employing a range of techniques, from mesocosms to field studies, and from monocultures to mixtures, and different management strategies (cutting, grazing or simulated grazing). Data on agricultural grass species and forage legumes is often quoted with reference to values for Lolium perenne, including those for species sown in monoculture, allowing comparison between species (Frame, 1989; 1991) or between ryegrass swards and multi-species permanent swards (Hopkins and others, 1990; Hopkins, 2000). In the case of swards where there is a dominant grass species present (eg Festuca rubra, Holcus lanatus, Agrostis spp.) information exists for permanent swards characterized by high proportions of each of these species. Many of the other grass species considered in this review (Alopecurus pratensis, Cynosurus cristatus, Anthoxanthum odoratum, Poa trivialis) are characteristic species of particular vegetation communities but individually they seldom dominate permanent swards or, if so, are seasonally dominant (eg A. pratensis on MG4 wet meadows). A review of experiments on herbage production from permanent swards carried out for MAFF (Hopkins, 2000) summarized the productivity of different types of permanent swards and reported that, in most cases, their harvested forage production was comparable to that of sown perennial ryegrass, or even greater, but that responses to fertilizer N were lower than on ryegrass swards, and the digestible organic matter content was also generally lower than for ryegrass. Swards containing a high proportion of F. rubra tended to be less productive (relative to identically managed ryegrass) than most other permanent swards (Agrostis, H. lanatus etc) when similarly compared to ryegrass. Data on the period of peak growth rate is sparse in the UK literature, except for the common sown grasses, through there is more information from central and eastern Europe that may be relevant here. In general, most grass species have peak growth rates in the spring, exceptions being Agrostis capillaris, A. stolonifera, Festuca rubra and Poa pratensis. 52 Table 18 Productivity and phenological characteristics of the plant species (blank cells: no data). Grasses Life history1 Productivity2 Leaf phenology Peak growth months Flowering months Agrostis capillaris P ++ Evergreen .....JJA.... .....JJA.... Agrostis stolonifera P ++ Evergreen .......ASO.. ......JA.... Alopecurus pratensis P ++ Evergreen ..MAM....... ...AMJ...... Anthoxanthum odoratum P ++ Evergreen ..MAM...SO.. ...AMJ...... Cynosurus cristatus P ++ Evergreen ..MAMJJ..... .....JJA.... Dactylis glomerata P +++ Evergreen ...AMJJA.... ....MJJ..... Festuca ovina P + Evergreen ..MAM....... ....MJJ..... Festuca pratensis P +++ Evergreen ..MAM....... ......J..... Festuca rubra P ++ Evergreen .....JJA.... ....MJJ..... Holcus lanatus P +++ Partial evergreen ..MAMJJASO.. .....JJ..... Lolium perenne P +++ Evergreen ..MAMJJASO.. ....MJJA.... Phleum pratense pratense P ++ Evergreen ..MAMJJA.... .....JJ..... Poa pratensis P ++ Evergreen .....JJA.... ....MJJ..... Poa trivialis P + Evergreen ..MAM....... .....J...... Legumes Lathyrus pratensis P + ? Seasonal (spr-aut) ..MAMJJA.... ....MJJA.... Lotus corniculatus P +++ Seasonal (spr-aut) ..MAMJJA.... .....JJAS... Lotus pedunculatus P +++ Seasonal (spr-aut) ..MAMJJA.... .....JJAS... Medicago lupulina A (or P) + Evergreen ..MAMJJA.... ....MJJA.... Medicago sativa P +++ Evergreen .......AS... Onobrychis viciifolia P ++ Evergreen ..MAMJJASO.. .....JJA.... Trifolium dubium Aws + Seasonal (aut-sum) ..MAMJJ..... ....MJJASO.. Trifolium pratense P +++ Evergreen ....MJJA.... ....MJJAS... Trifolium repens P +++ Evergreen ....MJJA.... .....JJAS... Vicia cracca P ++ ? Seasonal (spr-aut) .....JJA.... Vicia sativa Aw ++ Seasonal (aut-sum) ..MAMJJA.... ....MJJAS... Non leguminous forbs Achillea millefolium P +++ Evergreen ..MAM....... .....JJA.... Cardamine pratensis P + ? Evergreen ..MAM....... ...AMJ...... Centaurea nigra P ++ Seasonal (spr-aut) .....JJA.... .....JJAS... Cerastium fontanum P or (A) + Evergreen ..MAMJJASO.. ...AMJJAS... Cirsium arvense P +++ ? Seasonal (spr-aut) ..MAMJJA.... ......JAS... Cirsium palustre MP + ? Evergreen .....JJA.... ......JAS... Cirsium vulgare MP +++ ? Evergreen ..MAMJJA.... ......JAS... Filipendula ulmaria P + Seasonal (spr-aut) .....JJA.... .....JJA.... Galium palustre P + Partial evergreen .....JJA.... .....JJ..... Galium saxatile P + Evergreen .....JJA.... .....JJA.... Galium verum P + ? Evergreen .....JJA.... ......JA.... Hypochaeris radicata P + ? Partial evergreen .....JJ..... .....JJAS... Leontodon autumnalis P + ? Evergreen .....JJA.... .....JJASO.. Leontodon hispidus P + ? Seasonal (spr-aut) ..MAMJJA.... .....JJAS... Leucanthemum vulgare P ++ Evergreen ..MAMJJA.... .....JJA.... Plantago lanceolata P +++ Evergreen ..MAMJJ..... ...AMJJA.... Potentilla reptans P + ? Partial evergreen .....JJAS... Primula veris P + ? Evergreen ..MAMJJA.... ...AM....... Prunella vulgaris P + ? Evergreen ....MJJA.... .....JJAS... Ranunculus acris P + ? Evergreen ..MAMJJA.... ....MJJ..... Ranunculus repens P ++ ? Evergreen ..MAM....... ....MJ...... Rhinanthus minor As + Seasonal (spr-aut) ..MAMJJA.... ....MJJA.... Rumex acetosa P ++ ? Evergreen ..MAMJJA.... ....MJ...... Rumex acetosella P + ? Evergreen ..MAMJJA.... ....MJJ..... Rumex crispus P (or A) ++ Evergreen ..MAMJJA.... ....MJJAS... Rumex obtusifolius P +++ Evergreen ..MAMJJA.... .....JJASO.. Sanguisorba minor P + Evergreen ..MAMJJA.... .....JJ..... Senecio jacobaea MP ++ ? Evergreen ..MAMJJA.... .....JJASO.. Taraxacum officinale P ++ Evergreen ..MA........ ..MAMJJASO.. Urtica dioica P +++ ? Partial evergreen ..MAMJJA.... .....JJ..... Veronica chamaedrys P + ? Evergreen ..MA........ ...AMJJ..... 1. Life History: P perennial, MP monocarpic perennial, Aw winter annual, As spring annual. 2. Productivity uses subjective scale based on references in Appendix 5: + low, ++ medium, +++ high. ? denotes no information found in the literature and assessment based on size and established strategy (Grime and others 1988). 53 Table 19 Utilization characteristics and persistence of the plant species in grazing, hay and silage systems (blank cells: no data available). Grasses Feed value Animal health issues Grazing Hay Silage Agrostis capillaris +++ +++ ++ ++ Agrostis stolonifera +++ +++ ++ ++ Alopecurus pratensis + some –ve effects + + Anthoxanthum odoratum ++ some –ve effects +++ ++ Cynosurus cristatus +++ +++ + Dactylis glomerata +++ +++ +++ + Festuca ovina + +++ + Festuca pratensis +++ +++ + Festuca rubra + +++ ++ Holcus lanatus + +++ ++ Lolium perenne +++ +++ ++ +++ Phleum pratense pratense +++ +++ +++ ++ Poa pratensis +++ +++ ++ + Poa trivialis ++ +++ ++ Legumes Lathyrus pratensis + ? seeds poisonous* 0 ++ Lotus corniculatus +++ -ve effects in quantity ++ ++ ++ Lotus pedunculatus +++ -ve effects in quantity ++ ++ Medicago lupulina + + + Medicago sativa +++ -ve effects in quantity 0 ++ ++ Onobrychis viciifolia +++ + ++ Trifolium dubium + + + Trifolium pratense +++ -ve effects in quantity ++ ++ +++ Trifolium repens +++ -ve effects in quantity ++ + +++ Vicia cracca ? seeds poisonous* + + Vicia sativa +++ ? seeds poisonous* + ++ + Non leguminous forbs Achillea millefolium ++ some –ve effects ++ + + Cardamine pratensis poisonous for horses ++ ++ Centaurea nigra ++ ++ Cerastium fontanum + + Cirsium arvense 0 injurious ++ (avoided) ++ Cirsium palustre ++ (avoided) + Cirsium vulgare 0 injurious ++ (avoided) ++ Filipendula ulmaria + + Galium palustre + 0 Galium saxatile + 0 Galium verum ++ ++ + Hypochaeris radicata ++ poisonous for horses ++ + (low contribution) Leontodon autumnalis ++ + (low contribution) Leontodon hispidus some –ve effects ++ + (low contribution) Leucanthemum vulgare + ++ Plantago lanceolata ++ ++ ++ + Potentilla reptans + + Primula veris ++ (avoided) + (low contribution) Prunella vulgaris ++ (avoided) + (low contribution) Ranunculus acris poisonous ++ (avoided) ++ Ranunculus repens may be poisonous ++ + Rhinanthus minor may be poisonous 0 ++ Rumex acetosa + poisonous in quantity ++ ++ Rumex acetosella poisonous in quantity + 0 Rumex crispus + some –ve effects ++ (avoided) ++ Rumex obtusifolius + some –ve effects ++ (avoided) ++ Sanguisorba minor ++ + Senecio jacobaea 0 poisonous ++ (avoided) ++ Taraxacum officinale ++ some –ve effects ++ + + Urtica dioica + ++ (avoided) ++ Veronica chamaedrys + + Scoring uses a subjective scale based on information presented in Appendix 5: 0 unsuitable, + low, ++ medium, +++ high. * E. O’Beirne-Ranelagh, personal communication. 54 In the case of the selected non-leguminous forb species the information in the literature on productivity, feed value etc. is sparse (Isselstein, 1995). Productivity and phenology of the selected species is shown in Table 18. Most of the selected species are evergreen perennials, although their contribution to forage resources is usually seasonal. Productivity is generally low for the non-leguminous forbs, exceptions being the group of pernicious weeds (Cirsium arvense, C. vulgare, Rumex crispus, R. obtusifolius, Senecio jacobaea) and whose presence in a sward will frequently increase the actual harvestable herbage mass, though with the effect of reducing herbage quality, possibly substantially, and with potential harmful effects for livestock or forage utilization, ensilability etc (Mainz and others 1996). Rumex obtusifolius can increase total herbage mass while reducing grass herbage mass (Hopkins and Johnson, 2003). In addition, a small number of forbs (eg Achillea millefolium, Plantago lanceolata) have been shown to have productivity levels similar to those of Lolium perenne (Isselstein, 1993) and the introduction of a range of forbs to species-poor permanent grass was found to have no adverse effect of harvested production under hay cutting (Hopkins and others 1999). Subsequent work by Hofman and Isselstein (2005) found that introduction of forbs could partly increase forage quality with respect to its crude protein content. The phenology of the forbs considered here varies between species, with both early (eg Cardamine pratensis) and late (eg Leontodon autumnalis) species represented in the list. It is clear that for the more productive species the period of peak growth is in the spring and early summer, with these species completing their annual flowering cycle during this period. Over 20% of the identified specific insect associations rely on the presence of stems, inflorescences and seed heads which are only present in the sward from mid-summer. There is therefore a major conflict between optimal agricultural production and provision of microhabitats for a significant component of the invertebrate fauna. Most of the plant species considered in this review have the capacity to persist in grazed systems (Table 19). For some, whilst they may be tolerant of grazing, competitive exclusion limits their distribution to infertile sites. Other species can persist in grazed systems because they have physical or chemical properties which result in them being avoided by livestock, or hold their foliage too low, as defensive survival strategies to grazing (Herms and Mattson, 1992), and their herbage is therefore relatively inaccessible as feed for large herbivores. Similarly, most species considered in this review are tolerant of cutting regimes, although several species will make only a small biomass contribution in mown forage as a result of their low stature. Conditions after the hay cut can strongly influence the persistence of such species. For example, Leontodon hispidus performs well after hay cutting in the absence of aftermath grazing. Data are available on the compatibility with silage systems of many of the grass species and several legumes. However, few of the non-leguminous forbs are likely to be compatible with such systems, and then only if inputs are low and cutting frequency low. 4.1.2 Impacts on soil structure Many perennial forbs and some grasses have the capacity to develop rooting systems that enable them to exploit water and nutrients from lower soil horizons than is usual for the main grasses of agriculture. Many plant species that are deciduous, or that are vulnerable to herbivory, invest a higher proportion of their biomass in root development as a survival strategy (weeds such as Rumex and Cirsium are particularly successful for this reason). Kutschera and Lichtenegger (1992) present profile descriptions of all the main species of grasslands, although the rooting depths given by these authors are a guide to root potential 55 development rather that an absolute measure. It may be inferred that many species would have potential beneficial effects of root development on soil structure. This has been shown for white clover (Mytton and others 1993) but is essentially a topic that has received limited research. Improved root and soil structural development could in turn be beneficial for the resilience of grassland ecosystems in terms of water percolation and retention. The capacity for multi-species sowings to improve the availability of forage resources in dry seasons has been demonstrated in Australia and New Zealand (eg Daly and others 1996), lucerne being of notable value in this context. There is a research need for a better understanding of the role of multi-species swards to contribute to soil structure, particularly in the context of increased interest in multi-functionality in agricultural land management and in improving the resilence of swards to the effects of climate change. 4.1.3 Impacts on animal health and food quality Information on the aspects of forage quality that might impact on animal health and indirectly upon the quality of meat and other livestock derived products is sparse. Notable examples that relate to animal nutrition are species such as Lotus corniculatus that contain condensed tannins. These help improve the rate of breakdown of protein through the rumen, leading to less N lost as urine, and also are associated with improved resistance to intestinal parasites and reduced incidence of bloat (Aerts and others 1999; Waghorn and others 2002). The biochemical composition of forage species is emerging as a topical area of research interest whose outcomes have the potential to extend the socio-economic and ecological value of grassland species richness from a purely conservation interest to its links with food quality and animal health and welfare (Scollan and others 2005). There is evidence of higher omega-3 fatty acid content in meat from livestock that graze some types of semi-natural grassland when compared to lowland ryegrass-based swards. Valorisation of forage resources into food production has been a feature of niche-product cheese and quality meat systems in parts of mainland Europe (eg Alpine cheeses). The consequences of plant species in the animals’ diets and its effects on taste, texture, appearance, shelf life, and human health are potentially considerable (Coulon and others 2004). Food production in the UK has been largely aspatial and marketing boards served to create a level playing field for producers which usually eliminated local differences. Now we are seeing more regional brands linked to the environment in which they are farmed and the emergence of new producer-consumer relations. Understanding how plant species and vegetation communities contribute to product distinctiveness is a major research challenge now starting to be addressed (Buller, 2005). There is thus the potential that some types of existing botanically diverse or distinctive grasslands might become recognized as having greater agronomic value to producers through their presence of plants that improve product quality, and that this might further the justification for restoration and species reintroductions. 4.2 Grassland managed for equines Horses account for a significant and increasing proportion (~ 1 m ha) of UK grassland, either as grazers or indirectly as consumers of hay or haylage. The estimated horse population is between 0.6 and 1.0 million. There is potential for grassland managed for horses to incorporate plant biodiversity and other wildlife objectives and, subject to further understanding, for plant species associated with species-rich grassland to contribute to the diet of horses. 56 The environmental impact of horses was identified as a key issue in a recent Defracommissioned report on the horse industry (BHIC/ Defra, 2005). Standards of pasture management, the present inadequate knowledge about the quality of the land used for horse grazing, and further encouragement for the use of horses in conservation grazing projects which support wildlife and pasture biodiversity were considered. Equines, if well-managed, can be beneficial in supporting wildlife of meadows and pasture. Gibson (1997) concluded that horse grazing is a legitimate and valuable way of managing MG5 grasslands, but only if the intensity and pattern of grazing is carefully controlled. There were (in 2005) some 75 conservation schemes operating in England and Wales that used native pony breeds to help keep vegetation open by eating rough grasses. The scientific literature of horse utilization and pasture ecology is relatively poorly developed in comparison with that for utilization under ruminants. However, there are a number of textbooks and handbooks aimed at students of equine studies and as practical instruction/ reference books for responsible horse owners, whose authors have combined their personal knowledge of horses with that of grassland (eg Cooper and others 1981; Pilliner, 1992; O’Beirne-Ranelagh, 2005). There is also increasing interest among horse keepers in using herbal medicines, and in providing horses with opportunities for self-medication, and several monographs deal with the nutritional and pharmacological properties of individual plant species (eg Allison, 1995; Ferguson, 2002). In spite of this, many of the conclusions and recommendations in the literature relating to equine pasture management are based on observations, anecdotal evidence or from a priori assumptions, rather than on the outcomes scientific research. This is not to be over-critical; rather it reflects the paucity of funded research for a sector whose role in rural land management and the rural economy have been overlooked until recently. Nevertheless, within the horse-keeping community there is an acceptance that botanically diverse grassland may have a role in reducing dietary problems, and some support for the notion that ‘medieval pasture’ may provide the right balance of nutrition with minimum maintenance (Holter, 2003). There appears, therefore, to be scope for the sector to be responsive to information and opportunities that would lead to increased sward diversity on grounds of possible benefits for horses, as well as in contributing to wider conservation interests. The paragraphs below consider the properties and attributes of the plant species selected for this review in terms of their possible contributions, either positive or adverse, in the context of grassland managed for equines. Horses are non-ruminants and have different nutritional requirements from cattle or sheep. Compared with ruminants, equines need more chewing time while feeding. They also need less protein and less highly digestible forage but more fibre instead; ideally they need yearround access to pasture; and they are highly selective, leading to spatial heterogeneity with closely grazed ‘lawns’ and ungrazed ‘latrines’ which can become a problem in situations (very common) when horses are grazed on paddocks of insufficient area. Horses are prone to a number of diet-related illnesses such as laminitis, colic and developmental orthopaedic disease – conditions which appear to be associated with grazing on pastures and diets that are really more suited to productive ruminants rather than to horses. Many existing horse pastures are based on, or at least contain, a high proportion of Lolium perenne. This may be as a result of agricultural improvement under previous ruminant-based 57 use, or because of cheapness and availability of ryegrass seed for reseeding. Pilliner (1992) suggests that Lolium perenne should be 50% of the seed mixture, together with Festuca rubra, Cynosurus cristatus, Poa and a small amount of Trifolium repens. A mixture with less Lolium perenne and other grasses (with no forbs or legumes) is offered as a ‘permanent horse pasture mix that balances turf density with grazing’ (Cotswold Seeds, 2006). However, O’Beirne-Ranelagh (2005) appears to argue against Lolium perenne and against fertilizing grass swards. For many horse grazers the open sward that is typical of most ryegrass cultivars does not provide good wear, particularly in young swards, and the relatively high digestibility and crude protein content of ryegrass forage, especially in spring and early summer, can result in diet-related problems for horses. Fine-leaved amenity cultivars of L. perenne are now advocated for their wear tolerance on ‘the going’ (Winter, 2004) or mixtures of L. perenne, with creeping red fescue (F. rubra) and Poa pratensis for gallops (Cotswold Seeds, 2006). Commercial seeds mixtures for pony paddocks frequently include a complex mix of grass species (Festuca pratensis, F. arundinacea, F. rubra, F. ovina, Phleum pratense, Poa pratensis, P. trivialis, Dactylis glomerata, and small amounts of Cynosurus cristatus, Anthoxanthum odoratum, Alopecurus pratensis together with herbs such as Achillea millefolium and Plantago lanceolata) (see Cotswold Seeds, 2006). Thus, virtually all the grass species considered in this review can be considered as having potential for inclusion in pastures for horse grazing. And while Holcus lanatus and Agrostis stolonifera would not normally be included (intentionally) in sowings, both are almost ubiquitous as volunteer species in established pasture. There is a less clearly defined role for legumes in horse pasture but a recognition of their Nfixing role. White clover is generally not favoured (other than in small quantities) by horse keepers because of its high protein content and digestibility. But this argument may not fully recognize that its contribution in the sward is usually greatest at times of the year when other species may be low in digestibility (in mid-season), when the high feed value of the clover can be complemented by the high fibre value of other sward companion species. However, this may require a degree of management skill if the white clover component in the diet is not to exceed levels (as yet not understood) that may present risk. O’Beirne-Ranelagh (2005) suggests that Trifolium dubium, Medicago lupulina and Lotus corniculatus are more suitable legumes, and possibly small amounts of wild white clover (Trifolium repens), rather than modern cultivars. Red clover (Trifolium pratense) is alleged to be unpalatable for horses and its oestrogenic properties make it unsuitable for breeding stock (O’Beirne-Ranelagh, 2005), although Ferguson (2002) notes it has possible pharmacological and nutritional benefits. However, cultivars of red clover are unlikely to survive over the long-term in grazed pastures, in contrast to wild types which feature in permanent grasslands such as Cynosurus cristatusCentaurea nigra grassland, MG5, (Rodwell 1992). The presence of non-legume forbs (or ‘herbs’) in pastures appears to be generally favoured by horse grazers, and this would suggest that horse keepers might be more receptive than most livestock grazers to measures to increase plant species diversity. A number of forb species considered in this review have properties or characteristics that have led authors to advocate their presence in horse pastures. These include Taraxacum officinale, Achillea millefolium, Filipendula ulmaria, Urtica dioica (though presumably only in small amounts), Plantago lanceolata, and Sanguisorba minor. Amongst these, Urtica dioica will not be grazed when growing, but are palatable when cut and wilted (E. O’Beirne-Ranelagh, pers. comm.). High concentrations of minerals important for skeletal development (Ca, Mg) or other metabolic functions (Cu, Fe) are cited among the favoured attributes of these species, as 58 well as high concentrations of certain vitamins and other herbal properties that may have medicinal value (Ferguson, 2002). Species-rich grasslands (eg MG5) are also considered as being suitable for making excellent hay for horses (O’Beirne-Ranelagh, 2005). Species that are poisonous to horses are mainly avoided in grazed swards, or are only toxic when ingested in quantity (eg Ranunculus spp.). However, ragwort (Senecio jacobaea) can be a particularly serious problem and has been the cause of numerous cases of fatal poisoning of horses. Its development is associated with germination (from wind-dispersed seeds) on bare ground niches typical of compacted and over-grazed areas. Once established, the plants are usually avoided by horses, although they may be taken when wilted, although there is growing evidence that horses will graze rosettes of ragwort (E. O’Beirne-Ranelagh, pers. comm.). There is a research challenge to better understand whether the sward structure associated with a more diverse species sward would limit the opportunities for ragwort to establish. In the case of grassland that is managed primarily for hay or haylage for equines, some of the attributes of plant species referred to above may need to be reconsidered. Hay crops, particularly when cut and baled relatively late in the summer provide the maximum opportunities for both seed maturation and dispersal and for supporting invertebrates. Avoidance of mouldy hay is particularly important for horses, hence the need for fine weather and a relatively rapid haymaking period. Species that do not dry easily in the mown swath would be less desirable in this respect: eg Rumex spp. with thick petioles and waxy leaf epidermis, and species of Cirsium with a thorny and downy epidermis. However, most other species considered here are unlikely to present drying problems unless the sward is mown in wet weather or if the cutting height is set too close to the ground surface. A prolonged hay curing and turning results in significant leaf shatter and any feed value attributes (eg superior mineral concentrations or phytochemicals) in forb species are likely to be lost or reduced as a result. Realising the agronomic properties of species-rich hay is likely to depend therefore on attention to detail. In addition to meadows mown to supply traditional hay for equines there is increasing popularity of haylage, which may be regarded as intermediate between hay and silage. It is cut at a later, more mature and lower digestibility stage than silage, wilted to ~ 50-65% DM, baled-wrapped and then undergoes a slow and restricted fermentation. It avoids the risks of dust and moulds associated with some hays and also offers transport and storage advantages. A number of contract growers and larger livery establishments are providing haylage, particularly catering for the more valuable end of the horse market. Compatiblity of haylage production with species-rich grassland is probably possible if haylage is cut late and some turning is undertaken (Crofts and Jefferson 1999). Species (grasses or forbs) that produce stalks that might puncture the bale wrap would not be compatible with haylage (Rumex spp. are the most obvious example). Finally, an aspect of plant species diversity as it affects sward utilized by equines is that of the relationship between the sward composition and soil structure. For horses at pasture the advantages of a good springy sward surface, with a dense turf that is resilient to divoting and other grazing damage, are considerable. Horses can add to compaction, and poor soil structure, particularly through running and galloping especially in wet or frosty weather. Only a few of the plant species reviewed here are adapted to survive on compacted areas (eg Taraxacum officinale). Good soil structure, with good drainage and root penetration, is encouraged by a rich soil biology with earthworm activity that contributes to organic matter 59 formation in the surface horizon and helps bury stones which could otherwise be potentially injurious to horses. Species with strong deep roots have a potential role to contribute in this respect, and white clover has been shown to benefit soil structure and drainage (Mytton and others 1993). Further research is needed to evaluate the role of other species in this context. 60 5 Conclusions and research requirements 5.1 Value of different grassland plant species for wildlife The issues surrounding the enhancement of the diversity of agriculturally-improved grasslands can best be summarised by considering the grasses, legumes, and other forbs separately. Reference is made to the characteristics of the plant species that have been identified in this review as having the highest wildlife value. The intention here is not to promote a uniformity of recommendations confined to a small suite of species. Rather, these species are used to illustrate particular qualities and specific management issues. Clearly, a wider range of species should be considered and species selection should reflect individual site characteristics and conservation objectives. 5.1.1 Grasses Encouraging a diversity of grass species in the sward is likely to benefit a range of taxa. Many of the plant species identified as having high numbers of insect associations, such as Dactylis glomerata, are easily incorporated into production systems, being tolerant of both mowing and grazing. Festuca rubra and Poa pratensis, both having relatively high numbers of specific insect associations (Table 6), are particularly tolerant of trampling and make good selected species for grassland managed for horse grazing and exercise. Interestingly, the two species commonly used in grassland enhancement schemes (Anthoxanthum odoratum and Cynosurus cristatus) appear to have low wildlife value, expressed as the number of specific insect associations, and are rarely mentioned as host plants for species with more general preferences. However, these species are likely to contribute to the agronomic value of swards of declining fertility. Lolium perenne also had relatively low numbers of specific and general insect associations among the grasses (Tables 6 and 12). However, recent experiments have suggested that uncut Lolium may provide a useful winter seed source for birds (Buckingham et al 2004). In the assessment of bird diet (Table 15), Festuca spp. and Lolium feature relatively highly in the plant diet of declining PSA birds. Poa spp. are also in the list but records may refer to Poa annua rather than Poa trivialis or P. pratensis. When the total numbers of mono- and oligo-specific insect associations are examined (Table 6), grasses had relatively high numbers of associations across the group compared to legumes and other forbs. However, numbers of nationally rare and scarce species and general insect associations (Tables 10 and 12) were generally lower than for the legumes or other forbs. These findings illustrate the important point that there is no single ideal set of grassland plants suitable for increasing biodiversity, as different combinations will have different benefits. Most associated invertebrates on grasses were classified as general shoot feeders, although many of these are likely to have more particular niches in the sward. Few invertebrates are described as being associated exclusively with the flowers or seed head. However, most of the grasses have some insect species dependent on flower, seed head or stem (Table 9). There is, therefore, a conflict between allowing the structural development of such grasses through the season, and the optimum management for livestock production, which usually involves cutting or grazing before flowers and flower stems develop. 61 5.1.2 Legumes The legume group has significant value both for insects and birds. Numbers of mono- and oligo-specific insect associations are high across the group (Table 6), as are numbers of general associations (Table 12) and nationally rare and scarce species (Tables 10 and 12). The value of flowers and seed heads for insects is also apparent (Table 9). Lotus corniculatus in particular stands out in all these tables, and it is also the legume with the highest number of links with rare bees (Table 13). Trifolium pratense and T. repens have considerable value, especially T. pratense in relation to general insect associations, including rare and scarce Hymenoptera (Table 12). T. pratense is noted for its value for long-tongued bumblebees, some species of which are now very scarce in the countyside (Edwards and Williams 2004). Lotus corniculatus, Trifolium spp., including Trifolium dubium, and Vicia spp., support high numbers of specialist associations with Coleoptera (Table 6), while there is a strong representation of specialist Lepidoptera species among the Trifolium and Lotus species. The foliage of Trifolium spp. and the seeds of Vicia spp are important in bird diets in general, though rather less important among specialist bird groups (Table 15). The high productivity and feed value of legumes makes them a valuable component of forage systems, although there may be impacts on animal performance if they make up a high proportion of the diet. Ensilability in forage legumes can be difficult because of their low sugar contents and high buffering capacity but wilting and additive treatments improve performance (Appendix 5). However, given the importance of legume flower and seed heads for the associated insect fauna, light rotational grazing and/or hay production are likely to produce the most valuable outcomes for wildlife unless silage cutting regimes can be modified in some parts of the field. Trifolium repens is quite persistent in fertile grasslands but cultivar strains of Lotus corniculatus and Trifolium pratense may not persist for more than a few years. Wild strains are likely to be more persistent, and thus would be suitable where intermittent re-sowing is not a favoured option. Vicia sativa is highly acceptable to livestock, and tolerates moderate grazing (Appendix 5). Whilst their value for insects appears to lower than that of the grassland legumes described above, Medicago sativa and Onobrychis viciifolia can contribute to productive forage systems where soil type and climate allow. These species can form a part of productive silage systems when grown with less competitive grasses such as Dactylis glomerata, Festuca pratensis and Phleum pratense. 5.1.3 Other forbs The other forbs covered by this review represent a range of species of different growth form and ecological characteristics. A wide span of numbers of insect associations is also evident, for instance, the group contains the species with the highest and lowest numbers of general associations (Table 12), these species being Taraxacum officinale (206) and Cardamine pratensis (2). The group has a smaller proportion of representatives with high numbers of mono- and oligo-specific insect associations, compared to legumes and grasses (Table 6), but has stronger representation among specific rare and scarce insect species (Table 10) than grasses, and has representatives with high numbers of general insect associations, including rare and scarce species (Table 12). Among the forbs, the group with the highest numbers of specific associations are robust members of the Asteraceae (Cirsium spp., and Achillea millefolium), which provide important 62 diet items and microhabitats for a range of Coleoptera, Diptera and Lepidoptera species (Table 6). Centaurea nigra has a wide variety of Diptera and Lepidoptera among specific associations (Table 6) and a relatively high number of nationally rare and scarce species which are specific to the plant (Table 10). Plantago lanceolata has a relatively varied Coleoptera fauna and the highest number of mono- and oligo-specific nationally rare and scarce species (Table 10) among the group of forbs. Taraxacum officinale and Rumex spp. stand out among the 56 selected plants for the number of general associations, especially for Lepidotera (Table 12). Rumex spp. are consistently the most widely-utilised direct plant food for birds among all the plant genera in the study (Table 15), and is included in the diet of declining (Red List) seed-eating birds such as linnet, corn bunting and yellowhammer (Appendix 4). Centaurea sp. and Plantago sp. are also important in terms of numbers of birds which include these taxa in their diet. As with the legumes, stems and reproductive structures form significant microhabitats for many of the invertebrates associated with these forb species, although a large number of associations also relate to basal rosette leaves, stem bases and root crowns. Among the birds, most will be eating plant seeds rather than green parts. The timing of management therefore needs to take account of the reproductive phenology of the plant species in order to maximise wildlife value. 5.2 Management options to promote value for wildlife The review has highlighted a group of grassland species that have diet and microhabitat value for insects and / or birds and have useful agronomic characteristics in terms of productivity and feed value for livestock. This group includes grasses (Dactylis glomerata, Festuca spp.), and legumes (Lotus corniculatus, Trifolium pratense, T. repens and Vicia sativa). Some of these have been established successfully in experiments on the restoration of grassland diversity while others are agriculturally-sown species. Lotus corniculatus and Festuca ovina are probably the most difficult to establish in more fertile swards. Other forbs, such as Achillea millefolium, Centaurea nigra, and Plantago lanceolata are of high value for wildlife and are reasonably easy to establish but have lower values for livestock production. The Cirsium species have high value for wildlife but along with other pernicious grassland weeds are actual management problems rather than of being of benefit for livestock production. Rumex acetosa poses less of a weed problem than R. crispus and R. obtusifolius, if not present in quantity, and is able to grow in fertile grasslands. The use of forbs and less-productive grasses may be particularly relevant in grasslands managed for equines, but the topic has not been much researched. As for grasslands used for livestock, it is clear from the review that the full microhabitat and diet values are only manifest if the plant species are allowed to develop stems, flower and set seed. Taller vegetation can be achieved by decreasing the frequency of mowing or grazing. However, leaving areas unmown or ungrazed has implications for the agronomic value of the sward for livestock, and these effects may persist after grazing or mowing is reinstated. In addition, the persistence of various species of wildlife value in the sward will itself be influenced by the mowing or grazing regime, with different species being affected positively or negatively. Whilst areas of tall turf provide useful microhabitats for many invertebrates, small mammals and some bird species such as raptors, some groups of grassland fauna prefer short turf or bare ground microhabitats, whilst others require both tall and short vegetation in order to 63 successfully complete their lifecycles. In addition, the utilisation by birds of invertebrate and seed resources provided in areas of tall vegetation will be determined by the accessibility of prey items, determined in part by the characteristics of the mosaic of short and tall vegetation. Research is needed to identify sustainable management regimes that maintain an appropriate balance between agricultural value and equine value and the provision of different microhabitats for grassland fauna, and to calculate the costs to the farmer of such management in terms of lost production or management complications for horse-owners. Three main research areas are apparent. Firstly, how to establish and maintain the persistence of populations of these species in swards that are currently species-poor, secondly, how to maximise the value of the species for the fauna that utilise them, thirdly, what are the most beneficial spatial configurations of such manipulations and finally, what are the agronomic / equine implications of such management. 5.2.1 Potential management options to enhance biodiversity value The range of options for enhancing the diversity of agriculturally-improved grasslands ranges along a gradient from simple manipulations of grazing and cutting regimes and/or fertilizer inputs, through the sowing of plant species into the sward, to the conversion of areas of grassland through cultivation and sowing of seed mixtures. Such an approach has been used as a structure for a range of treatments on grass field margins in the PEBIL project (Defra project BD1444). For pastures, manipulations might involve the mere cessation of fertilizer inputs. Preliminary results of the PEBIL project show strong effects of cessation of fertilizer on Coleoptera assemblages. Manipulations of grazing and mowing, for example with early season grazing and a late season cut would allow stem, flower and seed resources to develop in the canopy over the summer and would benefit a range of invertebrates and birds. Finally, fenced exclosures would allow the development of rank tussocky patches in field centres. For all of these options, the balance between the biodiversity gains achieved and the agronomic implications need to be assessed in relation to the spatial configuration (extent and density) of manipulated areas within fields. The interaction of these manipulations of grazing, mowing and input regimes with the successful establishment and persistence of additional introductions of forb species needs to be investigated through field experiments. The botanical enhancement of fields cut for silage poses a more difficult challenge, with few forb species identified in this review as likely to persist in silage systems, although some of the legumes are exceptions. The timing of cutting, which is usually before flowering, is also an issue. However, the diet and microhabitat value of the sward could be enhanced through manipulation of the frequency of mowing in small areas within fields. This might involve the simple leaving of unmown strips at intervals across the field when the grass is cut for silage. Taking the second cut at right angles to the first cut and again including unmown strips will create a range of areas with different sward heights. Alternatively, leaving areas uncut when the last silage cut is taken will result in taller areas with grass stems, flowers and seedheads persisting into the late summer and autumn. 5.2.2 Issues of within-field scale, density and position The location and spatial scale at which these beneficial plants are introduced to the sward will also have important implications for their exploitation by invertebrates and birds. For 64 example, whether these are introduced throughout the field or restricted to margins will influence the ability of some bird species, such as Skylark, that tend to avoid field boundaries, to exploit them. The spatial scale may also be important, scattered patches maybe more effectively utilised by breeding birds that tend to be territorial and central place foragers often favouring foraging areas close to nests in hedgerows (eg Morris 2001, Vickery and others 2002). In winter when birds are more mobile fewer, larger patches may be equally effective. There is a need to understand the optimal spatial scale at which to deliver these food resources in winter and summer. In particular the optimum size, density and spatial positioning of food patches (eg in this case, patches of plants supporting high abundance and diversity of insects). It is likely that these optimal scales differ between summer (when birds are territorial and taking mainly invertebrate prey) and winter (when many birds flock and feed on seeds and/or green plant material). 5.3 Research on underlying ecological mechanisms 5.3.1 Enhancement of botanical diversity There is a pressing requirement to investigate practical methods for increasing plant species richness on agriculturally-managed grassland. Whilst there has been considerable progress in this area, particularly in the introduction of plant species that have a wide ecological amplitude, there are many challenges that remain. Grasslands dominated by Lolium perenne (MG7) present a particular challenge as their soil nutrient status, botanical composition and sward structure are resilient to competition from most “non-weed” forbs and to many wild grass species. The same applies to some of the species-poor swards of the NVC communities MG1, MG6, MG9 and MG10 (Arrhenatherum grasslands, Lolium-Cynosurus grassland and damp Holcus-Deschamsia cespitosa/Juncus effuses grasslands). Whilst many such swards on intensively-managed livestock farms are unlikely to be able to support species-rich grassland at a field scale, there is scope for enabling sward diversity at a range of other scales, including field margins. The potential for restoration to wild grass assemblages as a first step before introduction of forb species is one approach that merits consideration for these communities. Species may also be identified that create conditions that promote the establishment of other plant species, for example through modification of soil microbial communities. 5.3.2 Promoting invertebrate diversity and abundance The review has highlighted the paucity of information on the microhabitat requirements of many grassland invertebrates. However, comprehensive autecological studies of the numerous insect species identified as forming specialist associations with the plant species used in this study is not likely to be cost-effective. A more productive approach would be to focus research on the promotion of spatial and temporal heterogeneity in the botanical composition and canopy structure of grassland swards. Research on the impact of stock density and livestock type/breed on sward heterogeneity, and the responses of different guilds of insect is required. In addition, understanding the impacts of the timing of grazing early in the season and the spatio-temporal dynamics of nutrient returns to the sward on the competitive balance between grasses and forb species is likely to lead to improved management prescriptions. 65 5.3.3 Bird diets The taxonomic level of detail in many dietary studies has limited the robustness of the approach adopted in the present study. However, intensive studies of diet composition of a suite of species are unlikely to be a very cost effective avenue of research. A much more valuable question is that of ‘preferences’, as stated in Wilson and others (1999). A great deal is known about what is present in the diet of many birds, but rarely are studies linked with those assessing prey abundance in the foraging site. For this reason we have almost no data on prey preferences. There is therefore a need for studies which quantify foraging preferences of grassland birds in terms of habitat or micro-habitat patch choice and invertebrate abundance and availability, and relate these to dietary composition. 5.3.4 Seed provenance The provenance of seed used to enhance the diversity of agriculturally-improved grassland may have an impact on the suitability of the resulting plants for use by their associated invertebrates. A recent review highlighted a potential risk from introgression from non-local genotypes (Walkerand others 2004), including several species identified as having high value for invertebrates in this review (Plantago lanceolata, Rumex acetosa, Rumex acetosella). The impact of the use of agricultural varieties of legume species on plant:insect interactions is also unclear. 5.4 Research requirements at the farm and landscape scale The focus of this review has been on the diet and microhabitat value of particular grassland plant species. However, two problems have been highlighted. Firstly, many of the species of high value are unlikely to form sustainable populations in productive swards and may require sward disturbance in order to persist or protection from grazing in order to allow the desired canopy or reproductive structures to develop. Secondly, undesirable grassland weeds have been shown to have particularly high value to invertebrates and birds. There is therefore an argument for partitioning the farmed landscape into areas for wildlife and areas for forage production. 5.4.1 Uncropped areas Boundary features (including buffer strips and field margins) and other semi-natural 'corridors' may facilitate the movement of highly mobile taxa (birds, butterflies, bees, grasshoppers) between forage/nesting/shelter resources and into the grasslands. There is also scope to increase invertebrate abundance and diversity, and food abundance and availability for birds, through field margin, hedgerow and hedge base management (eg Haysom and others 1999, Haysom and others 2004, Maudsley 2001, Maudsley and others 1997, 2000). 5.4.2 Issues of landscape scale, density and position Issues of the optimum density, scale and landscape positioning of such features in order to maximise wildlife value need to be researched. Likewise, the extent to which food abundance could be increased for a suite of grassland species, for example through farm-scale rotational cutting, may also merit further investigation. Research is needed on the incorporation of sward management practices that are beneficial to wildlife into sustainable whole-farm production systems. The agronomic implications of allowing grasses and forbs to seed in order to provide microhabitat for invertebrates and seed resources for birds need to 66 be assessed. In addition, the impacts of diverse swards on livestock finishing and the need for the retention of areas of ‘lay back’ grassland of higher productivity need investigating. 5.4.3 Multiple benefits from novel grass/legume mixes This review has confirmed the high value of legumes for invertebrates and birds. The wider use of grass/legume mixes as forage crops has the potential for multiple benefits, including not only biodiversity benefits (eg for pollinators), but also reduced fertilizer inputs and enhanced soil characteristics (Rochon and others 2004). Research is needed on the suitability of novel grass/legume mixes and their potential utility in the face of climate change. The introduction of legumes into established swards is likely to yield similar benefits. In this situation, research is needed on methods to promote the persistence of introduced legume species. 5.4.4 Surrounding land use The impacts of surrounding land use for grassland biodiversity are poorly understood. It is widely accepted that the decline in the biodiversity of pastoral landscapes in parts of England is linked to the loss of mixed farming and the overwhelming dominance of species-poor grasslands. The use of whole crop cereal silage, especially when spring sown and followed by winter stubbles, or the sowing of pollen and nectar or wild bird seed mixes are more likely to increase populations of many invertebrate and bird species associated with farmland in these areas than manipulations of the botanical composition of grasslands, and may increase the diversity of adjacent grasslands. 5.5 Research on changing land use and its drivers 5.5.1 Monitoring and understanding changes Grassland management is likely to face a diverse array of new socio-economic drivers in the next few years, resulting from changes in support payments and new agri-environment schemes. However, information on the contemporary botanical status of British grasslands in relation to their management is scarce, so the ability to detect these changes and understand the causes is limited. The Countryside Survey does not adequately captured information on field scale sward type in relation to farm management. The predecessors of the Institute for Grassland and Environmental Research (IGER) carried out national grassland surveys in 1939, 1947, 1959, in the 1970s, and repeat surveys of some areas of the 1970-72 survey were made in the mid-1980s (including farmer interviews). Original field-scale data from these surveys are still held at IGER and could be exploited to derive an up-to-date assessment. There is a need to address the implications for grassland biodiversity that will stem from the introduction of the Single Payment Scheme and replacement of headage payments with areabased payments. Low availability of grazing livestock in response to these changes may well have a significant impact on lowland grasslands in the coming decade. Such changes may lead to natural restoration of plant species diversity, or provide opportunities for more interventionist restoration measures. Similarly, there is a need to understand the impact of widely adopted measures for agriculturally-improved grasslands introduced in the Entry Level Environmental Stewardship Scheme, including input restrictions, buffer strips and abandoned field corners. In particular, 67 research is needed to identify the densities and landscape configurations of these options necessary to maximise biodiversity gains. There is a need for a research focus that targets the value of grassland species on land no longer used for livestock production. In many urban fringe areas, agriculturally improved grassland is being used for livery stables and informal ‘pony paddocks’. However, little is known about the potential wildlife value of horse grazing on species-poor swards. With the area under agriculture declining, and development pressure increasing in many urban fringe areas, identifying opportunities for biodiversity enhancement in non-agricultural grasslands is likely to become increasingly important. Such areas have are known to be of considerable value to invertebrates (Gibson 1998). 5.5.2 Nutritional quality and ‘value added’ The loss of species-rich grassland has been brought about by a received wisdom that ryegrass and clover swards are most productive. There is now increasing interest in the secondary dietary attributes of pasture species in terms of their ability to contribute towards animal health and nutrition and to affect the properties of meat and dairy products that are based on utilization of grazed and conserved-mown forage (Coulon and Priolo 2002). Some livestock producers are already deriving marketing opportunities from “non-commodity” produce linked to the botanical composition of their grassland. Although there is some on-going research activity in this field (Whittington and others 2006), there is a need to further this in terms of which pasture species offer the potential to best contribute to food quality (taste, appearance, nutrition, shelf life, human health attributes such as fatty acid balance) and also in the wider agronomic sense (animal health, seasonal growth, suitability for grazing and hay/silage). 5.5.3 Climate change There is a need to identify livestock production systems that can meet the demands imposed by changes in climate. The role of multi-species swards is one area where there is a research need, for example the mixtures of grass and Medicago sativa or Onobrychis viciifolia. Many forbs and some minor grasses can exploit lower soil horizons for water, or temporal niches, and thereby provide a degree of resilience to drought, or ability to recover from floods, saline inundations etc. This is a whole new area, with many possible opportunities for botanically diverse grasslands to be exploited in ways that may be commercially favourable to livestock farmers and, at the same time, help achieve biodiversity targets. 68 6 Bibliography AERTS, R.J., BARRY, T.N. & McNABB, W.C. 1999. Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agriculture, Ecosystems and Environment, 75, 1-12. ALLISON, K. 1995. A guide to herbs for Horses. 48 pp. London: J.A. Allen. ASHER, J., and others. 2001. The Millennium atlas of butterflies in Britain and Ireland. Oxford: Oxford University Press. ATKINSON, P.W., VICKERY, J.A. & FULLER, R.J. 2002. Distribution and abundance of breeding and wintering birds in lowland farming landscapes. Ecography, 25, 466-480. Atkinson, P.A., and others. 2005. Influence of agricultural management, sward structure and food resources on grassland field use by birds in lowland England. Journal of Applied Ecology, 42, 932-942. BHIC /DEFRA. 2005. Strategy for the horse industry in England and Wales Report PB11323. 108 pp. London: Defra Publications. Available from: http://www.defra.gov.uk/rural/horses/pdfs/en-horse-industry-strategy.pdf BLACKSTOCK, T.H., and others. 1999. The extent of semi-natural grassland communities in lowland England and Wales: a review of conservation surveys 1978-96. Grass and Forage Science, 54, 1-18. BOATMAN, N.D. 2001. Relationships between weeds, herbicides and birds. In: J MARSHALL and others, eds. The impact of herbicides on weed abundance and biodiversity, 85-102. Report to DEFRA PN0940. Barton Winscombe: Institute of Arable Crops Research. BRICKLE, N.W., and others. 2000. Effects of agricultural intensification on the breeding success of corn buntings Miliaria calandra. Journal of Applied Ecology, 37, 742-755. BUCKINGHAM, D.L., ATKINSON, P.W. & ROOK, A.J. 2004. Testing solutions in grassdominated landscapes: a review of current research. Ibis, 146 (Suppl. 2), 163-170. BUCKINGHAM, D.L., PEACH, W.J., & FOX, D.S. 2006. Effects of agricultural management on the use of lowland grassland by foraging birds. Agriculture Ecosystems and Environment, 112, 21-40. BULLER, H. 2005. Eating biodiversity: an investigation of the links between quality food production and biodiversity protection. RELU web. Available from: http://www.relu.ac.uk/research/projects/Buller.htm BUXTON, J.M., CROCKER, D.R. & PASCUAL, J.A. 1998. Birds and farming: information for risk assessment. Unpublished report to DEFRA Pesticides Safety Directorate. Project No. M37. York: Central Science Laboratory. 69 CHAMBERLAIN, D.E., and others. 2000. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. Journal of Applied Ecology, 37, 771-788. COOPER, J.P., GREEN, J.O. & HAGGAR, R.J. 1981. The management of horse paddocks - a booklet of instructions. London: Horserace Betting Levy Board, 9 pp. CORBET, G.B. & HARRIS, S. 1991. The handbook of British mammals. 3rd ed. Oxford: Blackwell Scientific Publications. COTSWOLD SEEDS. 2006. Seed catalogue: horse leys. Cotswold Seeds, UK. Available from: http://www.cotswoldseeds.com/Printable%20Versions/horse_leys.pdf COULON, J.B. & PRIOLO, A. 2002. Influence of forage feeding on the composition and organoleptic properties of meat and dairy products: bases for a “terroir” effect. Grassland Science in Europe, 7, 513-524. COULON, J.B., and others. 2004. Relationships between ruminant management and sensory characteristics of cheeses : a review. Lait, 84, 221-241. CRAMP, S. 1985. Handbook of the Birds of Europe, the Middle East and North Africa; The Birds of the Western Palearctic. Vol IV. Oxford: Oxford University Press. CRAMP, S. 1988. Handbook of the Birds of Europe, the Middle East and North Africa; The Birds of the Western Palearctic. Vol V. Oxford: Oxford University Press. CRAMP, S. & PERRINS, C.M. 1994a. Handbook of the Birds of Europe, the Middle East and North Africa; The Birds of the Western Palearctic. Vol VIII. Oxford: Oxford University Press. CRAMP, S. & PERRINS, C.M. 1994b. Handbook of the Birds of Europe, the Middle East and North Africa; The Birds of the Western Palearctic. Vol IX. Oxford: Oxford University Press. CRAMP, S. & SIMMONS, K.E.L. 1983. Handbook of the Birds of Europe, the Middle East and North Africa; The Birds of the Western Palearctic. Vol III. Oxford: Oxford University Press. CROFTS, A. & JEFFERSON, R.G. eds. 1999. The lowland grassland management handbook. Second edition. Peterborough: English Nature/ The Wildlife Trusts. DALY, M.J., and others. 1996. A comparison of multi-species pasture with ryegrass-white clover pastures under dryland conditions. Proceedings of the New Zealand Grassland Association, 58, 53-58. DEFRA/ HM TREASURY. 2005. A Vision for the Common Agricultural Policy. Norwich: HMSO, 76 pp, and available from: http://www.defra.gov.uk/farm/capreform/pdf/vision-for-cap.pdf 70 DEVEREUX, C.L., and others. 2004. The effect of sward height and drainage on Starlings and Lapwings foraging in grassland habitats. Ecology and conservation of lowland farmland birds II: The Road to Recovery. Ibis, 146 (suppl.2): 115-122 DONY, J.G., JURY, S.L. & PERRING, F.H. 1986. English Names of Wild Flowers, 2nd Ed. London: Botanical Society of the British Isles. DUFFEY, E., and others. 1974. Grassland ecology and wildlife management. London: Chapman & Hall. EDWARDS, M. & WILLIAMS, P. 2004. Where have all the bumblebees gone, and could they ever return? British Wildlife 15(5), 305-312. FERGUSON, V. 2002. The practical horse herbal. London: Carlton Books Ltd. FITTER, A.H. & PEAT, H.J. 1994. The ecological flora database. Journal of Ecology, 82, 415-425. FRAME, J. 1989. The potential of secondary grasses. Proceedings of the XVI International Grassland Congress, 4-11 October 1989, Nice, France. Association Francaise pour la Production Fourragere, Centre National de Recherche Agronomique,Versailles, France: 1989. 209-210. FRAME, J. 1991. Herbage production and quality of a range of secondary grass species at five rates of fertilizer nitrogen application. Grass and Forage Science, 46, 139-151. FRAME, J. 2000. Improved grassland management. Tonbridge: Farming Press. FRAME, J. 2005. Forage Legumes for Temperate Grasslands. Plymouth: FAO and Science Publishers Inc. FULLER, R.J. 2000. Relationships between recent changes in lowland British agriculture and farmland bird populations: an overview. In: N.J. AEBISCHER, and others, eds. The Conservation and Ecology of Lowland Farmland Birds, pp. 5-16. Tring: British Ornithologists’ Union. GIBSON, C.W.D. 1997. The effects of horse and cattle grazing on English species-rich grasslands. English Nature Research Reports, No 210. GIBSON, C.W.D. 1998. Brownfield:red data - the values artificial habitats have for uncommon invertebrates. English Nature Research Reports, No 273. GILBERT, O.L. & ANDERSON, P. 1998. Habitat Creation and Repair. Oxford: Oxford University Press. GRIME, J.P., HODGSON, J.G. & HUNT, R. 1988. Comparative Plant Ecology. A Functional Approach to Common British Species. London: Chapman & Hall. HAINES-YOUNG R.H., and others. 2000. Accounting for nature: assessing habitats in the UK countryside. London: DETR. 71 HALL, M.H. & COMERFORD P.M. 1992. Pastures and hay for horses. Agronomy facts No. 32. Penn State College of Agricultural Sciences, 4 pp., and available from: http://www.forages.psu.edu/agfacts/agfact32.pdf HART. J.D. MILSOM, and others. 2006. The relationship between yellowhammers breeding performance, arthropod abundance and insecticide applications on arable farmland. Journal of Applied Ecology, 43, 81-91. HAYSOM, K.A., and others. 1999. Grass conservation headlands: adapting an arable technique for the grassland farmer. Aspects of Applied Biology, 54, 171-78. HAYSOM, K.A., and others. 2004. Developing grassland conservation headlands: response of carabid assemblage to different cutting regimes in a silage field edge. Agriculture Ecosystems & Environment, 102, 263-77. HENDERSON, I.G., VICKERY, J.A. & CARTER, N. 2004. The use of winter crops by farmland birds in lowland England. Biological Conservation, 118, 21-32. HERMS, D.A. & MATTSON, W.J. 1992. The dilemma of plants: to grow or to defend. The Quarterly Review of Biology, 67, 283-335. HILL, M.O., and others. 1999. Ellenberg’s indicator values for British plants. London: HMSO. HOFFMAN, M. & ISSELSTEIN, J. 2005. Species enrichment in an agriculturally improved grassland and its effects on botanical composition, yield and forage quality. Grass and Forage Science, 60, 136-145. Holland, J.M. and others. 2006. A review of seed-bearing plants and invertebrates as food for farmland birds in Europe. Annals of Applied Biology, 148 (1):49-71. HOLTER, G. 2003. Ancient pasture for modern horses. Horse and Rider, March 2004, 8486. HOPKINS, A. 2000. BD1438 : Review of grassland production and fertilizer response data with reference to the basis for management agreements. IGER North Wyke, 45 pp plus appendices. Available from: http://www2.defra.gov.uk/research/project_data/projects.asp?M=KWS&V=BD1438&SUBMIT1=Sea rch&SCOPE=0 HOPKINS, A. & JOHNSON, R.H. 2003. Impact of control of dock (Rumex obtusifolius) on potential production from N-fertilised swards. Grassland Science in Europe, 8, 200-203. HOPKINS, A., ADAMSON, A.H. & BOWLING, P.J. 1994. Response of permanent and reseeded grassland to fertilizer nitrogen. 2. Effects on concentrations of Ca, Mg, K, Na, S, P, Mn, Zn, Cu, Co and Mo in herbage at a range of sites. Grass and Forage Science, 49, 9-20. HOPKINS, A., and others. 1990. Response of permanent and re-seeded grassland to fertilizer nitrogen. 1. Herbage production and herbage quality. Grass and Forage Science, 45, 43-55. 72 HOPKINS, A., and others. 1999. Enhancement of botanical diversity of permanent grassland and impact on hay production in Environmentally Sensitive Areas in the UK. Grass and Forage Science, 54, 163-173. ISSELSTEIN, J. 1993. Forage nutritive value and ensilability of some common grassland herbs. Proceedings of the XVII International Grassland Congress, 577-579. ISSELSTEIN, J. 1995. On the variability in feeding value properties of widespread grassland herbs. [inGerman] Kongressband 1995 Garmisch-Partenkirchen. Vortrage zum Generalthema des 107. VDLUFA-Kongresses vom 18.-23.9.1994 in Garmisch-Partenkirchen: Grunland als Produktionsstandort und Landschaftselement.. VDLUFA-Verlag,Darmstadt, Germany: 1995. pp 405408. JENSEN, S.P. 1993. Temporal changes in food preferences of wood mice (Apodemus sylvaticus L.) Oecologia, 94, 76-82. JONES, A.T. & HAYES, M.J. 1999. Increasing floristic diversity in grassland: the effects of management regime and provenance on species introduction. Biological Conservation, 87, 381-90. KUTSCHERA, L. & LICHTENEGGER, E. 1992. Wurzelatlas mitteleuropäischer Gründlandpflanzen, Band 2, Pteridophyta und Dicotyledoneae. Stuttgart: Gustav Fischer Verlag. LOREAU, M. & HECTOR, A. 2001. Partitioning, selection and complementarity in biodiversity experiments. Nature, 412, 72-76. MACDONALD, D.W., and others. 2000. Arable habitat use by wood mice (Apodemus sylvaticus). 3. A farm-scale experiment on the effects of crop rotation. Journal of the Zoological Society of London, 250, 313-320. MACDONALD, D.W., and others. 2000. Ecological experiments in farmland conservation. In: M. HUTCHINGS, ed. Ecological Consequences of Habitat Heterogeneity, 357-378. Oxford: Blackwell Science. MAINZ, A.K., and others. 1996. Studies on the ensilability of some common grassland forbs. [in German]. Wirtschaftseigene Futter, 42, 125-136. MAUDSLEY, M.J., and others. 1997. Spatial variability in plant and insect (Heteroptera) communities in hedgerows in Great Britain. In: A. COOPER & J. POWER, eds. Species Dispersal and Land Use Processes, 229-236. IALE(UK). MAUDSLEY, M.J. and others. 2000. The impacts of hedge management on wildlife: preliminary results for planst and insects. Aspects of Applied Biology, 58, 389-396. MAUDSLEY, M.J. 2001. A review of the ecology and conservation of hedgerow invertebrates in Britain. Journal of Environmental Management, 60, 65-76. 73 MORRIS, A.J. 2001. Assessing the indirect effects of pesticides on birds. RSPB Progress Report. London: Department of Food and Rural Affairs. MORRIS, M.G. 1978. Grassland management and invertebrate animals - A selective review. Scientific Proceedings of the Royal Dublin Society, Series A, 6, 247-57. Mortimer, S.R., and others. 2002. Effects of initial site management on the Coleoptera assemblages colonising newly-established calcareous grasslands on ex-arable land. Biological Conservation, 104, 301-313 MORTIMER, S.R., HOLLIER, J.A. & BROWN, V.K. 1998. Interactions between plant and insect species-richness in the restoration of calcareous grasslands. Applied Vegetation Science, 1, 101-114. MYTTON, L.R., CRESSWELL, A. & COLBOURN, P. 1993. Improvement in soil structure associated with white clover. Grass and Forage Science, 48, 84-90. NAUJECK A., HILL J. & GIBB M.J. 2005. Influence of sward height on diet selection by horses. Applied Animal Behaviour Science, 90, 49-63. O’BEIRNE-RANELAGH, E. 2005. Managing Grass for Horses. 398 pp. London: J.A. Allen. PEETERS, A. 2004. Wild and sown grasses. Profiles of a temperate species selection: ecology, biodiversity and use. Rome: FAO and Blackwell Publishing. PERKINS, A.J., and others. 2000. Habitat characteristics affecting use of lowland agricultural grasslands by birds in winter. Biological Conservation, 95, 279-294. PILLINER, S. 1992. Horse nutrition and feeding, 180 pp. Oxford: Blackwell Scientific Publications. PYWELL, R.F. and others. 2003. Plant traits as predictors of performance in ecological restoration. Journal of Applied Ecology, 40, 65-77. ROBINSON, R.A., WILSON, J.D. & CRICK, H.Q.P. 2001. The importance of arable habitat for farmland birds in grassland landscapes. Journal of Applied Ecology, 38, 10591069. ROCHON, J.J., and others. 2004). Grazing legumes in Europe: a review or their status, management, benefits, research needs and future prospects. Grass and Forage Science, 59, 197-214. RODWELL, J.S., ed. 1992. British Plant Communities. Volume 3. Grassland and Montane Communities. Cambridge: Cambridge University Press. RYCHNOVSKA, M., BLAZKOVA, D., & HRABE, F. 1994. Conservation and development of floristically diverse grassland in central Europe. Proceedings of the 15th General Meeting of the European Grassland Federation, 266-277. Wageningen, The Netherlands. 74 Scollan, N.D., and others. 2005. Improving the quality of products from grassland. In: McGILLOWAY D.A., ed. Grassland: a global resource, 41-56. Wageningen: Wageningen Academic Publishers. SCHWARZER, R. 1989. Meta-analysis programs Version 5.3. Berlin: Freie Universität Berlin. STACE, C. 1997. New Flora of the British Isles, 2nd Edn. Cambridge: Cambridge University Press. Tallowin, J.R.B., and others. 2005. Spatial and structural uniformity of lowland grassland in England: a context for low biodiversity. Grass and Forage Science, 60, 225-236. TATTERSALL, F.H., and others. 1997. Small mammals on one-year set-aside. Acta Theriologica, 42 (3), 329-334. TATTERSALL, F.H., and others. 2001. Habitat use by wood mice (Apodemus sylvaticus) in a changeable arable landscape. Journal of the Zoological Society of London, 225, 487-494. TATTERSALL, F.H., and others. 2002. Is habitat linearity important for small mammals on farmland? Journal of Applied Ecology, 39, 643-652. TATTERSALL, F.H., and others. 2000. Managing set-aside for field voles (Microtus agrestis). Biological Conservation, 96, 123-128. TATTERSALL, F.H. & MACDONALD, D.W. 2003. Wood mice in the arable ecosystem. In: Tattersall, F. & Manley, W., eds. Conservation and conflict: mammals and farming in Britain, 82-96. Linnean Society Occasional Publications 4. London. TATTERSALL, F.H., TEW, E.T. & MACDONALD, D.W. 1998. Habitat selection by arable wood mice: a review of work carried out by the Wildlife Conservation Research Unit. Proceedings of the Latvian Academy of Sciences, Section B. 52, 31-36. TATTERSALL, F.H., and others. 1999. Small mammals on set-aside blocks and margins. Aspects of Applied Biology, 54, 131-138 TEW, T.E., MACDONALD, D.W. & RANDS, M.R.W. 1992. Herbicide application affects microhabitat use by arable wood mice (Apodemus sylvaticus). Journal of Applied Ecology, 29, 532-539. TODD, I.A., TEW, T.E. & MACDONALD, D.W. 2000. Arable habitat use by wood mice (Apodemus sylvaticus). 1. Macrohabitat. Journal of the Zoological Society of London, 250, 299-303. VICKERY, J.A., and others. 2004. The role of agri-environment schemes and farm management practices in reversing the decline of farmland birds in England. Biological Conservation, 119, 19-39. 75 VICKERY, J., CARTER, N. & FULLER, R.J. 2002. The potential value of managed cereal field margins as foraging habitats for farmland birds in the UK. Agriculture, Ecosystems & Environment, 89, 41-52. VICKERY, J.A. and others. 2001. The management of lowland neutral grasslands in Britain: effects of agricultural practices on birds and their food resources. Journal of Applied Ecology, 38, 647-664. WAGHORN, G.C., TAVENDALE, M.H. & WOODFIELD, D.R. 2002. Methanogenesis from forages fed to sheep. Proceedings of the New Zealand Grassland Association, 64, 167171. WALKER, K.J., and others. 2004. A review of the potential effects of seed sowing for habitat re-creation on the conservation of intraspecific biodiversity. Defra Contract BD1447. Centre for Ecology and Hydrology, Monks Wood. WHITTINGTON, F.M., and others. 2006. Effect of pasture type on lamb product quality. Langford Food Conference 2006. Bristol: Division of Farm Animal Science, Department of Clinical Veterinary Science, University of Bristol. WILKINS, R.J. & PAUL, C., eds. 2002. Legume Silages for Animal Production – LEGSIL. Proceedings of an International Workshop held in Braunschweig, 8-9 July, 2001. Landbauforschung Völkenrode, Sonderheft 234, 95pp. Braunschweig: FAL. WILSON, J.D., and others. 1999. A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agriculture, Ecosystems & Environment, 70, 13-20. WINTER, P. 2004. Grasses for going: the value of a quality sward for horse racing. Turfgrass Bulletin, 225, 30-32. YEO, M.J.M., BLACKSTOCK, T.H. & STEVENS, D.P. 1998. The use of phytosociological data in conservation assessment: a case study of lowland grasslands in mid Wales. Biological Conservation, 86, 125-38. 76 Appendix 1 Literature sources used for the review of insect:plant associations Accorti, M.; Persano Oddo, L.; Piazza, M. G.; Sabatini, A.G. (1986) Characterization tables of the main properties of Italian honeys. [Schede di caratterizzazione delle principali qualita di miele italiano.]. Apicoltura, Italy (No. 2, Appendix) 36 pp. Ackland, D.M. (1989) Anthomyiidae (Dipt.) new to Britain, with a description of a new species of Batanophila Lioy. Entomologist's Monthly Magazine, 125, 211-230. Alford, D.V., (1975) Bumblebees. Davis-Poynter. Allen, A.A. (1962) On the Sitones linneellus and brevicollis of Fowler and others (Col., Curculionidae); with further notes and records. 98. Allen, A.A. (1972) A contribution to the knowledge of Phytonomus meles F. (Col., Curculionidae) in Britain. Entomologist's Record, 83, 110-113. Allen, A.A. (1981) Tychius crassirostris Kirsch, a weevil new to Britain; with some remarks on the problems of the British "T. Haematopus". Entomologists Record, 93, 161-164. Anasiewicz, A. (1971) Observations on the bumble-bees in Lublin. Ekologia Polska, 19 (28) 401417. Dept. Plant Protection, Agricultural Univ., Lublin, Poland. Anasiewicz, A.; Warakomska, Z. (1976) Pollen [load] analysis as a method for evaluating insect pollinators of Trifolium pratense. [Pylkowa metoda oceny owadow zapylajacych koniczyne czerwona (Trifolium pratense L.).]. Pszczelnicze Zeszyty Naukowem, 20, 69-83 [Pl, en\ru, B] Inst. Ochrony Roslin, Akad. Rolnicza, Lublin, Poland. Artokhin, K.S. (1984) Bees (Apoidea) - the pollinators of lucerne under conditions of intensive seedsetting. Trudy Zoologicheskogo Instituta, Akademiya Nauk SSSR 128 94-97. Balles, L., (1925) Beiträge zur Kenntnis der Hymenopterenfauna Badens. I. Beitrag zur Kenntnis der badischen Bienen. Mitteilungen des Bad. Landesvereins für Nuturkunde und Naturschutz in Freiburg i. Br., 1(23,24):437-461. Balzekas, J. (1985) Bees and pollination of red clover. [Bites ir raudonieji dobilai seklai.]. Vilnius, Lithuania, USSR; Mokslas. 128 pp. Banashak, I. Banaszak J.; Chezhnyak, T. Czerzniak T. (1995) Economic effect of pollinating lucerne and red clover with honey bees and wild bees in Poland. Rasteniev"dni Nauki 32 (6) 84-87 [Bg, en, 26 ref.] Pedagogical University, Bydgoszcz, Poland. Banaszak, J., & Romasenko, L., (1998) Megachilid bees of Europe. Bydgoszcz. Barbattini, R.; Sommariva, E. (1983) Aspects of beekeeping in Piacenza: results of a census. [Aspetti dell'apicoltura nel piacentino: risultati di un censimento.]. Piacenza Economica, (No.3) 2-23 + 5 pl. Barnes, H. (1962) The gall midges (Diptera: Cecidomyidae) of wild ox-eye daisy (Chrysanthemum leucanthemum L.) flowers, with the description of a new species. Transactions of the Royal Entomological Society of London, 15, 1-19. Barnes, H.F. (1928) British gall midges II. Lestodiplosis Kieffer. Entomologist's Monthly Magazine, 64, 68-75, 142-148. Battaglini, M. B.; Bosi, G. (1972) Sugar composition of some unifloral honeys and the nectars they are derived from. [Ricerche comparate sulla natura dei glucidi di alcuni mieli monoflora e dei rispettivi nettari.]. Problemi di flora mellifera e impollinazione. Simposio Internazionale di Apicoltura, Torino. Bucharest, Rumania, Apimondia. 123-129 [It, en\fr, B] Istituto di Zoocolture, Univ. Perugia, Italy. 77 Beddows, A.R. (1959) Biological flora of the British Isles. Dactylis glomerata L. Journal of Ecology, 47, 223-239. Beddows, A.R. (1961) Biological flora of the British Isles. Holcus lanatus L. Journal of Ecology, 49, 421-430. Beddows, A.R. (1967) Biological flora of the British Isles. Lolium perenne L. Journal of Ecology, 55, 567-587. Benson, R.B. (1952). Handbooks for the Identification of British Insects: Hymenoptera. Vol 6, Part 2 (b). Royal Entomological Society of London, London. Benson, R.B. (1958). Handbooks for the Identification of British Insects: Hymenoptera. Vol 6, Part 2 (c). Royal Entomological Society of London, London. Berezin MV & Beiko VB. (2002) Problems of Conservation and Sustainable Use of Native Bees in Russia. In: Kevan P & Imperatriz Fonseca VL (eds) Pollinating Bees - The Conservation Link Between Agriculture and Nature. Ministry of Environment/Brasília. p.71-76. Bertsch, A., Schweer, H., Titze, A., & Tanaka, H. (2005) Male labial gland secretions and mitochondrial DNA markers support species status of Bombus cryptarum and B. magnus (Hymenoptera, Apidae). Insect. Soc., 52, 45–54. Bilinski, M.; Ruszkowski, A. (1990) Bumble bees of Lower Silesia. [Trzmiele Dolnego Slaska.]. Pszczelnicze Zeszyty Naukowe, 34, 101-111. Bilinski, M.; Ruszkowski, A.; Kaczmarska, K. (1990) Bumble bees of the Lubusz district. [Trzmiele ziemi Lubuskiej.]. Pszczelnicze Zeszyty Naukowe, 34, 57-62. Bilinski, M.; Ruszkowski, A.; Kaczmarska, K.; Sowa, S. (1990) Bumble bees of western Pomerania. [Trzmiele zachodniego Pomorza.]. Pszczelnicze Zeszyty Naukowe, 34, 63-72. Bilinski, M.; Ruszkowski, A.; Kosior, A. (1990) Bumble bees of Upper Silesia and Opole. [Trzemiele Slaska Gornego i Opolskiego.]. Pszczelnicze Zeszyty Naukowe, 34, 93-100. Binns, E.S. (1975) Adults of Longitarsus jacobae (L.) (Col., Chrysomelidae) defoliating ragwort (Senecio jacobae L.: Compositae). Entomologist's Monthly Magazine, 111, 129-130. Bland, K. & Rotheray, G. (1994) Tephritidae (Diptera) - Four species under-recorded in the British Isles and new foodplant records. Dipterists Digest, 1, 78-80. Bland, K.P. (1992) New foodplants for two species of leaf-mining Pegomya (Diptera: Anthomyiidae) in Britain. British Journal of Entomology and Natural History, 5, 127-128. Bocquet, M. (1996) White clover honey: nature and composition, principal organoleptic characteristics [technical leaflet 4 0 421]. [Le miel de trefle blanc: nature et composition, principales caracteristiques organoleptiques [fiche technique 4 0 421].]. Bulletin Technique Apicole 23 (1) 49-50 [Fr, Bj] Apimedia, B. P. 22, F-74371 Pringy Cedex, France. Boratynski, K, Pancer-Koteja, E, & Koteja J. (1982) The life history of Lecanopsis formicarum Newstead (Homoptera, Coccinea). Annales Zoologici, 36, 517-537. Borg, P.; Tolvanen, M. (1993) Notes on foraging ecology of honey bees in the SW archipelago of Finland. Memoranda Societatis pro Fauna et Flora Fennica 69 (1) 16-20 [En, Bb] Department of Botany, PO Box 7, FIN-00014, University of Helsinki, Helsinki, Finland. Bortoli, V. (1983) Bee plants and botanical and physicochemical characterization of honeys from the Vicenza district [Italy]. [Flora di interesse apicolo e caratterizzazione botanica e chimicofisica dei mieli della provincia di Vicenza.]. Apicoltore Moderno 74 (2) 47-53. Brian, A.D. (1951) The pollen collected by bumble-bees. Journal of Animal Ecology, 20, 191-194. Bromley, P.J. (1949) Biological observations on various Chrysomelidae. Entomologist's Monthly Magazine, 85, 81-84. 78 Brown, B.; Scott, R. R.; Macfarlane, R. P. (1992) An assessment of Vicia faba and Trifolium pratense as forage crops for Bombus hortorum. New Zealand Entomologist 15 42-47 [En, Bb] Department of Entomology, P. O. Box 84, Lincoln University, Lincoln, New Zealand. Brown, V.K. & Hyman, P.S. (1995) Weevils and plants: Characteristics of successional communities. Memoirs of the Entomological Society of Washington, 14, 137-144. Brown, V.K., Gange, A.C., Evans, I.M., & Storr, A.L. (1987) The Effect of Insect Herbivory on the Growth and Reproduction of 2 Annual Vicia Species at Different Stages in Plant Succession. Journal of Ecology, 75, 1173-1189. Bullock, J.A. (1992). Host plants of British beetles: a list of recorded associations. Amateur Entomologists’ Society, London. Burdon, J.J. (1983) Biological Flora of the British-Isles .154. Trifolium repens L. Journal of Ecology, 71, 307-330. Butler, E.A. (1923) Biology of the British Hemiptera-Heteroptera. Witherby, London BWARS database (Unpublished). Carvell C. (2002) Habitat use and conservation of bumblebees (Bombus spp.) under different grassland managemnt regimes. Biol. Conserv. 103, 33-49. Carvell, C. (2000) Studies of the distribution and habitat requirements of Bombus sylvarum (the shrill carder bee) and other bumblebees at Castlemartin Range, Pembrokeshire and Kenfig NNR, Glamorgan and surrounding areas. South Wales Project. internal Report to CCW. Cavers, P.B. & Harper, J.L. (1964) Biological flora of the British Isles. Rumex obtusifolius L. and R. crispus L. Journal of Ecology, 52, 737-766. Chandler, P.J. (1975) Observations on plant associations of the Psilidae (Diptera). Entomologist's Record, 87, 13-17. Ciurdarescu, G.; Savatti, M. (1972, publ. 1974) Insects pollinating clover in Transylvania. [Contributii la cunoasterea insectelor polenizatoare ale trifoiului in Transilvania.]. Analele Institutului de Cercetari pentru Protectia Plantelor 10 253-256 [Ro, en, B] Inst. Cercetari pentru Protectia Plantelor, Bucharest, Rumania. Claridge, M.F. (1970) Haltica carduorum Gurein Introduced into Britain as a potential control agent for Creeping thistle, Cirsium arvense (L.) Scop.. The Entomologist, 103, 210-212. Cohen, M. (1952) Contarina chrysanthemi Kieffer - a new gall midge pest of Shasta Daisy. Plant Pathology, 1, 51-53. Collin, J.E. (1945) The British species of Opomyzidae (Diptera). Entomologist's Record, 57, 13-17. Cox, M.L. (1995) Psylliodes cucullata (Illiger, 1807) (Coleoptera: Chrysomelidae, Alticinae), a species new to the British Isles. Entomologist's Gazette, 46, 271-276. Cox, M.L. (2001) Notes on the natural history, distribution and identification of seed beetles (Bruchidae) of Britain and Ireland. The Coleopterist, 9, 113-147. Crailsheim, K.; Schneider, L. H. W.; Hrassnigg, N.; Buhlmann, G.; Brosch, U.; Gmeinbauer, R. & Schoffmann, B. (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): dependence on individual age and function. Journal of Insect Physiology 38 (6) 409-419. Crane, E. (1985) Bees and honey in the exploitation of arid land resources. Plants for arid lands [edited by Wickens, G.E.; Goodin, J.R.; Field, D.V.]. London, UK; George Allen & Unwin. 163-175. Davis, B.N.K. (1983) Insects on nettles. Naturalists Handbook 1. Cambridge University Press, Cambridge. 79 DeGrandi-Hoffman, G.; Collison, C. H. (1982) Flowering and nectar secretion as they relate to honeybee foraging activity in birdsfoot trefoil (Lotus corniculatus). Journal of Apicultural Research 21 (4) 199-207. Demianowicz, Z. (1979) Nectar secretion and honey yield of Taraxacum officinale. [Nektarowanie i wydajnosc miodowa Taraxacum officinale Web.]. Pszczelnicze Zeszyty Naukowe 23 97-103. Dennis, R.L.H. (1992) The ecology of butterflies in Britain. Oxford University Press, Oxford. Dochkova, B. (1995) Study of Osmia coerulescens L. (Hymenoptera, Megachilidae) - a pollinator for lucerne. I. Biological and ecological features. Rastenievudni Nauki 32 (6) 61-63. Dochkova, B. (1995) Study of Osmia coerulescens L. (Hymenoptera, Megachilidae) - a pollinator for lucerne. II. Pollinating and building activity. Rastenievudni Nauki 32 (6) 64-66 [Bg, en, 9 ref.] Institut po Furazhite, Pleven, Bulgaria. Dochkova, B.; Atanasov, N.; Vasileva, E. (1981) Bee pollinators (Hymenoptera, Apoidea) of lucerne in the region of Pleven, Bulgaria. 6. Rate of pollination. Rastenievudni Nauki 18 (4) 145-146. Dochkova, B.; Atanasov, N.; Vasileva, E. (1981) Bees as pollinators of lucerne in the Pleven region. 1. Species composition and numbers. Rastenievudni Nauki 18 (1) 102-108. Dochkova, B.; Atanasov, N.; Vasileva, E. (1981) Bees as pollinators of lucerne in the Pleven region. 2. Feeding specialization. Rastenievudni Nauki 18 (2) 97-102. Dochkova, B.; Atanasov, N.; Vasileva, E. (1981) Bees as pollinators of lucerne in the Pleven region. 3. Seasonal dynamics of the species. Rastenievudni Nauki 18 (3) 102-109. Dochkova, B.; Atanasov, N.; Vasileva, E. (1981) Bees as pollinators of lucerne in the Pleven region. 4. Rate of pollination. Rastenievudni Nauki 18 (4) 140-146. Dockova, B.K.; Atanasov, N.; Vasileva, E.I. (1987) Species composition and number of wild bees (Hymenoptera, Apoidea) pollinating forage plants from the region of Pleven. Acta Zoologica Bulgarica (No. 35) 34-43. Dolling, W.R. (1991) The Hemiptera. Oxford University Press, Oxford. Douget, S. (1994) Coléoptères Chrysomelidae, Vol. 2, Alticinae. Fauna de France 80. Fédération Française des Sociétés de Sciences Naturalles, Paris. Eber, S., Knoll, S., & Brandl, R. (1999) Endophagous insects and structural niches on plants: ecology and evolutionary consequences. Ecological Entomology, 24, 292-299. Ebmer, A.W. (1969) Die Bienen des Genus Halictus Latr. S.L. im Grossraum von Linz (Hymenoptera, Apidae) Naturkundliches Jahrbuch der Stadt Linz. Teil 1. Ebmer, A.W. (1971) Die Bienen des Genus Halictus Latr. S.L. im Grossraum von Linz (Hymenoptera, Apidae) Sonderdruck aus Naturkundliches Jahrbuch der Stadt Linz. Teil III Ecological Database, University of York. Edwards, M. & Jenner M. (2005) Field guide to bumblebees of Great Britain and Ireland. Ocelli. Elfving, R. (1968) Die Bienen Finnlands - Fauna Fennica, 21. 1 - 69, Helsinki. Else, G.R. (in prep) Bees of Great Britain and Ireland (including the Channel Islands). Ray Society. Emmet, A.M. & Heath, J. (1990) The butterflies of Great Britain and Ireland, Vol 7, Pt 1. Harley Books, Colchester. Emmet, A.M. & Heath, J. (1991) The moths and butterflies of Great Britain and Ireland, Vol 7, Pt 2. Harley Books, Colchester. Emmet, A.M. (1996) The moths and butterflies of Great Britain and Ireland, Vol 3. Harley Books, Colchester. 80 Eversham, B.C. (1997) Picture-winged flies recording scheme (Diptera: Ulididae, Platystomatidae & Palopteridae). Newsletter 1., pp. 1-7. Extract fro ' An Atlas of Nationally Scarce & Threatened macro-moths of Great Britain' published in the National Moth Conservation Project News Bulletin 10. Falk, S.J. (1991) A review of the scarce and threatened flies of Great Britain (Part 1). Research and survey in nature conservation, No. 39. Ferrazzi, P. (1974) Dandelion honeys from Piedmont and Lombardy. 1. Melissopalynological analysis. [Mieli di "tarassaco"di Piemonte e Lombardia. 1. Analisi mellisso-palinologica.]. Apicoltore Moderno 65 (1/2) 21-26. Ferrazzi, P. (1974) Investigations on the Taraxacum officinale pollen shortage in dandelion honeys from Piedmont and Lombardy. [Indagini sulla scarsita di polline di Taraxacum officinale Weber in mieli di "tarassaco"di Piemonte e Lombardia.]. Ferrazzi, P. : Dandelion honeys from Piedmont and Lombardy. 1. Melissopalynological analysis.: Mieli di "tarassaco"di Piemonte e Lombardia. 1. Analisi mellisso-palinologica. Apicoltore Moderno 65 (3/4) 58-64. Ferrazzi, P.; Botasso, B. (1989) Research on the foraging activity of Apis mellifera in the Maira valley. [Indagini sull'attivita di raccolta di Apis mellifera L. in Valle Maira.]. Apicoltore Moderno 80 (2) 69-81. Ferrazzi, P.; Marletto, F. (1980) Melissopalynological analysis of honeys from the high Chisone Valley. [Analisi melissopalinologica di mieli dell'alta Val Chisone.]. Apicoltore Moderno 71 (5) 145-153. Fossel, A. (1974) Bee pasture in the eastern Alps, exemplified by the Styrian Ennstal. [Die Bienenweide der Ostalpen, dargestellt am Beispiel des steirischen Ennstales.]. Mitteilungen des Naturwissenschaftlichen Vereins fur Steiermark 104 87-118. Free, J. B.; Williams, I. H. (1980) The value of white clover Trifolium repens L., cultivar S100 planted on motorway verges to honeybees Apis mellifera L. Biological Conservation 18 (2) 89-92. Friedli, J. & Bacher, S. (2001) Mutualistic interaction between a weevil and a rust fungus, two parasites of the weed Cirsium arvense. Oecologia, 129, 571–576. Gange, A.C., Brown, V.K., Evans, I.M., & Storr, A.L. (1989) Variation in the impact of insect herbivory on Trifolium pratense through early plant succession. Journal of Ecology, 77, 537551. Gayubo, S.F., Torres, F. & Heras, C. (1989) Estudio sobre las abejas de la Sierra de Gredos (Hymenoptera, Apoidea). Cuadernos Abulense, 11: 83-166. Gebhardt, M.; Rohr, G. (1987) On the bionomics of the sand bees Andrena clarkella, A. cineraria, A. fuscipes and their cuckoo bees. [Zur bionomie der Sandbienen Andrena clarkella (Kirby), A. cineraria (L.), A. fuscipes (Kirby) und ihrer Kuckucksbienen (Hymenoptera: Apoidea).]. Drosera, 87 (2) 89-114. Girnik, D. V. (1979) Honeybee pollination and seed production of red clover. Selektsiya i Semenovodstvo, (No. 4) 48-49. Goater, B. (1986) British Pyralid Moths. Harley Books, Colchester. Golikov, V. I. (1987) Local wild bee species are the main lucerne pollinators in the steppe zone of the northwestern Transcaucasus [USSR]. Biologicheskie Nauki, (No. 7) 49-53. Gønet, H. (1997) The Brentidae (Coleoptera) of Northern Europe. Brill, New York. Gorodnii, N.G.; Fesenko, A.F. (1975) Pollination of Lathyrus pratensis [by honeybees]. Pchelovodstvo, 95 (3) 24-25. 81 Graeffe, E. (1902) Die Apiden-Fauna des Österreichischen Küstenlandes. Verhandlungen der K. K. zoologischbotanischen Gesellschaft in Wien, 52: 113-140. Grieg-Smith, P. (1948) Biological flora of the British Isles. Urtica L. Journal of Ecology, 36, 339355. Grishina, E. M. (1977) Bees (Apoidea) as pollinators of Trifolium repens in the area of the middle Ob'. Prirodnye resursy sibiri [edited by Yuzefovich, E.S.]. Tomsk, USSR; Izdatel'stvo Tomskogo Universiteta. 57-60. Grozdanic, S. (1970) Flower visits of insects to some species of Vicia (Leguminosae). Zbornik Matice Srpske 38 83-90. Hackman, W. (1956) The Scathophagidae (Diptera) of Eastern Fenoscandia. Fauna Fenica II. Helsingforsiae, Helsingfors. Harper, J.L. & Wood, W.A. (1957) Biological flora of the British Isles. Senecio jacobae L. Journal of Ecology, 45, 617-637. Harper, J.L. (1957) Biological Flora of the British Isles. Ranunculus acris L. Journal of Ecology, 45, 289-342. Heath, J & Emmet, A.M. (1985) The moths and butterflies of Great Britain and Ireland, Vol 2. Harley Books, Colchester. Heath, J. & Emmet, A.M. (1983) The moths and butterflies of Great Britain and Ireland, Vol 10. Harley Books, Colchester. Heath, J. & Emmet, A.M. (1983) The moths and butterflies of Great Britain and Ireland, Vol 9. Harley Books, Colchester. Heath, J. (1983) The moths and butterflies of Great Britain and Ireland, Vol 1. Harley Books, Colchester. Hedtke, C. (1996) Pollen sources of Apis mellifera and 3 Bombus species. [[Abstract].]. Pszczelnicze Zeszyty Naukowe 40 (2) 255-256. Hedtke, C. (1996) Pollen spectrum of honeys in Brandenburg. [[Abstract].]. Pszczelnicze Zeszyty Naukowe 40 (2) 257-258. Heie, O. E. (1995). The Aphidoidea (Hemiptera) of Fennoscandia and Denmark 6. Aphididae: Part 3 of tribe Macrosiphini (Aphidinae), and Lachnidae (Fauna ent. Scand. 31) Brill HB. Heie, O.E. (1980). The Aphidoidea (Hemiptera) of Fennoscandia and Denmark 1. The families Mindaridae, Hormaphididae, Thelaxidae, Anoeciidae and Pemphigidae (Fauna Ent. Scand. 9). Scandinavian Science Press PB. Heie, O.E. (1992). The Aphidoidea (Hemiptera) of Fennoscandia and Denmark 4. Aphididae: Part 1 of tribe Macrosiphini of subfamily Aphidinae. (Fauna Ent. Scand. 25). Brill PB. Heras, C. & Gayubo S.F. (1989) Contribucion al conocimiento de los apoideos de la provincia de Zamora. I. Anthophoridae (Hymenoptera: Apoidea).; Eos, 65(1): 61-71. Hodkinson, I.D. & White, I.M. (1979). Handbooks for the Identification of British Insects: Homoptera, Psylloidea. Vol 2, Part 5 (a). Royal Entomological Society of London, London. Hoffman, A. (1950) Coleopteres Curculionides (Premiere Partie). Fauna de France. 52. Paul Lechevalier, Paris. Hoffman, A. (1954) Coleopteres Curculionides (Deuxieme Partie). Fauna de France. 59. Paul Lechevalier, Paris. Hoffman, A. (1958) Coleopteres Curculionides (Troisieme Partie). Fauna de France. 62. Paul Lechevalier, Paris. 82 Holm, S. N. (1975) Variation among honeybee colonies in pollen collection from different agricultural crops. Proceedings of the III International Symposium on Pollination, 1974. 219-228. Royal Veterinary and Agric. Univ., Stn. Hojbakkegard, DK 2630 Taastrup, Denmark. Howarth, S.E. & Williams, J.T. (1968) BFBI Chrysanthemum leucanthemum. J. Ecol. 56 585-595. Howe, M.A. (2004) A provisional checklist of the invertebrates recorded in Wales 4: True Bugs (Hemiptera, Heteroptera). CCW, Bangor. Hyman, P.S. (1992) A review of the scarce and threatened Coleoptera of Great Britain. Part 1. UK Nature Conservation No. 3, JNCC, Peterborough. Hyman, P.S. (1994) A review of the scarce and threatened Coleoptera of Great Britain. Part 2. UK Nature Conservation No. 12, JNCC, Peterborough. Iglesias, M. I.; Jato, M. V.; Aira, M. J. (1993) Palynological study of mountain honey in the province of Orense (NW Spain). [Estudio palinologico de mieles de montana de la provincia de Orense (NW-Espana).]. Acta Botanica Malacitana, 18 119-123. Iob, M.; Simonetti, G. (1991) The relationship between bee plants and hive products in the Julian Prealps. [Relazione tra flora di interesse apistico e prodotti dell'alveare in un ambiente delle Prealpi Giulie.]. Stato attuale e sviluppo della ricerca in apicoltura. Atti Convegno 25-26 Ottobre, Sassari [edited by Prota, R.; Floris, I.]. Ismay, J.W. (1981) British Meromyza (Dipt., Chloroidae). Entomologist's Monthly Magazine, 116, 177-197. Iuga, V.G. (1962) The Apoids as pollinators. Travaux du Museum d'Histoire Naturelle Gr. Antipa, 3: 225-237. Jato Rodriguez, M. V.; Iglesias Fdez, I. (1989-1990) Climatological variations in the pollen content of honeys. [Oscilaciones climatologicas en el contenido polinico de las mieles.]. Albariza (No. 14;1) 34-36;29-31. Jato, M. V.; Sala-Llinares, A.; Iglesias, M. I.; Suarez-Cervera, M. (1991) Pollens of honeys from north-western Spain. Journal of Apicultural Research, 30 (2) 69-73. JNCC (2002) Recorder Version 2.0.5.0 Dorset Software Services Limited, Dorset. Jones, D.A.; Compton, S.G.; Crawford, T.J.; Ellis, W.M.; Taylor, I.M. (1986) Variation in the colour of the keel petals in Lotus corniculatus L. 3. Pollination, herbivory and seed production. Heredity, 57 (1) 101-112. Jones, D.A. & Turkington, R. (1986) Biological Flora of the British-Isles - Lotus corniculatus L. Journal of Ecology, 74, 1185-1212. Kangasjarvi, J.; Oksanen, J. (1989) Pollinator behaviour in cultivated and wild arctic bramble (Rubus arcticus L.). Journal of Agricultural Science in Finland, 61 33-38. Käpylä, M., (1978) Bionomics of 5 wood nesting solitary bees (Hym. Megachilidae), with emphasis on flower relationships. Biol. Research reports. Univ. Jyväskylä. Kapyla, M.; Niemela, P. (1979) Flowers visited by honey bee in southern Finland. Maataloustieteellinen Aikakauskirja, 51, 17-24. Kevan, D.K. (1962) Sitona lineellus Auctt. and S. decipiens Lindberg (Col., Curculionidae): A change of nomenclature. Entomologist's Monthly Magazine, 98, 171. Kirk-Spriggs, A.H. (1996) Pollen beetles. Coleoptera: Kateridae and Nitidulidae: Meligethinae. Handbooks for the Identification of British Insects. Vol. 5, Part 6a. Royal Entomological Society, London. Klinkhamer, P.G.L. & de Jong, T.J. (1993) Biological Flora of the British Isles - Cirsium vulgare (Savi) Ten. Journal of Ecology, 81, 177-191. 83 Kocourek, M., (1966) Prodromus der Hymenopteren der tschechoslowakei; Pars 9; Acta faun. ent. Mus. nat. Prague, 12; 1-122. Kosior, A. (1980) The role of bumble bees in the ecology of the West Bieszczady mountain range. [Rola trzmieli (Bombus Latr.) w biocenozach Bieszczadow zachodnich.]. Ochrona Przyrody, 43, 189-222 + 1 pl. Kropacova, S.; Nedbalova, V. (1972) Pollen analysis of honeys from north Moravia [Czechoslovakia]. [Pylove analyzy medu severovychodni Moravy.]. Acta Universitatis Agriculturae, Brno, A (Facultas Agronomica) 20 (3) 455-461. Kubisova-Kropacova, S.; Nedbalova, V. (1975) A study of the relationship between the honeybee and birdsfoot trefoil. [Studia o vztahoch medzi vcelou medonosnou (Apis mellifera L.) a l'adencom rozkatym (Lotus corniculatus L.).]. Pol'nohospodarstvo 21 (7) 560-567. Lagerlof, J.; Stark, J.; Svensson, B. (1992) Margins of agricultural fields as habitats for pollinating insects. Agriculture, Ecosystems & Environment 40 (1-4) 117-124. Le Quesne, W.J. & Payne, K.R. (1981). Handbooks for the Identification of British Insects. Cicadellidae (Typhlocybinae) with a Check list of the British Auchenorrhyncha. Vol 2, Part 2. Royal Entomological Society of London, London. Le Quesne, W.J. (1960) Handbooks for the Identification of British Insects. Hemiptera, Fulgoromorpha. Vol 2, Part 3. Royal Entomological Society of London, London. Le Quesne, W.J. (1965) Handbooks for the Identification of British Insects. Hemiptera. Cicadomorpha. Vol 2, Part 2 (a). Royal Entomological Society of London, London. Le Quesne, W.J. (1969) Handbooks for the Identification of British Insects. Hemiptera. Cicadomorpha. Vol 2, Part 2 (b). Royal Entomological Society of London, London. Leita, L.; Muhlbachova, G.; Cesco, S.; Barbattini, R.; Mondini, C. (1996) Investigation of the use of honey bees and honey bee products to assess heavy metals contamination. Environmental Monitoring and Assessment, 43 (1) 1-9. Løken, A., (1973) Studies on Scandinavian Bumble Bees (Hymenoptera, Apidae). Norsk Entomolgisk Tidskrift, Vol. 20, No. 1. Lovelius, O.L. (1980) Ecology of Medicago sativa: flowering and pollination. Ukrains'kii Botanichnii Zhurnal 37 (3) 11-13. MacDonald, M.A. (2000) An analysis of pollen load data for the UKBAP Bumblebee Working Group. Internal report to Bumblebee Working Group. MacDonald, M.A. (2003) Bumblebees. SNH. MacDonald, M.A., http://hbrg.mysite.wanadoo-members.co.uk./ Maciel Correia, M. de L. (1992) Survey of pollinators of legumes in Portugal. Study of their specific flower range. Bees for pollination. Proceedings of an EC workshop, Brussels, Belgium, 2-3 March 1992 [edited by Bruneau, E.]. Brussels, Belgium; Commission of the European Communities, Division for the Coordination of Agricultural Research. 29-36. Majerus, M.E. & Kearns, P. (1989) Ladybirds. Richmond Publishing Co. Ltd., Slough, England. Mamaev, B.M. & Krivosheina, N.P. (1993) The larvae of the gall midges (Diptera, Cecidomyidae). A.A.Balkema, Rotterdam. Marletto, F.; Manino, A. (1988) Insect pollinators of sainfoin grown in Piedmont [Italy] for seed production. [Insetti impollinatori di lupinella coltivata in Piemonte per la produzione di seme.]. Apicoltore Moderno, 79 (2) 59-66. Marletto, F.; Manino, A.; Barbero, R. (1985) Investigations on pollinating insects in lucerne crops grown for seed production. [Indagini sui pronubi in coltivazioni di erba medica per la produzione di seme.]. Apicoltore Moderno, 76 (3) 95-102. 84 Marletto, F.; Manino, A.; Ferrazzi, P. (1990) Contribution to knowledge of the insects pollinating Trifolium pratense and T. repens. [Contributo alla conoscenza degli insetti pronubi di Trifolium pratense L. e di T. repens L.]. Apicoltore Moderno, 81 (5) 213-222. Marletto, F.; Manino, A.; Saglia, A. (1988) Insect pollinators of lucerne in Susa Valley [Piedmont, Italy]. [Insetti impollinatori di erba medica in Valle di Susa.]. Apicoltore Moderno, 79 (4) 153-158. Marshall, J.E. (1979) The larvae of the British species of Chrysolina (Chrysomelidae). Systematic Entomology, 4, 409-417. Maurizio, A. (1979) The pollen spectrum of some honeys from Norway. [Beitrag zur Kenntnis des Pollenspektrums norwegischer Honige.]. Apidologie, 10 (4) 359-393. Mayer, D. F.; Lunden, J. D. (1991) Honey bee foraging on dandelion and apple in apple orchards. Journal of the Entomological Society of British Columbia 88 15-17. Michez, D., Monographie systématique, biogéographique et écologique des Melittidae (Hymenoptera, Apoidea) de l’Ancien Monde – Premières données et premières analyses. 2001-2002, Unpublished Diplôme d’Etude; FACULTE UNIVERSITAIRE DES SCIENCES AGRONOMIQUES DE GEMBLOUX. Miller, D & Ben-Dov, Y.(2005) ScaleNet. http://www.sel.barc.usda.gov/scalenet/scalenet.htm Milne, D.L. (1960) The gall midges (Diptera: Cecidomyidae) of clover flower heads. Transactions of the Royal Entomological Society of London, 112, 73-108. Mirchev, M.; Maslinkov, M.; Antonova, N. (1981) Observations on bee pollinators of lucerne in the area of the Obraztsov Chiflik Agricultural Institute, Ruse. Nauchni Trudove, Vissh Selskostopanski Institut "Vasil Kolarov 26 (4) 225-229. Mistry, R. P. (1985) Analytical studies on honey. PhD Thesis, Salford University, UK. viii + 455 pp. Móczár, L. (1959) The activity of wild bees (Hymenoptera Apidae) in Hungarian lucerne fields. Acta agron. Acad Sci. Hung. 9, 237-289. Morris, M.G. (1967) Differences between the invertebrate faunas of grazed and ungrazed chalk grassland. I. Responses of some phytophagous insects to cessation of grazing. Journal of Applied Ecology, 6, 459-474. Morris, M.G. (1990) Orthocerous weevils Coleoptera: Curculionidae. Hndbk Idt. Brit Inscts vol.5 pt. 16. R.E.S. London. Morris, M.G. (1991) A taxanomic check list of the British Ceutorhynchinae, with note, particularly on host plant relationships (Coleoptera: Curculionidae). Entomologist's Gazette, 42, 255-265. Morris, M.G. (1997) Broad-nosed weevils. Handbooks for the Identification of British Insects. V. Part 17a. Royal Entomological Society of London, London. Morris, M.G. (2002) True Weevils (Part 1). Coleoptera: Curculionidae (Subfamilies Raymondionyminae to Smicronychinae). Handbooks for the Identification of British Insects. Vol. 5, Part 17b. Royal Entomological Society, London. Mostowska, I. Honeybee pollination of Trifolium pratense in northern Poland. [Zapylanie koniczyny czerwonej - Trifolium pratense L. przez pszczole miodna - Apis mellifica L. na polnocy Polski (Hymenoptera, Apidae).]. Polskie Pismo Entomologiczne (1979) 49 (2) 407-411. Mound, L.A. (1966). A Revision of the British Aleyrodidae (Hemiptera: Homoptera). Bulletin of the British Museum (Natural History) 17, 397-428 Mound, L.A., Morison, G.D., Pitkin, B.R., & Palmer, J.M. (1976) Thysanoptera. Handbooks for the Identification of British Insects. Vol. 1, Part 11. Royal Entomological Society of London, London. Nau, B.S. (2002). DRAFT: Keys to Miridae. 85 Nickel, H. (2003) The Leafhoppers and Planthoppers of Germany (Hemiptera, Auchenorrhyncha): Patterns and strategies in a highly diverse group of phytophagous insects. Pensoft Publishers, Bulgaria. Obermaier, E. & Zwolfer, H. (1999) Plant quality or quantity? Host exploitation statergies in three Chrysomelidae species associated with Asteraceae host plants. Entomologia Experimentalis Et Applicata, 92, 165-177. Ornosa, C., Ortiz-Sanchez, F.J., Hymenoptera Apoidea I. Fauna Iberica, vol 23. Ortu, S.; Floris, I.; Pampaloni, S. (1991) Preliminary observations on the insect pollinators of white clover (Trifolium repens ) in Sardinia. [Osservazioni su insetti impollinatori di trifoglio bianco (Trifolium repens L.) in Sardegna.]. Apicoltore Moderno, 82 (3) 103-111. Osychnyuk, A.Z., (1959) Bdjolini (Apoidea) pravoberejnogo stepu Ukraini. Kiev (Publ. House of Academy of Sciences), 92 pp. O'Toole, C., (2002) Bumblebees. OBC. Otter, M.A. & Imms, A.D. (1938) On the morphology of the larvae of three species of Cecidomyidae (Diptera) from knapweed (Centaurea) flowers. Transactions of the Royal Entomological Society of London, 87, 39-67. Owen, J.A. (1993) Studies on the life history of Chrysolina crassicornis (Helliesin) (Col: Chrysomelidae). The Entomologist, 112, 69-74. Parsons, M. S. (1984) A provisional national review of the status of British microlepidoptera. NCC. Parsons, M. S. (1993) A review of the scarce and threatened pyralid moths of Great Britain. JNCC. Parsons, M. S. (1995) A review of the scarce and threatened ethmiine, stathmopodine and gelechiid moths of Great Britain. JNCC. Patch, E.M. (1938). Food Plant Catalogue of the Aphids of the World. The Marine Agricultural Experimet Station. Bulletin, 393, 35-431. Peeters, T., Raemakers, I., & Smit, J., (1999) Voorlopige atlas van de Nederlandse bijen (Apidae), EIS – Nederland. Pérez-Iñigo Mora, C. & Gayubo, S.F. (1989) Notas sobre los apoideos de la sierra de Béjar. I. Anthophoridae (Hym. Apoidea). Studia Oecologica, 6: 313-331. Pericart, J. (1998) Hemipteres Lygaeidae Euro-Mediterraneens 1. Faune de France 84A. Federation Francaise Des Societes de Sciences Naturelles, Paris. Persano Oddo, L.; Piazza, M. G.; Sabatini, A. G.; Accorti, M. (1995) Characterization of unifloral honeys. Apidologie 26 (6) 453-465. Persano, L.; Ricciardelli d'Albore, G. (1974/1975) The pollen flora of some areas of Lazio. [Sulla flora pollinifera di alcune zone del Lazio.]. Annali dell'Istituto Sperimentale per la Zoologia Agraria 4 53-63 + 5 graphs. Pesenko, Y., Banaszak, J., Radchenko, V.G., & Cierzniak, T. (2000) Bees of the Family Halictidae (excluding Sphecodes) of Poland: taxonomy, ecology and bionomics. Bydgoszcz. Pesenko, Y.A., (1974) Materials on the fauna and ecology of bees (Hymenoptera, Apoidea) of the Lower Don. Report IV. The family Anthophoridae. Revue d'Entomologie de l'URSS, 53(2):324-333. Petkov, V. (1977) Investigation of the nectar-producing qualities of some forage plants. Rastenievudni Nauki, 14 (3) 123-133. Petkova, O. P. (1984) Origin of pollen collected by honeybees during different seasons in Smoljan and Beden regions, Bulgaria. Godishnik na Sofiiskiya Universitet "Kliment Okhridski 74 (2) 105-112. 86 Phillips, W.M. (1977) Observations on the biology and ecology of the chrysomelid genus Haltica Geoff. in Britain. Ecological Entomology, 2, 205-216. Poole, A., (2000) Nest observations on Castlemartin AFTC range. Internal Report to CCW Porter, J. (1997) The Colour Identification Guide to Caterpillars of the British Isles (Macrolepidoptera). Penguin Books Ltd, London. Pouvreau A., & Loublier, Y., (1955) Observation sur la biologie de Dasypoda hirtipes (F., 1973). Annales de la Société entomologique de France, 31/3: 237-248. Priore, R.; Quaranta, M.; Barrera, R. V. (1995) New contribution to the botanical characterization of honey from Marche [central Italy]. [Nuovo contributo all caratterizzazione botanica dei mieli delle Marche.]. Apicoltura, (No. 10) 1-9. Pritsch, G. (1975) The pollination of Trifolium pratense by honeybees and other insects. [Die Beteiligung der Honigbienen und Wildinsekten bei der Bestaubung des Rotklees (Trifolium pratense L.).]. Proceedings of the III International Symposium on Pollination, 1974. 107-114. Quinlan, J. & Gauld, I.D. (1981). Handbooks for the Identification of British Insects: Symphyta, Hymenoptera. Vol 6, Part 2 (a). Royal Entomological Society of London, London. Read, R.W.J. (1980) Two interesting species of Curculionidae (Coleoptera) from west Cumbria. Entomologist's Gazette, 31, 162-164. Redfern, M. (1983) Insects and thistles. Cambridge. Naturalists' Handbook 4. Cambridge University Press, Ricciardelli d'Albore, G. (1975) Botanical origin of Abruzzi honeys. [Origine botanica del mieli degli Abruzzi.]. Apicoltore Moderno, 66 (6) 178-182. Ricciardelli d'Albore, G. C. (1980) Preliminary observations on using honeybees to pollinate some types of Leguminosae in the upland pastures of Umbria. [Osservazioni preliminari sulla possibilita di impiego delle api per l'impollinazione di alcuni ecotipi di leguminose sui pascoli sommitali umbri.]. Apicoltore Moderno, 71 (2) 45-50. Ricciardelli d'Albore, G. (1997) Characterization of honeys by their quality and geographical origin. [Caratterizzazione dei mieli sotto il profilo della qualita e dell'origine geografica.]. Ape Nostra Amica, 19 (3) 24-30. Ricciardelli d'Albore, G. (1994) Characterization of honeys from the Veneto region [Italy] by quality and geographical origin. [Caratterizzazione dei miele del Veneto sotto il profilo della qualita e dell'origine geografica.]. Annali della Facolta di Agraria, Universita degli Studi di Perugia, 48 457-492. Ricciardelli d'Albore, G. (1988) High quality honey in the Gubbio-Gualdo Tadino (Umbria) area. [Il miele D.O.C. del comprensorio di Gubbio-Gualdo Tadino (Umbria).]. Annali della Facolta di Agraria, Universita degli Studi di Perugia, 42 23-33. Ricciardelli d'Albore, G. (1983) Insects and honeybees as pollinators of some forage Leguminosae (Melilotus italica, Melilotus alba, Melilotus officinalis, Trifolium rubens, Trifolium repens) in a specialized area. [Osservazioni sugli insetti impollinatori di alcune leguminose foraggere (Melilotus italica Lam., Melilotus alba Medicus, Melilotus officinalis Pallas, Trifolium rubens L., Trifolium repens L.) in un areale specializzato.]. Redia 66 261-270. Ricciardelli d'Albore, G. (1984) Observations on the insect pollinators of some Leguminosae (Onobrychis viciifolia, Lotus corniculatus, Medicago arborea, Medicago sativa) in a specialized area. [Osservazioni sugli insetti pronubi di alcune Leguminosae (Onobrychis viciifolia Scop., Lotus corniculatus L., Medicago arborea L., Medicago sativa L.) in un areale specializzato.]. Redia 67 145-155. Ricciardelli d'Albore, G. (1989) Pollens of some Compositae in melissopalynology. [I pollini di alcune composite in melissopalinologia.]. Apicoltura (No. 5) 193-247. 87 Ricciardelli d'Albore, G. (1985) The pollinating insects of sainfoin in Umbria and those of crimson clover in Latium. [Gli insetti impollinatori della lupinella (Onobrychis viciifolia Scop.) in Umbria e del trifoglio incarnato (Trifolium incarnatum L.) nel Lazio.]. Redia 68 39-60. Ricciardelli d'Albore, G.; Piastrelli, G. (1977) Botanical origins of Marche honeys. [Origine botanica dei mieli delle Marche.]. Apicoltore Moderno, 68 (5) 138-143. Ricciardelli d'Albore, G.; Roscioni, T. (1990) Pollinators of sainfoin (Onobrychis viciifolia) in a mountain environment. [Gli insetti impollinatori della lupinella (Onobrychis viciifolia Scop.) in ambiente montano.]. Apicoltore Moderno, 81 (5) 195-201. Ricciardelli d'Albore, G.; Tonini d'Ambrosio, M. (1972/1973) Botanical origin of honeys from the Lazio district. [L'origine botanica dei mieli del Lazio.]. Annali dell'Istituto Sperimentale per la Zoologia Agraria, 3 129-146. Richards, W. R. (1976). A host index for species of Aphidoidea described during 1935 to 1969. Can. Ent. 108: 499-550. Roberts, P. (1994) What are the important nectar sources for honey bees ? Forage for bees in an agricultural landscape [edited by Matheson, A. (Editor)]. Cardiff, UK; International Bee Research Association. 21-33. Roberts, S.P.M., (2000) Observations on the Bumblebee Bombus sylvarum (Linnaeus) in Lozere (France), August. Internal report to Bumblebee Working Group. Rodet, G. (1995) Function of the self-pollen in white clover (Trifolium repens L.) pollination. [[Summary].]. Apidologie, 26 (5) 434-435. Ruszkowski, A. (1970) Food plants of Bombus lapidarius (L.) and its economic importance. [Rosliny pokarmowe i znaczenie gospodarcze trzmieli: Kamiennika - Bombus lapidarius (L.) i jego znaczenie gospodarcze.]. Pamietnik Pulawski 37 (Supplement) 43-60. Ruszkowski, A. (1971) Forage resources of Bombus agrorum and possibilities of increasing its numbers. [Tasma pokarmowa trzmiela rudego - Bombus agrorum (F.) oraz mozliwosci rozmnozenia tego gatunku.]. Pamietnik Pulawski, 47 251-282. Ruszkowski, A. (1973) The importance of a succession of forage plants in increasing the number of bumble bees pollinating lucerne. [Znaczenie tasmy pokarmowej dla podniesienia liczebnosci trzmieli zapylajacych lucerne.]. Zeszyty Problemowe Postepow Nauk Rolniczych (No.131) 171-176. Ruszkowski, A.; Bilinski, M. (1970) Food plants and economic importance of the bumblebees Pomobombus and Confusibombus. [Rosliny pokarmowe i znaczenie gospodarcze trzmieli z podrodzajow Pomobombus Vogt i Confusibombus Ball.]. Pamietnik Pulawski, 37 (Supplement) 33-42. Ruszkowski, A.; Bilinski, M. (1986) Food plants of Anthidiini and of some other Megachilidae. [Rosliny pokarmowe makatek i niektorych innych pszczo<l> miesiarkowatych (Hymenoptera, Megachilidae).]. Pszczelnicze Zeszyty Naukowe 30 89-109. Ruszkowski, A.; Bilinski, M.; Jab<l>onski, B.; Gosek, J. (1985) Number of lucerne flowers tripped in unit of time by different bee species. [Liczba kwiatow lucerny otwierana w jednostce czasu przez rozne gatunki pszczo<l>owatych.]. Pszczelnicze Zeszyty Naukowe 29 301-314. Ruszkowski, A.; Bilinski, M.; Kaczmarska, K.; Gosek, J.; Kosior, A. (1994) Food plants and economic importance of Halictus tumulorum. [Rosliny pokarmowe smuklika koniczynowca Halictus tumulorum (L.) (Apoidea, Halictidae) oraz jego znaczenie gospodarcze.]. Pszczelnicze Zeszyty Naukowe, 38 183-193. Ruszkowski, A.; Bilinski, M.; Kosior, A.; Bak, J.; Kaczmarska, K. (1989) The bumble bees of the Malopolska uplands [Poland]. [Trzmiele Wyzyny Ma<l>opolskiej.]. Pszczelnicze Zeszyty Naukowe, 33 33-54. 88 Ruszkowski, A.; Bilinski, M.; Kosior, A.; Kaczmarska, K. (1994) Food plants and economic importance of Polish species of Eucera (Apoidea, Anthophoridae) and characteristics of a new Eucera species. [Rosliny pokarmowe i znaczenie gospodarcze polskich gatunkow kornutki (Eucera Scopoli, Apoidea, Anthophoridae) oraz opis nowego gatunku.]. Pszczelnicze Zeszyty Naukowe 38 155-170. Sabatini, A. G.; Giordani, G.; Bottazzi, F. (1985) Pollen plants and bees: results of an investigation. [Flora pollinifera ed api: risultati di un'indagine.]. Ape Nostra Amica, 7 (4) 4-12. Sabatini, A. G.; Piana, M. L. (1991) Pollen spectrum of honeys from the province of Udine [Friuli, NE Italy]. [Spettro polinico di mieli della provincia di Udine.]. Apicoltura (No. 7) 65-83. Sagar, G.R. & Harper, J.L. (1964) Biological flora of the British Isles. Plantago major L., P. media L. and P. lanceolata L.. Journal of Ecology, 52, 189-121. Scheiber-Trenkwalder, K.; Vorwohl, G. (1995; 1996) The pollen pattern of honeys from the Tyrol. [Das Pollenbild der tiroler Honige.]. Bienenwelt 37; 38 (12; 1) 265-276;6-11. Scherf, H. (1964) Die entwicklungsstadien der mitteleuropäIschen Curculioniden (morphologie, bioomie, ökologie). Abh. Senckenb. Naturforsch. Ges., 506, 1-335. Skinner, B. (1984) Colour identification guide to Moths of the British Isles. Penguin Books Ltd. London. Snetkov, M. A. & Smurov, A. V. (1978) Some regularities of dandelion inflorescence visits by the bee, Apis mellifera, revealed by theoretical statistical distributions. Zoologicheskii Zhurnal 57 (10) 1519-1528. Söderman, G & Leinonen, R. (2003) Suomen Mesipistiäiset ja niiden uhanalaisuus. Tremex Press Oy, Helsinki. Southwood, T.R.E. & Leston, D. (1959). Land and water bugs of the British Isles. Warne, London. Sowa, S.; Ruszkowski, A.; Billinski, M. & Kosior, A. (1983) Numbers and species composition of insects pollinating red clover (Trifolium pratense) in Poland in 1972-1975. [Liczebnosc sklad gatunkowy owadow zapylajacych konicyne czerwona (Trifolium pratense L.) w Polsce w latach 1972-1975.]. Biuletyn Instytutu Hodowli i Aklimatyzacji Roslin (No. 151) 147-162. Spencer, K.A. (1972) Diptera: Agromyzidae. Hndbk Idt. Brit Inscts vol.10 pt. 5 (g). R.E.S. London Spencer, K.A. (1990) Host specilisation in the world Agromyzidae (Diptera). Kulwer Academic Publishers, London. Stroyan, H.L.G. (1977) Homoptera, Aphidoidea: Chaitophoridae & Callaphididae. Handbooks for ther Identification of British Insects 2(4a). Royal Entomological Society, London. Stroyan, H.L.G. (1984) Aphids-Pterocommatinae and Aphidinae (Aphidini) Homoptera, Aphididae. Handbooks for the identification of British Insects 2(6). Royal Entomological Society, London. Surrey, R. J. & Parsons, M. S. (in press) A review of the scarce and threatened incurvariid, prodoxid, adelid, heliozelid, psychid, tineid and ochsenheimeriid moths of Great Britain. JNCC. Svensson, B., (2002) Foraging and nesting ecology of bumblebees (Bombus spp.) in agricultural landscapes in Sweden. Doctoral thesis (unpublished). Szafranski, P. (1992) Notes on trophic specilisation within the vibex-group of Cassida L. (Coleoptera: Chrysomelidae). Entomologist's Gazette, 43, 129-130. Tasei, J. N. (1978) Insects pollinating Medicago sativa in France. [Les insectes pollinisateurs de la luzerne (Medicago sativa L.) en France.]. Apidologie 9 (3) 175-194. Tasei, J-N., (1972) Observations preliminaires sur la biologie d'Osmia (Chalcosmis) coerulescens L. (Hymenoptera Megachilidae), pollinisatrice de la luzerne (Medicago sativa), Apidologie, 3: 149-165. 89 Tatchell, G.M., Parker, S.J. & Woiwod, I.P. (1982). Synoptic Monitoring of Migrant Insect Pests in Great Brtain and Western Europe IV. Host Plants and their Distribution for Pest Aphids in Great Britain. Rothamsted Report for 1982, Part 2. Teras, I. (1985) Flower visits of bumblebees (Bombus: Hymenoptera, Apidae) during one day in northeastern Finland. Notulae Entomologicae, 65, 129-135. Terzo, M., (2000) Classification phylogénétique des Cératines du monde et monographie des espèces de la région ouest-paléarctique et de l'Asie Centrale (Hymenoptera, Apoidea, Xylocopinae: Ceratina Latreille). Unpublished PhD thesis. UMH. Tscharntke, T. & Greiler, H.J. (1995) Insect Communities, Grasses, and Grasslands. Annual Review of Entomology, 40, 535-558. Turkington, R. & Aarssen, L.W. (1983) Biological flora of the British Isles - Hypochoeris Radicata L. (Achyrophorus Radicatus (L.) Scop.). Journal of Ecology, 71, 999-1022. Valencia-Barrera, R. M.; Fombella-Blanco, M. A.; Fernandez-Gonzalez, D.; Diaz-Gonzalez, T. E. (1994) Pollen spectra of honey from different phytogeographical regions of Leon Province, NW Spain. [Les spectres polliniques des miels de differentes regions phytogeographiques de la Province de Leon (N.O. de l'Espagne).]. Grana, 33 (4/5) 268-275. Varis, A.-L.; Helenius, J.; Koivulehto, K. (1982) Pollen spectrum of Finnish honey. Journal of the Scientific Agricultural Society of Finland, 54 403-420. Westrich, P. (1989) Die Wildbienen Baden-Wurttemburgs, (2 vols). Eugen Ulmer. Westrich, P. (2001) Zum Pollensammelverhalten der Seidenbiene Colletes floralis EVERSMANN 1852 (Hymenoptera, Apidae). Linzer Biologisches Beitrag 33/1: diverse: 33/1/2001. White, I.M. & Korneyev, V.A. (1989) A revision of the Western Palearctic species of Urophora Robineau-Desviody (Diptera: Tephritidae). Systematic Entomology, 14, 327-374. White, I.M. (1988) Tephritid flies, Diptera: Teprhritidae. Handbooks for the Identification of British Insects. Vol. 10, Part 5a. Royal Entomological Society of London, London White, I.M., (1988) Tephritid Flies (Diptera: Tephritidae). Handbooks for the identification of British Insects. Vol 10, Part 5 (a) RES. Wille, H.; Wille, M.; Kilchenmann, V.; Imdorf, A.; Buhlmann, G. (1985) Pollen gathering and population dynamics of three Liebefeld honeybee colonies during two consecutive years. [Pollenernte und Massenwechsel von drei Apis mellifera-Volkern auf demselben Bienenstand in zwei aufeinanderfolgenden Jahren.]. Revue Suisse de Zoologie, 92 (4) 897-914. Williams, D.J. (1962) The British Pseudococcidae (Homoptera: Coccoidea). Bulletin of the British Museum (Natural History) (entomology) 12: 1-80. Williams, I. H. (1996) Aspects of bee diversity and crop pollination in the European Union. The conservation of bees [edited by Matheson, A.; Buchmann, S. L.; O'Toole, C.; Westrich, P.; Williams, I. H.]. London, UK; Academic Press for the Linnean Society of London and the International Bee Research Association. Woodcock, B.A. (2005) Data extracted from Hope Entomological Collections, University Museum Oxford (24-26.viii.2005) Woodcock, B.A., Mann, D.J., Mirieless, C., McGavin, G.C., & McDonald, A.W. (2005) Re-creation of a threatened lowland flood-plain meadow: management implications for invertebrate communities. Journal of Insect Conservation, 9, 207-218. Wright, A. (1990). British Sawflies. A key to the adults of genera occuring in Britain. Field Studies, 7, 531-593. Wright, A.S. (2001) Bombus monticola Smith. SRP, pre-recovery project; Internal report to Bumblebee Working Group. 90 Yalden, P. E. (1984) Flower visits by Bombus monticola Smith (Hymenoptera: Apidae) in the Peak District, England. Entomologist's Gazette, 35, 235-242. Yalden, P. E. (1982) Pollen collected by the bumblebee Bombus monticola Smith in the Peak District, England. Journal of Natural History, 16, 823-832. Yalden, P. E. (1983) The pollen collected by Bombus lucorum (L.) (Hym., Apidae) in the Peak District, England. Entomologist's Monthly Magazine, 119, 105-109. Yalden, P. E. (1983) Foraging population size and distribution of Bombus monticola in the Peak District, England. Naturalist, 108: 139-147. 91 Appendix 2 Literature sources used for the review of agronomic value Aarrsen, L.W. (1981) The biology of Canadian weeds 50 Hypochoeris radicata L. Canadian Journal of Plant Science, 61, 365-381. Aarsen, L.W., Hall, I.V. & Jensen, K.I.N. (1986) The Biology of Canadian Weeds 76. Vicia angustifolia, Vicia cracca, Vicia sativa, Vicia tetrasperma. Canadian Journal of Plant Science 66, 711-737. Aerts, R.J., Barry, T.N. & McNabb, W.C. (1999) Polyphenols and agriculture: beneficial effects of protocyanidins in forages. Agriculture, Ecosystems & Environment, 75, 1-12. Alford, C.M., Krall, J.M. and Miller, S.D. (2003) Intercropping irrigated corn with annual legumes for fall forage in the high plains. Agronomy Journal 95 (3) 520-525. Allison, V.J. (2002) Nutrients, arbuscular mycorrhizas and competition interact to influence seed production and germination success in Achillea millefolium. Functional Ecology, 16, 742-749. Athanasiadou, S., Tzamaloukas,O., Kyriazakis, I., Jackson, F. & Coop, R.L. (2005) Testing for direct anthelmintic effects of bioactive forages against Trichostrongylus colubriformis in grazing sheep. Veterinary Parasitology 127, 233-243. Bain, J.F. (1991) Biology of Canadian Weeds 71. Senecio jacobaea. Canadian Journal of Plant Science 71, 127-140. Barber, W. P. (1985) The nutritional value of common weeds, p.104-111. British Grassland Society Occasional Symposium 18. Brockman. J. S. (Ed.) Weeds, Pests and Diseases of Grassland and Herbage Legumes. British Grassland Society and British Crop Protection Council Publications, London, U.K. Barnes, R.F., Miller, D.A. & Nelson, C.J. (eds) (1995) Forages. Iowa State University Press. Ames, Iowa, USA. Barney, P.A. (1987) The use of Trifolium repens, Trifolium subterraneum and Medicago lupulina as overwintering leguminous green manures. Biological Agriculture and Horticulture 4, 225234. Bassett, I.J, Crompton, C.W. and Woodland, D.W. (1977) Biology of Canadian Weeds 21. Urtica dioica. Canadian Journal of Plant Science 57, 491-498. Bate-Smith, E.C. (1973) Tannins of herbaceous Leguminosae. Phytochemistry 12, 1809-1812. Beddows, A.R. (1959) Biological Flora of the British Isles Dactylis glomerata L. Journal of Ecology, 47: 223-239. Beddows, A.R. (1961) Biological Flora of the British Isles Holcus lanatus L. Journal of Ecology, 49: 421-430. Beddows, A.R. (1967) Biological Flora of the British Isles Lolium perenne L. Journal of Ecology, 55, 567-587. Bezemer, T.M., Graça, O., Rousseau, P. & van der Putten, W.H. (2004) Above- and belowground trophic interactions on creeping thistle (Cirsium arvense) in high and low-diversity plant communities: potential for biotic resistance? Plant Biology, 6, 231-238. Boot, R., Raynal, D.J. & Grime, J.P. (1986) A comparative study of the influence of drought stress on flowering in Urtica dioica and U. urens. Journal of Ecology, 74, 485-495. Bosy, J. L. & Reader, R. J. (1995) Mechanisms underlying the suppression of forb seedling emergence by grass (Poa pratensis) litter. Functional Ecology, 9, 635-639. 93 Bourdot, G.W., Saville, D.J. & Crone, D. (2003) Dairy production revenue losses in New Zealand due to giant buttercup. New Zealand journal of agricultural research, 46, 295-303. Briemle, G. & Ruck, K. (2003) Poisonous plants in pastures for horses....keep a lookout for them. Fachpraxis 43: 14-18. Bruinenberg, M.H., Valk, H., Korevaar, H. & Struik, P.C. (2002) Factors affecting digestibility of temperate forages from seminatural grasslands: a review. Grass & Forage Science, 57, 292301. Bruinenberg, M.H., Van Gelder, A.H., Perez, P.G., Hindle, V.A. & Cone, J.W. (2004) Estimating rumen degradability of forages from semi-natural grasslands using nylon bag and gas production techniques. Journal of Life Sciences 51, 351-368. Brys, R., Jacquemyn, H., Endels, P., de Blust, G. & Hermy, M. (2004) The effects of grassland management on plant performance and demography in the perennial herb Primula veris. Journal of Applied Ecology, 41: 1080-1091. Burdon, J.J. (1983) Biological Flora of the British Isles. Journal of Ecology, 71, 307-330. Burke, M.J.W. & Grime, J.P. (1996) An experimental study of plant community invasibility. Ecology, 77, 776-790. Cavers, P.B. & Harper, J.L. (1964) Biological Flora of the British Isles Rumex obtusifolius L. & R. crispus L. Journal of Ecology, 52, 737-766. Cavers, P.B., Bassett, I.J. & Crompton, C.W. (1980) The biology of Canadian Weeds 47. Plantago Lanceolata. Canadian Journal of Plant Science, 60, 1269-1282. Charles, A.H., Jones, J.L., Thornton, M.S. & Thomas, T.A. (1979) Comparison of ryegrass with some common unsown grasses sown separately and in mixtures, p. 25-29. Charles, A.H.; Haggar, R.J. (Eds) Changes in sward composition and productivity. British Grassland Society, Maidenhead, U.K. Chiej, R. (1984) MacDonald Encyclopedia of Medicinal Plants. Macdonald. London. Common, T.G., Hunter, E.A., Eadie, J., Floate, M.J.S. & Hodgson, J. (1991) The long-term effects of a range of pasture treatments applied to three semi-natural hill grassland communities. II Animal performance. Grass & Forage Science, 46, 253-263. Coop, I. E., Darling, M. & Anderson, C. M. (1953) Chemical composition of some tussock grassland pastures. New Zealand Journal of Science and Technology. 34, 507-520. Cooper, M.R. & Johnson, A.W. (1998) Poisonous Plants and Fungi in Britain. Animal & Human Poisoning. Her Majesty’s Stationery Office, London, U.K. Corrall A.J., Lavender R.H. and Terry C.P. (1979) Grass species and varieties: seasonal patterns of production and relationship between yield, quality and date of first harvest. GRI Technical Report 26. Hurley: Grassland Research Institute. Coulson, S.J., Bullock, J.M., Stevenson, M.J. & Pywell, R.F. (2001) Colonization of grassland by sown species: dispersal versus microsite limitation in responses to management. Journal of Applied Ecology, 38, 204-216. Davies, T.H. & Riley, J. (1992) Reseeding in the Falkland Islands. Herbage production of a range of grass species and cultivars. Grass & Forage Science, 47, 62-69. Davies, W. (1938) Vegetation of grass verges and other excessively trodden habitats. Journal of Ecology, 26, 38-49. de Baïracli Levy, J. (1984) The Complete Herbal Handbook for Farm and Stable. Faber and Faber. London. 94 Edwards, G.R., Hay, M.J.M. & Brock, J.L. (2005) Seedling recruitment dynamics of forage and weed species under continuous and rotational sheep grazing in temperate New Zealand pasture. Grass & Forage Science, 60, 186-199. Falkowski, M., Kukulka, I. & Kozlowski, S. (1989) Characterisation of biological properties and fodder value of dandelion, Taraxacum officinale Web. Proceedings of the XVI International Congress. Fisher, G.E.J., Baker, L.J. & Tiley, G.E.D. (1996) Herbage production from swards containing a range of grass, forb and clover species and under extensive management. Grass and Forage Science, 51, 58-72. Fitzgerald, S. (1982) Red clover versus perennial ryegrass silage as a source of winter feed for fattening store lambs. Proceedings of the Ninth General Meeting of the European Grassland Federation, 279-284. Forsyth, A.A. (1954) British Poisonous Plants. Ministry of Agriculture, Fisheries and Food Bulletin No. 161. Her Majesty’s Stationery Office, London, U.K. Foster, L. (1988) Herbs is pasture. Development and research in Britain, 1850-1984. Biological Agriculture and Horticulture, 5, 97-133. Foulds, W. & Grime, J.P. (1972) The influence of soil moisture on the frequency of cyanogenic plants in populations of Trifolium repens and Lotus corniculatus. Heredity, 28, 143-146. Frame, J. & Tiley, G.E.D. (1990) Herbage productivity of a range of wildflower mixtures under two management systems, p.359-363. Soil-grassland-animal relationships. Proceedings of 13th general meeting of the European Grassland Federation, Volume 2. Grassland Research Institute, Banska Bystrica, Czechoslovakia. Frame, J. (1989) Herbage productivity of a range of grass species under a silage cutting regime with high nitrogen fertilizer application. Grass & Forage Science, 44, 267-276. Frame, J. (1990) Herbage productivity of a range of grass species in association with white clover. Grass & Forage Science, 45: 57-64. Frame, J. (1991) Herbage production and quality of a range of secondary grass species of five rates of fertilizer application. Grass & Forage Science, 46: 139-151. Frame, J. (200) Red Clover – Worth a Try. Forage Matters Supplement, Spring 2-4 Frame, J. (2005) Forage Legumes for Temperate Grasslands. FAO and Science Publishers Inc. Plymouth, UK. Frame, J. (2005) Forage legumes for temperate grasslands. Food and Agriculture Organization of the United Nations, Rome, Italy & Science Publishers, Inc. Enfield, New Hampshire, U.S.A. Frame, J. and Newbould, P. (1984) Herbage production from grass/white clover swards. In: Forage Legumes. British Grassland Society Occasional Symposium 16. BGS. Fraser, M.D., Speijers, M.H.M., Theobald, V.J., Fychan, R. & Jones, R. (2004) Production performance and meat quality of grazing lambs finished on red clover, lucerne or perennial ryegrass swards. Grass & Forage Science, 59, 345-356. Gorsky, P.M. (1985) Anti-nutritional properties of Medicago lupulina saponins as related to their chemical composition. Abstracts of Papers of the American Chemical Society, 190-103? Greig-Smith, P. (1948) Biological Flora of the British Isles. Urtica dioica. Journal of Ecology 36, 343-351 Griess, D. & Rech, J. (1997) Diagnosis of acute poisoning by Ranunculi (Rancunculus acris L and Ficaria ranunculoides L) in Horses. Revue de Medecine Veterinaire, 148, 55-59 Grime, J.P., Hodgson, J.G. & Hunt, R. (1996) Comparative Plant Ecology. A Functional Approach to Common British Species. Chapman & Hall, London, U.K 95 Grime, J.P., Shacklock, J.M.L. & Band, S.R. (1985) Nuclear DNA contents, shoot phenology and species coexistence in a limestone grassland community. New Phytologist, 100, 435-445. Gulcin, I., Kufrevioglu, O.I., Oktay, M. & Buyukokuroglu, M.E. (2004) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). Ethnopharmacology, 90, 205215. Gupta, N., Kumar, A. & Tiwari, D.P. (2005) Effect of herbs as feed additive on nutrient utilization and growth in crossbred heifers fed paddy straw based ration. Indian Journal of Animal Science, 75, 52-55. Haggar, R.J. (1976) The seasonal productivity, quality and response to nitrogen of four indigenous grasses compared to Lolium perenne. Journal of the British Grassland Society, 31, 197-207. Harper, J.L. & Wood, W. A. (1957) Biological Flora of the British Isles. Senecio jacobaea. Journal of Ecology, 45, 617-637. Harper, J.L. (1957) Biological Flora of the British Isles. Ranunculus acris. Journal of Ecology, 45 289-314. Harper, J.L. (1957) Biological Flora of the British Isles. Ranunculus repens Journal of Ecology, 45, 314-325. Harvey, B. M. R., Crothers, S. H. & Hayes, P. (1984) Dry matter and quality of herbage harvested from Holcus lanatus and Lolium perenne grown in monocultures and in mixtures. Grass & Forage Science, 39, 159-165. Hicks, S. & Turkington, R. (2000) Compensatory growth of three herbaceous perennial species: the effects of clipping and nutrient availability. Canadian Journal of Botany, 78, 759-767. Ho, L. S. (1964) The biology and control of some turf weeds. M.S. A. thesis, University of British Columbia IN Turkington, R. & Aarrsen, L. W. (1983) Biological Flora of the British Isles Hypochoeris radicata L. Journal of Ecology, 71, 999-1022. Hofmann, M. & Isselstein, J. (2004a) Seedling recruitment on agriculturally improved mesic grassland: the influence of disturbance and management schemes. Applied Vegetation Science, 7, 193-200. Hofmann, M. & Isselstein, J. (2004b) Effects of drought and competition by a ryegrass sward on the seedling growth of a range of grassland species. Journal of Agronomy and Crop Science, 190, 277-286. Hongo, A. (1989) Survival and growth of seedlings of Rumex obtusifolius L. and R. crispus L. in newly sown grassland. Weed Research, 29, 7-12. Hopkins A. and Johnson R.H. (2002) Effect of different manuring and defoliation patterns on broadleaved dock (Rumex obtusifolius) in grassland. Annals of Applied Biology, 140, 255-262. Hopkins, A. and Johnson, R.H. (2003) Impact of control of dock (Rumex obtusifolius) on potential production from N-fertilised swards. In: Kirilov A., Toderov N. and Katerov I. (eds) Optimal Forage Systems for Animal Production and the Environment, Proceedings of International Occasional Symposium of the European Grassland Federation. (May 26-28, 2003, Pleven, Bulgaria) Published as Grassland Science in Europe, 8, 483-486 Hopkins, A. (1998) The Potential of White Clover. In: Alternative Forages for Ruminants. Lane, G.P.F. and Wilkinson, J.M.(Eds). Chalcombe Publications. Howarth, S. E. & Williams, J. T. (1968) Biological flora of the British Isles Chrysanthemum leucanthemum L. Journal of Ecology, 56, 585-595. Humphreys, J., Jansen, T., Culleton, N., MacNaeidhe, F.S. & Storey, T. (1999) Soil potassium supply and Rumex obtusifolius and Rumex crispus abundance in silage and grazed grassland swards. Weed Research, 39, 1-13. 96 Hwangbo, J-K., Seel, W.E. & Woodin, S.J. (2003) Short-term exposure to elevated atmospheric CO2 benefits the growth of a facultative annual root hemiparasite, Rhinanthus minor (L.), more than that of its host, Poa pratensis (L.). Journal of Experimental Botany, 54, 1951-1955. Isselstein, J. (1993) Forage nutritive value and ensilability of some common grassland herbs. Proceedings of the XVII International Grassland Congress, 577-579. Jensen, K. & Meyer, C. (2001) Effects of light competition and litter on the performance of Viola palustris and on species composition and diversity of an abandoned fen meadow. Plant Ecology, 155, 169-181. Johansson, L., Lundström, K. & Jonsäll (2002) Effects of RN genotype and silage feed on fat content and fatty acid composition of fresh and cooked pork loin. Meat Science 60, 17-24. Jones, D.A. & Turkington, R. (1986) Biological Flora of the British Isles. Lotus corniculatus. Journal of Ecology, 74, 1185-1212. Jongem, M. & Jones, M. B. (1998) Effects of elevated carbon dioxide on plant biomass production and competition in a simulated neutral grassland community. Annals of Botany, 82, 111-123. Katerov I. (eds) Optimal Forage Systems for Animal Production and the Environment, Proceedings of International Occasional Symposium of the European Grassland Federation. Published as Grassland Science in Europe, 8, 200-203. Kazinczi, G., Beres, I. & Narwal, S. S. (2001) Allelopathic plants 1. Canadian thistle (Cirsium arvense (L.) Scop.). Allelopathy Journal, 8, 29-44. Kirkham, F.W. Mountford, J.O. & Wilkins, R.J. (1996) The effects of nitrogen, potassium and phosphorus addition on the vegetation of a Somerset peat moor under cutting management. Journal of Applied Ecology, 33, 1013-1029. Klinkhamer, P.G.L. & de Jong, T.J. (1993) Biological Flora of the British Isles Cirsium vulgare (Savi) Ten. Journal of Ecology, 81, 177-191. Kluth, S., Kruess, A. & Tscarntke, T. (2003) Influence of mechanical cutting and pathogen application on the performance and nutrient storage of Cirsium arvense. Journal of Applied Ecology, 40, 334-343. Kumarasamy, Y., Middleton, M., Reid, R.G., Nahar, L. & Sarker, S.D. (2003) Biological activity of serotonin conjugates from the seeds of Centaurea nigra. Fitoterapia. 74, 609-612. Lamaison, J.L. Petitjeanfreytet, C. & Carnat, A. (1991) Medicinal lamiaceae with antioxidative activity, potential sources of rosmarinic acid. Pharmaceutica acta Helvetiae 66, 185-188 Lehoczky, E., Nadasy, E., Beres, I. & Kazinczi, G. (2003) Changes in nutrient content of Cirsium arvense (L.) Scop. during the vegetative period. Communications in Agricultural and Applied Biological Sciences, 68, 449-453. Lovettdoust, J., Lovettdoust, L. & Groth, A.T.l (1990) The biology of Canadian Weeds 95. Ranunculus repens Canadian Journal of Plant Science, 70, 1123-1141. Macek, P. & Leps, J. (2003) The effect of environmental heterogeneity on clonal behaviour of Prunella vulgaris L. Plant Ecology, 168, 31-43. Marinas, A., Garcia-Gonzalez, R. & Fondevila, M. (2003) The nutritive value of five pasture species occurring in the summer grazing ranges of the Pyrenees. Animal Science, 76, 461-469. Marley, C.L., Cook,R., Barrett, J., Lampkin, N.H. and Keatinge, R. (2004) Alternative control of parasites of organic livestock: Effect of pasture environment on gastrointestinal parasite development and survival. British Grassland Society Occasional Symposium, 37, 129-132. Marsden-Jones, E.M. & Turrill, W.B. (1954) British knapweeds, a study in synthetic taxonomy. Ray Society, London, U.K. In: Grime, J. P., Hodgson, J. G. & Hunt, R. (1996) Comparative Plant Ecology. A Functional Approach to Common British Species. Chapman & Hall, London, U.K. 97 Marten, G.C., Sheaffer, C.C. & Wyse, D.L. (1987) Forage nutritive value and palatability of perennial weeds. Agronomy Journal 79, 980-986 Mavi, A., Terzi, Z., Ozgen, U., Yldrm, A. & Coskun, M. (2004) Antioxidant properties of some medicinal plants: Prangos ferulacea (Apiaceae), Sedum sempervivoides (Crassulaceae), Malva neglecta (Malvaceae), Cruciata taurica (Rubiaceae), Rosa pimpinellifolia (Rosaceae), Galium verum subsp. verum (Rubiaceae), and Urtica dioica (Urticaceae). Biological & Pharmaceutical Bulletin, 27, 702-705. McNabb, W.C., Aerts, R.J., Brand, A., Peters, J.S., Foo, Y.L. and Waghorn, G.C. (1997) Effect of condensed tannin in Lotus corniculatus and Lotus pedunculatus on digestion of rubisco in the rumen. Proceedings of the International Grassland Congress XVIII. Mika, V. Kohoutek, A. Pozdisek, J. Smital, F. & Nerusil, P. (1998) Index of negative action of phenols (IANP) and its prediction in meadow plants using near infrared spectroscopy (NIRS). Rostlinna Vyroba, 44, 561-564. Min, B.R., Attwood, G.T., McNabb, W.C., Molan, A.L.& Barry, T.N. (2005) The effect of condensed tannins from Lotus corniculatus on the proteolytic activities and growth of rumen bacteria. Animal Feed Science and Technology, 121, 45-58. Min, B.R., Barry, T.N. Attwood, G.T. & McNabb, W.C (2003) The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Animal Feed Science and Technology, 106, 3-19. Moore, R. J. (1975) The biology of Canadian weeds, 13. Cirsium arvense (L.) Scop. Canadian Journal of Plant Science, 55, 1033-1048. Mortimer P.H., Young P.W., di Menna M.E. (1984) Perennial ryegrass staggers research - an overview. Proceedings of the New Zealand Society of Animal Production, 44, 181-184. Neitzke, M. (1999) Growth and nitrogen uptake in two Prunella and Phleum species of contrasted ecology in response to variable nitrogen supply. Flora, 194, 333-343 Newman, I.E. & Rovira, A.D. (1975) Allelopathy among British grassland species. Journal of Ecology, 63, 727-737. Newton, J.E. & Betts, J.E. (1974) The effect of red clover and white clover on sheep reproduction. Proceedings of the Twelfth International Grassland Congress IGC 1974. Niggli, U., Nösberger, J. & Lehmann, J. (1993) Effects if nitrogen fertilization and cutting frequency on the competitive ability and the regrowth capacity of Rumex obtusifolius L. in several grass swards. Weed Research, 33, 131-137. O’Beirne-Ranelagh, E. (2005) Managing Grass for Horses. J.A. Allen, London. Oomes, M. J. M. & Elbersa, W. T. (1976) Germination of six grassland herbs in microsite with different water contents. Journal of Ecology, 64, 745-755. Opitz von Boberfeld, W. & Biskupek, B. (1995) Zum Einfluß interspezifishcher Konkurrenz einer Kleegrasmischung auf die Futterqualität, (The influence of interspecific competition in a grass-clover mixture on nutritional value). Journal of Agronomy and Crop Science, 175, 355364. Osbourn, D.F. (1982) The potential of white clover to sustain ruminant animal production. British Grassland Society Occasional Symposium 14. Pahlow G., Rammer C., Slottner D. and Tuori M. (2002). Ensiling of Legumes. In: Wilkins R.J. and Paul C. (eds) Legume Silages for Animal Production – LEGSIL. Proceedings of an International Workshop held in Braunschweig, 8-9 July, 2001. Landbauforschung Völkenrode, Sonderheft 234, pp 27-31. Braunschweig: FAL. Pakeman, R. J. (2004) Consistency of plant species and trait responses to grazing along a productivity gradient: a multi-site analysis. Journal of Ecology, 92, 893-905. 98 Panciera, R.J., Martin, T., Burrows, G.E., Taylor, D.S. & Rice, L.E. (1990) Acute oxalate poisoning attributable to ingestion of curly dock (Rumex crispus) in sheep. Journal of the American Medical Association, 196, 1981-1984. Peeters, A. (2004) Wild and Sown Grasses. Profiles of a temperate species selection: ecology, biodiversity and use. FAO and Blackwell Publishing, Rome, Italy Pico, F.X. & Koubek, T. (2003) Inbreeding effects on fitness traits in the heterocarpic herb Leontodon autumnalis L. (Asteraceae). Acta Oecologica, 24: 289-294. Psotová, J., Kolář,M., Soušek, J., Švagera,Z., Vičar, J. & Ulrichová, J. (2003) Biological activities of Prunella vulgaris extract. Phytotherapy Research 17, 1082-1087. Putwain, P.D. & Harper, J.L. (1970) Studies in the dynamics of plant populations. III The influence of associated species on populations of Rumex acetosa L. and R. acetosella L. in grassland. Journal of Ecology 58, 251-264. Ramírez-Restrepo, C.A., Barry, T.N., López-Villalobos, N., Kemp, P.D. & Harvey, T.G. (2005) Use of Lotus corniculatus containing condensed tannins to increase reproductive efficiency in ewes under commercial dryland farming conditions. Animal Feed Science and Technology, 121, 23-43. Restrepo, C.A., Barry, T.N., López-Villalobos, N. (2006) Organic matter digestibility of condensed tannin-containing Lotus corniculatus and its prediction in vitro using cellulase/hemicellulase enzymes. Animal Feed Science and Technology, 125, 61-71. Roberts, H. A. (1986) Persistence of seeds of some grass species in cultivated soil. Grass & Forage Science, 41, 273-276. Rode, L. M. & Pringle, W. L. (1986) Growth, digestibility and voluntary intake by yearling steers grazing timothy (Phleum pratense) or meadow foxtail (Alopecurus pratensis) pastures. Canadian Journal of Animal Science, 66: 463-472. Sagar, G.R. & Harper, J.L. (1964) Biological Flora of the British Isles. Plantago lanceolata. Journal of Ecology, 52, 211-221. Schenk,U., Jäger, H-J. and Weigel H-H. (1997) The response of perennial ryegrass/white clover miniswards to elevated atmospheric CO2 concentrations: effect on yield and fodder quality. Grass and Forage Science, 52, 232-241. Sheldrick, R.D., Lavender, R.H. & Martyn, T.M. (1990) Dry matter yield and response to nitrogen of an Agrostis stolonifera-dominated sward. Grass & Forage Science, 45: 203-213. Sheldrick, R.D. & Martyn, T.M. Lotus species and varieties for acid low-phosphate soils. British Grassland Society. Third Research Conference 41-42 Singer, J.W. (2002) Fresh versus field cured grass quality, mineral and nitrate concentration at different nitrogen rates. Crop Science, 42, 1656-1661. Spedding, C. R. W. & Diekmahns, E. C. (1972) Grasses and Legumes in British Agriculture. Bulletin 49, Commonwealth Bureau of Pastures and Field Crops. Alden & Mowbray Ltd., Oxford, U.K. Spurway, C. H. (1941) Soil reaction (pH) preferences of plants. Special Bulletin 306, Michigan State College Agricultural Experimental Station In: Beddows, A. R. (1959) Biological Flora of the British Isles Dactylis glomerata L. Journal of Ecology, 47, 223-239. Stewart, A.V. (1996) Plantain (Plantago lanceolata) – a potential pasture species. Proceedings of the New Zealand Grassland Association, 58, 77-86 Stewart-Wade, S.M., Neumann, S., Collins, L.L. & Boland, G.J. (2002) The biology of Canadian Weeds117 Taraxacum officinale . Canadian Journal of Plant Science, 82, 825853. 99 Stopes, C., Millington, S. and Woodward, L. (1996) Dry matter and nitrogen accumulation by three leguminous green manure species and the yield of a following wheat crop in an organic production system. Agriculture Ecosystems and Environment. 57, 189-196 Struik, G. J. (1967) Growth form and habit of dandelion, daisy, catsear and hawkbit in some New Zealand grasslands. New Zealand Journal of Agricultural Research, 10, 331-344. Sun, D. & Liddle, M. J. (1993) Trampling resistance, stem flexibility and leaf strength in none Australian grasses and herbs. Biological Conservation, 65, 35-41. Tallowin, J.R.B., Tyson, C.M. & Brookman, S.K.E. (1991) Differences in lamina wettability in some permanent pasture grass species and two Lolium perenne cultivars. Grass & Forage Science, 46, 265-268. Tampion, J. (1977) Dangerous plants. David & Charles, Nwwton Abbot, U.K. In: Warwick, S. I. & Black, L. (1982) The biology of Canadian weeds 52 Achillea millefolium L. s.l. Canadian Journal of Plant Science, 62, 163-182. Thompson, D.J. The nutritive value of red white clover. In: Forage Legumes. British Grassland Society Occasional Symposium 16. (1984). BGS. Thompson, K. & Grime, J. P. (1979) Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. Journal of Ecology, 67, 893-921. Tilman, E.A., Tilman, D., Crawley, M.J. and Johnston, A.E. (1999) Biological weed control via nutrient competition: Potassium limitation of dandelions. Ecological Applications, 9, 103-111. Tolra, R.P., Poschenrieder, C., Luppi, B. & Barcelo, J. (2005) Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosa L. Environmental and Experimental Botany, 54, 231-238 Trzasko, M. (1994) The chemical composition of forage herbs and weeds in relation to habitat, fertilizer application and time of harvesting p.336-339. Proceedings of the 15th General Meeting of the European Grassland Federation, Mannetje, L. t’. & Frame J. (Eds.) Grassland and Society. Wageningen Pers, Netherlands. Turkington, R. & Aarrsen, L. W. (1983) Biological Flora of the British Isles Hypochoeris radicata L. Journal of Ecology, 71, 999-1022. Turkington, R. & Burdon, J.J. (1983) The Biology of Canadian Weeds 57. Canadian Journal of Plant Science, 63. 243-266 Turkington, R. & Cavers, P.B. (1979) The Biology of Canadian Weeds 33. Medicago lupulina Canadian Journal of Plant Science, 59, 491-498 Turkington, R. & Franko, G.D. (1980) The Biology of Canadian Weeds 41. Lotus corniculatus Canadian Journal of Plant Science, 60, 965-979 Urbanczyk, J., Hanczakowska, E. & Swiatkiewicz, M. (2002) Herb mixture as an antibiotic substitute in pig feeding. Medycyna Weterynaryjna 58, 887-889. van Ruijven, J., de Deyn, G. B. & Berendse, F. (2003) Diversity reduces invasibility in experimental plant communities: the role of plant species. Ecology Letters, 6, 910-918. Waghorn, G. C. Jones, W. T. (1989) Bloat in cattle. 46. Potential of dock (Rumex obtusifolius) as an antibloat agent for cattle. New Zealand Journal of Agricultural Research, 32: 2, 227-235. Warwick, S. I. & Black, L. (1982) The biology of Canadian weeds 52 Achillea millefolium L. s.l. Canadian Journal of Plant Science, 62, 163-182. Watt T.A. (1978) The biology of Holcus lanatus and its significance in grassland. Herbage Abstracts, 48, 195-204. Weeds Act as relates to ragwort. http://www.defra.gov.uk/environ/weedsact/default.htm 100 Westbury, D. B. (2004) Biological Flora of the British Isles Rhinanthus minor L. Journal of Ecology, 92, 906-927. Wilkins R.J. and Paul C. (eds) Legume Silages for Animal Production – LEGSIL. Proceedings of an International Workshop held in Braunschweig, 8-9 July, 2001. Landbauforschung Völkenrode, Sonderheft 234. Braunschweig: FAL. Ylimaki, A. (1966) Root rot of red clover in Finland. Proceedings of the Tenth International Grassland Congress. 337-340. Zidorn, C. Stuppner, H. Tiefenthaler, M. & Konwalinka, G. (1999) Cytotoxic activities of hypocretenolides from Leontodon hispidus. Journal of Natural Products, 62, 984-987. 101 Appendix 3. Mono- and oligo-specific associations between the selected plant species and insect species Key Specificity M Monophagous (or monolectic for Aculeata) O Oligophagous (or oligolectic for Aculeata) Numerical suffixes give the number of reported species associations if <5 Subdivided into: OG Associated with species within a single Genus OT Associated with species within a single Tribe (Fabaceae and Asteraceae only) OF Associated with species within a single Family O Associated with fewer than five plant species in different taxonomic groups Status RDB1 Endangered RDB2 Vulnerable RDB3 Rare RDB4 Out Of Danger RDB5 Endemic RDBK Insufficiently known N Nationally Notable - Scarce Na Notable/Na (Nationally Notable A - Scarce A) Nb Notable/Nb (Nationally Notable B - Scarce B) Phenology O Egg L Larva LD Larval diapause P Pupa A Adult (imago) 102 103 FAMILY SPECIES HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Cercopidae Cercopidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Delphacidae Delphacidae Delphacidae Delphacidae Delphacidae Miridae Miridae Miridae Aphididae Aphididae Aphididae Aphididae Aphididae Chaitophoridae Chaitophoridae Eriococcidae Eriococcidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pseudococcidae Pseudococcidae Pseudococcidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Noctuidae Nymphalidae Satyridae Satyridae Satyridae Satyridae Neophilaenus campestris (Fallen) Neophilaenus lineatus (L) Arthaldeus pascuellus (Fallen) Balclutha punctata (Fabr) Deltocephalus pulicaris (Fallen) Diplocolenus abdominalis (Fabr) Doratura stylata (Boheman) Jassargus flori (Fieber) Jassus distinguendus (Flor) Mocydiopsis parvicauda (Ribaut) Psammotettix confinis (Dahlbom) Sardius argus (Marshall) Streptanus sordidus (Zetterstedt) Delphacodes venosus (Germ) Javesella dubia (Kirschbaum) Javesella pellucida (Fabr) Struebingianella dalei (Scott) Xanthodelphax stramineus (Stal) Stenodema calcaratum (Fallen) Stenodema laevigatum (L) Trigonotylus ruficornis (Geoffroy) Metopolophium dirhodum (Walker) Metopolophium festucae (Theobald) Rhopalosiphum insertum (Walker) Schizaphis graminum (Rondn.) Sitobion fragariae (Walker) Atheroides serrulatus (Haliday) Sipha glyceriae (Kaltenbach) Eriococcus glyceriae Green Eriococcus inermis Green Aploneura lentisci (Passerini) Baizongia pistaciae (L) Forda formicaria (von Heyden) Forda marginata (Koch) Geoica setulosa (Passerini) Geoica utricularia (Passerini) Paracletus cimiciformis (von Heyden) Heterococcus pulverarius (Newstead) Trionymus perrisii (Signoret) Trionymus thulensis Green Cosmiotes stabilella (Stt.) Elachista albifrontella (Hubn) Elachista argentella (Clerck) Elachista canapennella (Hubn) Elachista humilis (Zeller) Mythimna loreyi (Duponchel) Lasiommata megera L. Coenonympha pamphilus (L) Maniola jurtina (L) Maniola jurtina insularis (Thomson) Pyronia tithonus (L.) PLANT PARTS Flower buds, Unripe grain Flowering heads Root Root Root Base of leaf sheath Stem, Leaf sheath Leaves Leaves Leaves Leaves Leaves SPECIFICITY OF OF OF OF OF OF OF OF OF OF OF OF OF3 OF OF OF OF OG2 OF OF OF OF OF OF OF OF OF OF OF OF OF + OF OF + OF + OF OF + OF + OF OF OF OF OF OF OF OF OF OF OF OF OF OF STATUS Jan Feb O O L L L RDB 3 Mar L L LP L Apr May Jun Jul Aug Sep Oct O O A AO A A A A A A A AL A A LP A PA L L LPA L P LP LPA LP PA LPA A PA PA A A A LD P LD P LD LP LPA AO AOLP LP L L LD L L LD L L LD L L L PA LPA LP L L L L A PA A A LPA A AOL Nov Dec O O O L L L A L LD P LD P L LD L LD A A A A LPAO PAOL PAOL L PA AO AOL L Appendix 3 Agrostis capillaris Agrostis capillaris ORDER 104 ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cicadellidae Cicadellidae Delphacidae Delphacidae Delphacidae Delphacidae Miridae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Chaitophoridae Chaitophoridae Coccidae Eriococcidae Eriococcidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pseudococcidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Noctuidae Nymphalidae Satyridae Satyridae Satyridae Satyridae Satyridae Cerodontha atra (Meigen, 1830) Cerodontha flavocingulata (Strobl) Phytomyza milii Kaltenbach Phytomyza nigra Meigen, 1830 Deltocephalus pulicaris (Fallen) Streptanus sordidus (Zetterstedt) Javesella dubia (Kirschbaum) Javesella forcipata (Boheman) Javesella pellucida (Fabr) Xanthodelphax stramineus (Stal) Trigonotylus ruficornis (Geoffroy) Diuraphis agrostidis (Muddathir) Metopolophium dirhodum (Walker) Metopolophium festucae (Theobald) Rhopalosiphum insertum (Walker) Schizaphis graminum (Rondn.) Schizaphis graminum agrostis Hille Ris Lambers Sitobion fragariae (Walker) Atheroides serrulatus (Haliday) Sipha glyceriae (Kaltenbach) Eriopeltis festucae (Boyer de Fonscolombe) Eriococcus glyceriae Green Eriococcus inermis Green Aploneura lentisci (Passerini) Baizongia pistaciae (L) Forda formicaria (von Heyden) Forda marginata (Koch) Geoica setulosa (Passerini) Geoica utricularia (Passerini) Paracletus cimiciformis (von Heyden) Trionymus perrisii (Signoret) Cosmiotes stabilella (Stt.) Elachista albifrontella (Hubn) Elachista argentella (Clerck) Elachista canapennella (Hubn) Elachista humilis (Zeller) Mythimna loreyi (Duponchel) Lasiommata megera L. Aphantopus hyperantus (L) Coenonympha pamphilus (L) Maniola jurtina (L) Maniola jurtina insularis (Thomson) Pyronia tithonus (L.) Leaf miner Leaf miner Leaf miner Leaf miner OF OF OF OF OF OF3 OF OF OF OG2 OF M OF OF OF OF OG2 OF OF OF OF OF OF OF + OF OF + OF + OF OF + OF + OF OF OF OF OF OF OF OF OF OF OF OF OF Root Root Root Base of leaf sheath Leaves Leaves Leaves Leaves Leaves STATUS Jan Feb O O L L L RDB 3 Mar L L LP L Apr May Jun Jul Aug A A A? A A? A A A A A A A AL A A LP A PA L L LPA L P LP LPA LP PA LPA A PA PA A A A LD P LD LD P LD LD LP LPA L L AO L AOLP LP L P L L LD L L LD L L LD L L L PA LPA LP L L L Sep Oct A A L A PA Nov Dec O O O L L L A L L LD P LD LD P LD L LD L LD A A A LPA AOL PAOL AOL A A A A LPAO PAOL PAOL L PA AO AOL L Agrostis stolonifera Agrostis stolonifera ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) THYSANOPTERA Agromyzidae Agromyzidae Cecidomyiidae Miridae Miridae Miridae Aphididae Aphididae Aphididae Aphididae Aphididae Chaitophoridae Chaitophoridae Thripidae Cerodontha denticornis (Panzer) Phytomyza nigra Meigen, 1830 Contarinia merceri Barnes, 1930 Leptopterna dolabrata (L) Stenodema calcaratum (Fallen) Stenodema laevigatum (L) Metopolophium dirhodum (Walker) Metopolophium festucae (Theobald) Rhopalosiphum insertum (Walker) Schizaphis nigerrima (Hille Ris Lambers) Sitobion fragariae (Walker) Atheroides serrulatus (Haliday) Laingia psammae (Theobald) Chirothrips hamatus Trybom Leaf miner Leaf miner OF OF M OF OF OF OF OF OF OF2 OF OF OF M Flower buds, Unripe grain Flowering heads Leaf blades STATUS Jan Feb Mar Apr May Jun Jul Aug Sep A A A A A A A A A A O O AO A A A A Oct Nov Dec Alopecurus pratensis Alopecurus pratensis 105 FAMILY SPECIES PLANT PARTS SPECIFICITY DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) LEPIDOPTERA LEPIDOPTERA Agromyzidae Opomyzidae Opomyzidae Cicadellidae Delphacidae Aphididae Eriococcidae Pemphigidae Elachistidae Momphidae Phytomyza nigra Meigen, 1830 Opomyza petrei Mesnil, 1934 Opomyza punctata Haliday, 1833 Graphocraerus ventralis (Fallen) Ribautodelphax angulosus (Ribaut) Sitobion fragariae (Walker) Eriococcus glyceriae Green Aploneura lentisci (Passerini) Elachista humilis (Zeller) Cosmopterix orichalcea (Stt) Leaf miner Stem borer Stem borer, shoot miners OF OF OF OF M OF OF OF + OF OF Leaves STATUS Jan Status J Feb F Mar M Apr A May M L L LD A P Jun J Jul J Aug A A A A O L Sep S Oct O Nov N Dec D O O O L LD LD N Nb RDB 3 O O LD L LD A PA L Anthoxanthum odoratum Anthoxanthum odoratum ORDER 106 ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY DIPTERA HEMIPTERA (Sternorrhyncha) LEPIDOPTERA Agromyzidae Aphididae Noctuidae Phytomyza nigra Meigen, 1830 Sitobion fragariae (Walker) Luperina nickerlii knilli (Boursin) Leaf miner OF OF OF STATUS Jan L Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec L L L L L LP PA AOL L L L Cynosurus cristatus Cynosurus cristatus 107 FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Symphyta) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Chrysomelidae Chrysomelidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Chloropidae Chloropidae Chloropidae Opomyzidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Delphacidae Delphacidae Delphacidae Delphacidae Delphacidae Miridae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Chaitophoridae Chaitophoridae Chaitophoridae Chaitophoridae Coccidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pseudococcidae Tenthredinidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Chaetocnema aridula (Gyllenhal, 1827) Chaetocnema hortensis (Fourcroy, 1785) Agromyza cinerascens Macquart Agromyza nigrella Rondani Agromyza rondensis Strobl Cerodontha flavocingulata (Strobl) Cerodontha incisa (Meigen, 1830) Cerodontha pygmaea (Meigen) Liriomyza flaveola (Fallen) Phytomyza nigra Meigen, 1830 Contarinia dactylidis (Loew, 1851) Dasyneura dactylidis Metcalfe, 1933 Lasioptera graminicola (Kieff.) Mayetiola dactylidis Kieffer, 1896 Sitodiplosis dactylidis Barnes, 1940 Meromyza femorata Macquart, 1835 Meromyza variegata Meigen, 1830 Oscinella maura (Fallén, 1820) Opomyza punctata Haliday, 1833 Adarrus ocellaris (Fallen) Arthaldeus pascuellus (Fallen) Athysanus argentarius (Metcalf) Cicadula persimilis (Edwards) Deltocephalus pulicaris (Fallen) Macrosteles sexnotatus (Fallen) Mocydia crocea (Herrich-Schaeffer) Zyginidia scutellaris (Herrich-Schaffer) Dicranotropis hamata (Boheman) Eurybregma nigrolineata (Scott) Javesella pellucida (Fabr) Stenocranus minutus (Fabr) Stiroma bicarinata (Herrich-Schaeffer) Leptopterna dolabrata (L) Hyalopteroides humulis (Walker) Metopolophium dirhodum (Walker) Metopolophium festucae (Theobald) Rhopalosiphum insertum (Walker) Schizaphis graminum (Rondn.) Sitobion fragariae (Walker) Atheroides serrulatus (Haliday) Chaitophorus capreae (Mosley) Laingia psammae (Theobald) Sipha glyceriae (Kaltenbach) Eriopeltis festucae (Boyer de Fonscolombe) Aploneura lentisci (Passerini) Baizongia pistaciae (L) Forda formicaria (von Heyden) Forda marginata (Koch) Trionymus dactylis Green Tenthredopsis litterata (Geoffroy) Cosmiotes freyerella (Hubn) Elachista albifrontella (Hubn) Elachista apicipunctella (Stainton) Elachista argentella (Clerck) Elachista atricomella Stt. Elachista gangabella Zell. Elachista luticomella (Zeller) Stem Stem, Leaves Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Flower Seed Stem Leaves Flower Stem borer Stem Stem borer Stem borer, Shoot miner OF OF M OF OF OF OF OF OF OF M M OF M M M M M OF OF OF OF M OF OF OF OF OF OF OF OF OF OF M OF OF OF OF OF OF OF OF OF OF OF + OF OF + OF + OF OF OF OF OF OF M OF OF Root Leaf sheath Leaves Leaves Leaves Leaves Stem, Leaves Leaves STATUS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A A A A A A A AOL A A L L L LA LA A A A A A A A A A A A A A A A A A A A A A A A A A A A LP A A A A PA A A A A L A N Nb L LD L LD LD L LD L L L LD L L LD L LPA L LD A P L LD P L PA L A PA LA A L A L L L L L L L L LD A L L L L L L LD L Dactylis glomerata 108 Dactylis glomerata ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA THYSANOPTERA THYSANOPTERA THYSANOPTERA Elachistidae Elachistidae Elachistidae Elachistidae Gelechiidae Glyphipterigidae Hesperiidae Hesperiidae Hesperiidae Lasiocampidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Nymphalidae Ochsenheimeriidae Pyralidae Satyridae Satyridae Satyridae Satyridae Thripidae Thripidae Thripidae Thripidae Elachista megerlella (Hb.) Elachista monosemiella (Rossler) Elachista subnigrella Dougl. Elachista unifasciella (Haw.) Brachmia rufescens (Haw) Glyphipterix simpliciella (Stephens) Ochlodes faunus (Turati) Ochlodes venata (Bremer & Grey) Thymelicus lineola (Ochsenheimer) Euthrix potatoria (L) Amphipoea fucosa (Freyer) Amphipoea lucens (Freyer) Apamea anceps (D. & S.) Apamea crenata (Hufn) Apamea epomidion (Haworth) Apamea monoglypha (Hufn) Apamea sordens (Hufn) Calamia tridens (Hufn) Calamia tridens occidentalis (Cockayne) Eremobia ochroleuca (D. & S.) Mesoligia literosa (Haworth) Mythimna albipuncta (D&S) Mythimna comma (Hubn) Mythimna conigera (D&S) Mythimna favicolor (Barrett) Mythimna impura (Hubn) Mythimna loreyi (Duponchel) Mythimna pallens (L) Mythimna pudorina (D&S) Mythimna putrescens (Hb) Mythimna turca (L) Mythimna unipuncta (Haw) Mythimna vitellina (Hubn) Oligia latruncula (D&S) Oligia strigilis (L) Oligia versicolor (Borkh.) Omphaloscelis lunosa (Haworth) Lasiommata megera L. Ochsenheimeria mediopectinellus (Haworth) Ancylolomia tentaculella (Hubner) Aphantopus hyperantus (L) Melanargia galathea (L.) Pararge aegeria (L.) Pyronia tithonus (L.) Aptinothrips rufus (Haliday) Aptinothrips stylifer Trybom Chirothrips manicatus Haliday Limothrips cerealium Haliday Leaves Leaves Leaves Leaves OF OF OF OF2 OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF Seed Root, Stem Root, Stem Leaves, Flower, Seed Leaves, Flower, Seed Upper Roots, Stem Blades, Seed Flower, Seed Root, Stem Stem, Leaves Root Stock, Stem Rootstock, Stem Stem Leaves Flower Leaves STATUS N Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec L L L LA L L L L L L LD LD LD LDO L L LD L LD L LD O L A A L L L LA L L L LD LD LD LD O LD O L L L L LP O L L L LA L O L L L LA L O L L L L L O O L O O L O O L LD L LD P L P LP O L L A LD L O L L LD LD O L OL A L L O L L LD LD AL L AOL LA AO AOL A PA L L L LA L A A AO OA A L AO L L LD LD LD LD O LD O L L L L L LD LD LD LD L L L L L A L AOL LA A PA LA LP AO AO AO A O A PA LPA PA A AO A A LA L L LD LD LD LD O LD O L L L L L L LP L P LD LD L L L O L LP P L P L L O L LA A A L L LD LD LD LDO LD LA LA A A PA AO PAO LA PA LP L L A A PA LA A L LP L LP A A PA A A LA LA LA L L LD LD LD LDO LD LA A LA LPA L PA LP L L L L L P PA PA L A L L L L L LD LD L LD LD LD LD LD L L LD L LD LD L LD LD LD L LD L L L L L L L L L A L L L LD A A L L L LD LD L LD L A AOL L L L A A L L A L L L L L LD P L L LD P L L L LD LP LPA L L A AOL AOL AOL L L L LD P L L LD P L LD LD LD P LD LA LA A LD L LD P LD LA LA A L L LD P LD LA LA LA AOL LD AOLP AOL LA LA A L LD AOLP L LA LA A LD LD LD P LD LA LA A LD LD LD P LD LA LA A Nb Na Nb L L LA L LA LA LA LA A LP AOL AOLP AOLP LP A AO L LDP P A AO LP A AO L A AOL AOL AOLP AOLP LA A A L PA PA AO L A A L P P A AO AOLP LP LPA LP P PAO AO A L L P PAOL L LPA PAO AO LD AOLP AOLP AOLP AOLP L LP PA AO LA LA LA LA LA LA LA LA LA A A A Dactylis glomerata (Continued) 109 Dactylis glomerata ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Symphyta) Chrysomelidae Chrysomelidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Chloropidae Cercopidae Cercopidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Delphacidae Delphacidae Delphacidae Delphacidae Miridae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Chaitophoridae Chaitophoridae Chaitophoridae Chaitophoridae Coccidae Coccidae Eriococcidae Eriococcidae Eriococcidae Eriococcidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pseudococcidae Pseudococcidae Tenthredinidae Chaetocnema aridula (Gyllenhal, 1827) Chaetocnema hortensis (Fourcroy, 1785) Agromyza nigrella Rondani Cerodontha flavocingulata (Strobl) Cerodontha pygmaea (Meigen) Phytomyza nigra Meigen, 1830 Contarinia festucae Jones, 1940 Crassivenula brachyptera Neophilaenus exclamationis (Thunberg) Neophilaenus lineatus (L) Arocephalus punctum (Flor) Arthaldeus pascuellus (Fallen) Conosanus obsoletus (Kirschbaum) Dikraneura variata (Hardy) Doratura stylata (Boheman) Ebarrius cognatus (Fieber) Eupelix cuspidata (Fabr) Hardya melanopsis (Hardys) Mocuellus collinus (Boheman) Mocydiopsis attenuata (Germer) Paluda adumbrata (Sahlberg) Psammotettix nodosus (Ribaut) Rhytistylus proceps (Kirschbaum) Streptanus marginatus (Kirschbaum) Zyginidia scutellaris (Herrich-Schaffer) Delphacinus mesomelas (Boheman) Javesella pellucida (Fabr) Kosswigianella exigua (Boheman) Ribautodelphax pallens (Stal) Capsus ater (L.) Asphidaphis porosiphon (Borner) Cryptaphis poae (Hardy) Cryptaphis setiger (Hille Ris Lambers) Metopolophium dirhodum (Walker) Metopolophium festucae (Theobald) Metopolophium tenerum (Hille Ris Lambers) Rhopalosiphum insertum (Walker) Schizaphis graminum (Rondn.) Atheroides brevicornis (Laing) Atheroides serrulatus (Haliday) Sipha glyceriae (Kaltenbach) Sipha maydis (Passerini) Eriopeltis festucae (Boyer de Fonscolombe) Lecanopsis formicarum Newstead Eriococcus glyceriae Green Eriococcus inermis Green Eriococcus placidus Green Eriococcus pseudinsignis Green Baizongia pistaciae (L) Forda formicaria (von Heyden) Forda marginata (Koch) Geoica setulosa (Passerini) Geoica utricularia (Passerini) Paracletus cimiciformis (von Heyden) Heterococcus pulverarius (Newstead) Rhizoecus albidus Goux Pachynematus obductus (Hartig) Stem Stem, Leaves Leaf miner Leaf miner Leaf miner Leaf miner OF OF OF OF OF OF OG OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF M OF OG OF M OF OF OF3 OF OF OF2 OF OF OF OF OF OF OF OF OF OF OF + OF + OF OF + OF + OF OG OF Scales rootlet junctions, Base of leaf Root Root Root Root STATUS Jan A A Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A A A A A AEL A L L L LA LA A A A A A A A A A A A A A A A A RDB 3 Nb RDB K L O L O L L L PA L AO L A L A L L O L O L O O O O A A AO A A A O O O Festuca ovina 110 Festuca ovina ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Geometridae Geometridae Glyphipterigidae Hesperiidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Nymphalidae Pyralidae Pyralidae Pyralidae Pyralidae Pyralidae Pyralidae Pyralidae Pyralidae Satyridae Satyridae Satyridae Satyridae Satyridae Satyridae Satyridae Tortricidae Cosmiotes freyerella (Hubn) Elachista albifrontella (Hubn) Elachista apicipunctella (Stainton) Elachista argentella (Clerck) Elachista bedellella (Sirc.) Elachista canapennella (Hubn) Elachista collitella (Dup.) Elachista dispunctella (Dup.) Elachista humilis (Zeller) Elachista monosemiella (Rossler) Elachista subnigrella Dougl. Elachista triatomea (Haworth) Elachista triseriatella (Stainon) Scotopteryx bipunctaria cretata (Prout) Selidosema brunnearia scandinaviaria Stdgr Glyphipterix simpliciella (Stephens) Hesperia comma (L.) Apamea lateritia (Hufn) Luperina testacea (D. & S.) Mesoligia furuncula (D. & S.) Mesoligia literosa (Haworth) Mythimna conigera (D&S) Rivula sericealis (Scop.) Tholera decimalis (Poda) Hipparchia semele (L) Agriphila inquinatella (D&S) Agriphila selasella (Hubner) Agriphila straminella (D&S) Anerastia lotella (Hubner) Crambus perlella (Scop) Pediasia contaminella (Hubner) Platytes cerussella (D&S) Thisanotia chrysonuchella (Scopoli) Coenonympha pamphilus (L) Coenonympha pamphilus pamphilus (L) Erebia aethiops (Esper) Erebia epiphron (Knoch) Maniola jurtina (L) Melanargia galathea (L.) Pyronia tithonus (L.) Eana penziana bellana (Curt) Leaves Leaves Leaves Leaves Leaves OF OF OF OF OF OF OF OG OF OF OF OG OG OF O OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF M Leaves Leaves Leaves Leaves Leaves Stem, Seed Root, Stem bases Root, Stem Stem Leaves Stem STATUS Jan N N Nb Na Feb L LD L LD L L L L L L Mar Apr May Jun Jul Aug L L LD L L L L L LPA L LD A P L LP L LPA LP L L L LP L L LPA A A A A LD A A AL AL A LA A LPA A LP LP AO L A L LP LP PA PA L P PA P LP LP PA LP A A LP A A A LD A LP LPA LPA A LA LA A A A PA L PA A P PA PA A AOL LP A A A PA PL A PA A L PA A A A A PA A A L L L L L P L L L L L L L L PA L A PA A LPA LPA A A A LA L L L L PA L L L L L LP LP L Sep Oct Nov Dec L L L L L L L L LD L L L L L L L L L LD AO L AOL AO OL L AOL A A AO L LD L LD O L L LD L L L O L LD L LD O L L LD L LD LD O L LD L LD O L L LD L LD LD O A A L L L L L L L L L L L L L L L L L L L L L A AL A A L LD L LD O L L LD L LD LD O L LD L LD O L L LD L LD LD O L LD L LD OL L L LD L L LD L Nb L L L L L L L L L L L L L L N L L L L L L L L L L L L LD L LD L LD LP L P L PAO L AOL PA PAOL AOL AOL L OL LD L LD L LD L LD LD LD L L LD LD L L LD LD L L L L L L L L PA LPA LP LPA A PAO PA AOL A AO LD AO L A LD L LD LD LD LD LD LD LD RDB 3 AO AO L AO A PA A OA AO LPA PA A A A A A LD AOL LD Festuca ovina (Continued) 111 Festuca ovina ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Symphyta) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Chrysomelidae Chrysomelidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Chloropidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Delphacidae Miridae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Chaitophoridae Chaitophoridae Chaitophoridae Chaitophoridae Chaitophoridae Eriococcidae Eriococcidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pseudococcidae Pseudococcidae Tenthredinidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Geometridae Geometridae Glyphipterigidae Noctuidae Noctuidae Chaetocnema aridula (Gyllenhal, 1827) Chaetocnema hortensis (Fourcroy, 1785) Agromyza nigrella Rondani Cerodontha denticornis (Panzer) Cerodontha flavocingulata (Strobl) Cerodontha pygmaea (Meigen) Phytomyza nigra Meigen, 1830 Contarinia festucae Jones, 1940 Crassivenula brachyptera Arthaldeus pascuellus (Fallen) Arthaldeus striifrons (Kirschbaum) Conosanus obsoletus (Kirschbaum) Ebarrius cognatus (Fieber) Mocuellus collinus (Boheman) Mocydiopsis attenuata (Germer) Psammotettix confinis (Dahlbom) Zyginidia scutellaris (Herrich-Schaffer) Javesella pellucida (Fabr) Capsus ater (L.) Asphidaphis porosiphon (Borner) Cryptaphis poae (Hardy) Metopolophium dirhodum (Walker) Metopolophium festucae (Theobald) Rhopalosiphum insertum (Walker) Schizaphis nigerrima (Hille Ris Lambers) Sitobion fragariae (Walker) Atheroides brevicornis (Laing) Atheroides serrulatus (Haliday) Sipha glyceriae (Kaltenbach) Sipha kurdjumovi (Mordvilko) Sipha maydis (Passerini) Eriococcus placidus Green Eriococcus pseudinsignis Green Baizongia pistaciae (L) Forda formicaria (von Heyden) Forda marginata (Koch) Geoica setulosa (Passerini) Geoica utricularia (Passerini) Paracletus cimiciformis (von Heyden) Heterococcus pulverarius (Newstead) Rhizoecus albidus Goux Pachynematus obductus (Hartig) Cosmiotes freyerella (Hubn) Elachista albifrontella (Hubn) Elachista apicipunctella (Stainton) Elachista canapennella (Hubn) Elachista dispunctella (Dup.) Elachista humilis (Zeller) Elachista luticomella (Zeller) Elachista monosemiella (Rossler) Elachista subnigrella Dougl. Elachista triseriatella (Stainon) Scotopteryx bipunctaria cretata (Prout) Selidosema brunnearia scandinaviaria Stdgr Glyphipterix simpliciella (Stephens) Luperina testacea (D. & S.) Mythimna conigera (D&S) Stem Stem, Leaves Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner OF OF OF OF OF OF OF OG OF OF OF OF OF OF OF OF OF OF OF OG OF OF OF OF OF2 OF OF2 OF OF OF OF OF OF OF OF + OF + OF OF + OF + OF OG OF OF OF OF OF OG OF OF OF OF OG OF O OF OF OF Leaf blades Root Root Root Root Leaves Leaves Leaves Leaves Leaves Leaves Stem, Seed Root, Stem bases STATUS Jan A A Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A A A A A AOL A L L L LA LA A A A A A A A A A A A A A A A A A A A A A A O A A AO A A A O O O LPA L LD A LP LPA PA L A LPA A A LP A LA L L L PA L LP A A A A AL A PA LA A A LP LP AO L PA LP A A LP LPA A A LA LA A A PA L P A PA A A PA A L L A AL L L L L L L LD L L L L L L L L L L LD AOL L L LD L LD L L L LD L LD L LD L LD L LD L LD RDB 3 Nb RDB K N Nb Na O O L LD L LD L L L L LD L L L L L L L LD L LD L LD L LD L LD L LD L LD L LD L L L L L L P L L A A A AO AO L PA AO Festuca pratensis 112 Festuca pratensis ORDER FAMILY SPECIES LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Noctuidae Ochsenheimeriidae Pyralidae Pyralidae Satyridae Satyridae Satyridae Satyridae Rivula sericealis (Scop.) Ochsenheimeria vacculella (Fischer von Roslerstamm) Crambus perlella (Scop) Platytes cerussella (D&S) Coenonympha pamphilus (L) Coenonympha pamphilus pamphilus (L) Erebia aethiops (Esper) Pyronia tithonus (L.) PLANT PARTS Stem, Leaves Stem SPECIFICITY OF OF OF OF OF OF OF OF STATUS Jan Nb Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec LD O L LD O L LD O L L OL L L LP LP LP L PA P PA A AOL A A A LPA AO A AOL O L L O L LD O L LD O L L LD LD L LD LD L LD LD LP L L P L L PAO L LP AOL PA PA PAOL AOL AOL L AO AOL OL LD L L LD LD L LD LD Festuca pratensis (Continued) Festuca pratensis ORDER 113 FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) Chrysomelidae Chrysomelidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Chloropidae Cercopidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Delphacidae Delphacidae Delphacidae Delphacidae Delphacidae Miridae Miridae Miridae Miridae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Chaitophoridae Chaitophoridae Chaitophoridae Chaitophoridae Chaitophoridae Coccidae Coccidae Eriococcidae Eriococcidae Eriococcidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Chaetocnema aridula (Gyllenhal, 1827) Chaetocnema hortensis (Fourcroy, 1785) Agromyza nigrella Rondani Cerodontha flavocingulata (Strobl) Cerodontha pygmaea (Meigen) Phytomyza nigra Meigen, 1830 Contarinia festucae Jones, 1940 Dasyneura festucae Barnes, 1939 Crassivenula brachyptera Neophilaenus lineatus (L) Arocephalus punctum (Flor) Arthaldeus pascuellus (Fallen) Conosanus obsoletus (Kirschbaum) Dikraneura variata (Hardy) Diplocolenus abdominalis (Fabr) Doratura stylata (Boheman) Ebarrius cognatus (Fieber) Eupelix cuspidata (Fabr) Hardya melanopsis (Hardys) Jassus distinguendus (Flor) Mocuellus collinus (Boheman) Mocydiopsis attenuata (Germer) Paluda adumbrata (Sahlberg) Turrutus socialis (Flor) Zyginidia scutellaris (Herrich-Schaffer) Criomorphus albomarginatus (Curtis) Delphacinus mesomelas (Boheman) Dicranotropis divergens (Kirschbaum) Hyledelphax elegantulus (Boheman) Javesella pellucida (Fabr) Capsus ater (L.) Leptopterna ferrugata (Fallen) Stenodema laevigatum (L) Trigonotylus ruficornis (Geoffroy) Asphidaphis porosiphon (Borner) Cryptaphis poae (Hardy) Metopolophium dirhodum (Walker) Metopolophium festucae (Theobald) Metopolophium tenerum (Hille Ris Lambers) Rhopalosiphum insertum (Walker) Schizaphis graminum (Rondn.) Sitobion fragariae (Walker) Atheroides brevicornis (Laing) Atheroides serrulatus (Haliday) Sipha glyceriae (Kaltenbach) Sipha littoralis (Walker) Sipha maydis (Passerini) Eriopeltis festucae (Boyer de Fonscolombe) Lecanopsis formicarum Newstead Eriococcus glyceriae Green Eriococcus placidus Green Eriococcus pseudinsignis Green Baizongia pistaciae (L) Forda formicaria (von Heyden) Forda marginata (Koch) Geoica setulosa (Passerini) Geoica utricularia (Passerini) Stem Stem, Leaves Leaf miner Leaf miner Leaf miner Leaf miner OF OF OF OF OF OF OG M OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OG OF OF OF OF3 OF OF OF OF2 OF OF OF OF OF OF OF OF OF OF OF + OF + OF OF + Flowering heads Scales rootlet junctions, Base of leaf Root Root STATUS Jan A A Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A A A A A AOL A L L L LA LA A A A A A A A A A A A A A A A A O A O A A AO A A A A A A RDB 3 Nb RDB K Nb L O L O L L L PA L AO L A L A L L O L O L O O O O A A AO A A A O O O Festuca rubra 114 Festuca rubra ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Symphyta) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Pemphigidae Pseudococcidae Pseudococcidae Pseudococcidae Pseudococcidae Tenthredinidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Geometridae Geometridae Glyphipterigidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Nymphalidae Pyralidae Pyralidae Satyridae Satyridae Satyridae Satyridae Satyridae Paracletus cimiciformis (von Heyden) Heterococcus pulverarius (Newstead) Rhizoecus albidus Goux Trionymus perrisii (Signoret) Trionymus thulensis Green Pachynematus obductus (Hartig) Cosmiotes freyerella (Hubn) Elachista albifrontella (Hubn) Elachista apicipunctella (Stainton) Elachista argentella (Clerck) Elachista canapennella (Hubn) Elachista dispunctella (Dup.) Elachista humilis (Zeller) Elachista monosemiella (Rossler) Elachista subnigrella Dougl. Elachista triatomea (Haworth) Elachista triseriatella (Stainon) Scotopteryx bipunctaria cretata (Prout) Selidosema brunnearia scandinaviaria Stdgr Glyphipterix simpliciella (Stephens) Apamea oblonga (Haw) Luperina nickerlii knilli (Boursin) Luperina nickerlii nickerlii (Freyer) Luperina testacea (D. & S.) Mythimna conigera (D&S) Rivula sericealis (Scop.) Hipparchia semele (L) Crambus perlella (Scop) Platytes cerussella (D&S) Coenonympha pamphilus (L) Coenonympha pamphilus pamphilus (L) Erebia aethiops (Esper) Melanargia galathea (L.) Pyronia tithonus (L.) Root OF + OF OG OF OF OF OF OF OF OF OF OG OF OF OF OG OG OF O OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF Root Base of leaf sheath Stem, Leaf sheath Leaves Leaves Leaves Leaves Leaves Leaves Leaves Leaves Stem, Seed Root, Stem bases Stem Root, Stem Root, Stem bases Stem STATUS Jan N Nb Na Nb Feb Mar Apr May Jun Jul Aug L L LD L L L LPA L LD A P LP LPA LP A A A LP LPA A LA LA A A A PA L A LP LP P A AOL A A A PA A A A PA A L L L L L P L L L L L L PA L A PA LPA A A A LA L L L L PA L L L L LP LP AOL PA PAO PA L LD L LD L L L L LD LD L LD L LD L L L L LD LD L LD L LD L L L L L LD L L L L L LP L A A A A A AL A LA A LPA A LP LP AO LA L L L PA PA P PA A L LD LD LD L LD L LD L LD L LD LP L L L P L L L PAO L LPA LP L LD L LD L L Sep Oct Nov Dec L L L L L L L L LD A AL L L L A A AO AO L LA PA PA PA AO LPA A A L L L LD L AOL AOL AOL L AOL A L L LD L LD L L L L L L L LD L LD L L L L LD LD L LD L LD L L L L LD LD L L L PAOL AOL AO LD AO AOL L LD AOL OL LD LD L L LD LD LD L LD LD LD Festuca rubra (Continued) 115 Festuca rubra ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Chloropidae Chloropidae Opomyzidae Opomyzidae Opomyzidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Delphacidae Delphacidae Delphacidae Delphacidae Miridae Miridae Nabidae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Chaitophoridae Eriococcidae Pemphigidae Pemphigidae Pseudococcidae Cicadellidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Hesperiidae Noctuidae Noctuidae Noctuidae Nymphalidae Satyridae Satyridae Thripidae Agromyza nigrella Rondani Agromyza nigripes Meigen, 1830 Cerodontha denticornis (Panzer) Cerodontha flavocingulata (Strobl) Liriomyza flaveola (Fallen) Liriomyza phryne Hendel Phytomyza milii Kaltenbach Phytomyza nigra Meigen, 1830 Mayetiola holci Kieffer, 1896 Conioscinella frontella (Fallén, 1820) Oscinella frit (Linnaeus, 1758) Geomyza balachowskyi Mesnil, 1934 Geomyza combinata agg. sensu Collin (1945) Opomyza petrei Mesnil, 1934 Adarrus ocellaris (Fallen) Arthaldeus pascuellus (Fallen) Athysanus argentarius (Metcalf) Diplocolenus abdominalis (Fabr) Elymana sulphurella (Zetterstedt) Jassus distinguendus (Flor) Mocydia crocea (Herrich-Schaeffer) Mocydiopsis parvicauda (Ribaut) Recilia coronifera (Marshall) Streptanus aemulans (Kirschbaum) Dicranotropis hamata (Boheman) Eurybregma nigrolineata (Scott) Javesella pellucida (Fabr) Muellerianella fairmairei (Perris) Capsus ater (L.) Leptopterna dolabrata (L) Nabis flavomarginatus Scholtz Cryptaphis poae (Hardy) Diuraphis holci (Hille Ris Lambers) Metopolophium dirhodum (Walker) Metopolophium festucae (Theobald) Rhopalosiphum insertum (Walker) Schizaphis graminum holci Hille Ris Lambers Schizaphis holci (Hille Ris Lambers) Sitobion fragariae (Walker) Sipha maydis (Passerini) Eriococcus pseudinsignis Green Forda formicaria (von Heyden) Geoica setulosa (Passerini) Trionymus perrisii (Signoret) Elachista gangabella Zell. Cosmiotes freyerella (Hubn) Elachista albifrontella (Hubn) Elachista apicipunctella (Stainton) Elachista argentella (Clerck) Elachista humilis (Zeller) Elachista monosemiella (Rossler) Thymelicus sylvestris (Poda) Omphaloscelis lunosa (Haworth) Plusia putnami (Grote) Plusia putnami gracilis (Lempke) Lasiommata megera L. Maniola jurtina (L) Pararge aegeria (L.) Baliothrips dispar (Haliday) Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaves Stem OF M OF OF OF OF OF OF OG2 OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OG2 OF OF O OF OG OF OF OF OG2 OG2 OF OF OF OF + OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF Stem borer, shoots Stem borer Stem borer Root Base of leaf sheath Leaves Leaves Leaves Leaves Leaves Leaves Leaves Leaves STATUS Jan Feb Mar Apr May Jun Jul Aug A A A A A A A A A A A A A A L PA A A A O O O A A AO LD LD LD L L LD L LD P LPA L LD A P L L L L LD LP L LD P A L L L L LPA L LA A A PA L A PA A A LP L L L AO L AOLP A A A A A A A LA PA P L LD L LD LD L L L LD P L LD P A LD L L L LD P L LD P A LP A A A A LA A P A LP A AOLP LP PA A AOLP AOLP LA LA Sep Oct A A A A A A O A LA A LPA A AOLP LA Nov Dec O O O L L L LD L L L L L L L L LD LD A L O AOL A AOLP LA LD AOL L L L A AOLP LA LD L L L LD P LD L L L LD P LD P LA LD P LA Holcus lanatus 116 Holcus lanatus ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Chrysomelidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Chloropidae Opomyzidae Opomyzidae Opomyzidae Cicadellidae Cicadellidae Cicadellidae Delphacidae Miridae Aphididae Aphididae Aphididae Aphididae Chaitophoridae Eriococcidae Pemphigidae Ochsenheimeriidae Satyridae Satyridae Melolontha melolontha (Linnaeus, 1758) Agromyza nigrella Rondani Cerodontha incisa (Meigen, 1830) Phytomyza nigra Meigen, 1830 Pseudonapomyza atra Contarinia lolii Metcalfe, 1933 Oscinella frit (Linnaeus, 1758) Geomyza balachowskyi Mesnil, 1934 Geomyza tripunctata Fallén, 1823 Opomyza florum (Fabricius, 1794) Arthaldeus pascuellus (Fallen) Arthaldeus striifrons (Kirschbaum) Deltocephalus pulicaris (Fallen) Javesella pellucida (Fabr) Capsus ater (L.) Metopolophium dirhodum (Walker) Metopolophium festucae (Theobald) Rhopalosiphum insertum (Walker) Schizaphis graminum (Rondn.) Sipha maydis (Passerini) Eriococcus glyceriae Green Forda formicaria (von Heyden) Ochsenheimeria vacculella (Fischer von Roslerstamm) Maniola jurtina (L) Maniola jurtina insularis (Thomson) Root Leaf miner Leaf miner Leaf miner Leaf miner OF OF OF OF OF M OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF + OF OF OF Stem borer Stem borer, shoots Stem borer, shoot miner Stem borer Stem, Leaves Leaves STATUS Jan Nb Feb LD LD O O O L L O L L Mar L O L L Apr May L LP L L OL L L LP L L Jun A P PAO LPA Jul Aug Sep Oct Nov Dec A A A A A A AOL L LD A A O O O A AO O O AOP AOP AO A LPAO PAOL PAOL L O O L L Lolium perenne Lolium perenne ORDER 117 FAMILY SPECIES PLANT PARTS SPECIFICITY DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Scathophagidae Scathophagidae Cicadellidae Delphacidae Miridae Miridae Miridae Miridae Aphididae Aphididae Aphididae Aphididae Aphididae Chaitophoridae Coccidae Eriococcidae Pemphigidae Cephidae Cephidae Elachistidae Elachistidae Elachistidae Hesperiidae Hesperiidae Noctuidae Ochsenheimeriidae Satyridae Agromyza nigrella Rondani Cerodontha flavocingulata (Strobl) Phytomyza nigra Meigen, 1830 Contarinia kanervoi Barnes, 1958 Winnertzia tridens Panelius, 1965 Nanna armillata (Zetterstedt, 1846) Nanna flavipes (Fallén, 1819) Zyginidia scutellaris (Herrich-Schaffer) Javesella pellucida (Fabr) Capsus ater (L.) Leptopterna dolabrata (L) Stenodema laevigatum (L) Trigonotylus ruficornis (Geoffroy) Diuraphis muehlei (Borner) Metopolophium dirhodum (Walker) Metopolophium festucae (Theobald) Rhopalosiphum insertum (Walker) Sitobion fragariae (Walker) Sipha glyceriae (Kaltenbach) Eriopeltis festucae (Boyer de Fonscolombe) Eriococcus glyceriae Green Geoica utricularia (Passerini) Cephus cultratus (Eversmann) Cephus pygmeus (L) Elachista albifrontella (Hubn) Elachista argentella (Clerck) Elachista bedellella (Sirc.) Thymelicus lineola (Ochsenheimer) Thymelicus sylvestris (Poda) Deltote deceptoria (Scop) Ochsenheimeria vacculella (Fischer von Roslerstamm) Melanargia galathea (L.) Leaf miner Leaf miner Leaf miner OF OF OF M M OF OF OF OF OF OF OF OF M OF OF OF OF OF OF OF OF + OF OF OF OF OF OF OF OF OF OF Flower heads, infloresences Flower heads, infloresences Flowering heads Leaves Leaves Leaves Stem, Leaves STATUS Jan O Feb Mar O L L Nb Apr L L L L L L LD O LD O LD O LD LD L L P L L L O LD OL L O L O L May Jun Jul Aug Sep Oct A A A A Nov Dec A A A O A O A A AO A A A A A A O O O A L A A AO LD O O LD L AO O AO LD LD L L L L A A A L PA A L LP A LP L A A LD A PA PA LA P LPA A A LD A A A L A PAO A A LD O LD O LD O LD LD LD O LD O LD O LD Phleum pratense pratense 118 Phleum pratense pratense ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Chrysomelidae Chrysomelidae Chrysomelidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Delphacidae Delphacidae Delphacidae Miridae Miridae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Chaitophoridae Chaitophoridae Coccidae Coccidae Eriococcidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Cephidae Tenthredinidae Tenthredinidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Gelechiidae Noctuidae Noctuidae Chaetocnema aridula (Gyllenhal, 1827) Chaetocnema hortensis (Fourcroy, 1785) Psylliodes cucullata (Illiger, 1807) Agromyza nigrella Rondani Agromyza rondensis Strobl Cerodontha crassiseta (Strobl) Liriomyza flaveola (Fallen) Phytomyza milii Kaltenbach Phytomyza nigra Meigen, 1830 Pseudonapomyza atra Arthaldeus pascuellus (Fallen) Deltocephalus pulicaris (Fallen) Doratura stylata (Boheman) Graphocraerus ventralis (Fallen) Jassargus flori (Fieber) Zyginidia scutellaris (Herrich-Schaffer) Javesella pellucida (Fabr) Muirodelphax aubei (Perris) Xanthodelphax flaveolus(Flor) Amblytylus nasutus (Kirschbaum) Leptopterna ferrugata (Fallen) Metopolophium dirhodum (Walker) Metopolophium festucae (Theobald) Metopolophium frisicum (Hille Ris Lambers) Rhopalomyzus poae (Gillette) Rhopalosiphum insertum (Walker) Rhopalosiphum maidis (Fitch) Schizaphis graminum (Rondn.) Sitobion fragariae (Walker) Atheroides serrulatus (Haliday) Sipha glyceriae (Kaltenbach) Eriopeltis festucae (Boyer de Fonscolombe) Lecanopsis formicarum Newstead Eriococcus glyceriae Green Aploneura lentisci (Passerini) Baizongia pistaciae (L) Colopha compressa (Koch) Forda formicaria (von Heyden) Forda marginata (Koch) Geoica utricularia (Passerini) Paracletus cimiciformis (von Heyden) Cephus nigrinus (Thomson) Eutomostethus ephippium (Panz) Pachynematus obductus (Hartig) Cosmiotes freyerella (Hubn) Elachista albifrontella (Hubn) Elachista argentella (Clerck) Elachista canapennella (Hubn) Elachista collitella (Dup.) Elachista humilis (Zeller) Elachista luticomella (Zeller) Elachista monosemiella (Rossler) Elachista pomerana (Frey) Elachista subnigrella Dougl. Brachmia rufescens (Haw) Apamea furva (D&S) Apamea furva britannica (Cockayne) Stem Stem, Leaves Root, Stem miner, Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner OF OF O OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF M OF OF OF OF OG OG OF OF OF OF OF OF OF OF OF OF + OF OF OF + OF + OF + OF + OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OG Scales rootlet junctions, Base of leaf Root Root Leaves Leaves Leaves Leaves Leaves Leaves Leaves Leaves Root, Lower stem STATUS Jan A A Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A A A A A AOL A L L L LA LA A A A A A A A A A A A A A L O L O L O Na L O L L L L L L L L L L L L L L L L L LPA L L L L L N L O L RDB 2 L L L L L L LPA L P LP L A A A PA L AO L A L A L A A A PA L PA LPA LPA A LP A PA LA L L L A A A A AL A PA LA LPA A PA L LP LP A A LP LPA A A LA A LA A A A PA A A PA A A L L L L A A L L L A A LPA A AL A AO L L L L L L L L L L L L L PA L L L Poa pratensis 119 Poa pratensis ORDER FAMILY SPECIES LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Ochsenheimeriidae Ochsenheimeriidae Pyralidae Pyralidae Pyralidae Pyralidae Satyridae Satyridae Satyridae Satyridae Satyridae Satyridae Deltote bankiana (Fabricius) Mythimna conigera (D&S) Mythimna vitellina (Hubn) Pachetra sagittigera (Hufn) Pachetra sagittigera britannica (Turner) Tholera decimalis (Poda) Ochsenheimeria mediopectinellus (Haworth) Ochsenheimeria vacculella (Fischer von Roslerstamm) Agriphila inquinatella (D&S) Agriphila tristella (D&S) Crambus pascuella (L) Thisanotia chrysonuchella (Scopoli) Aphantopus hyperantus (L) Coenonympha pamphilus (L) Coenonympha pamphilus pamphilus (L) Maniola jurtina (L) Maniola jurtina insularis (Thomson) Pyronia tithonus (L.) PLANT PARTS Stem Stem, Leaves Leaves SPECIFICITY STATUS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF RDB 3 P LD P LD P L P L P LP AOL L L O L O L L O L O L LP L L OL L L PA L LP LP LP L L AO AOLP L L PA AO AO A A A L PAOL L L A L L A AOL O AO AL P L A L L O L O P LD A L L O L O P LD RDB 1 RDB 1 + AO A AOLP L L LP PAO A A PA A L P L L L L AOL L L L LD L LD AOL AOP LPAO PA PAOL AOP PAOL AO AOL AO PAOL AOL OL A L L L L L LD L LD Nb Notable L L L L L L O L L L LD L LD L L L L LPA L PA PA AOL A AO L P P PA LP A A L L L L LD L L L LD L L L LD LP L L L P L L L PAO PAO LPA LP L L O L O Poa pratensis (Continued) Poa pratensis ORDER 120 FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Chrysomelidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cicadellidae Cicadellidae Cicadellidae Delphacidae Delphacidae Delphacidae Miridae Miridae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Chaitophoridae Chaitophoridae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Pemphigidae Tenthredinidae Tenthredinidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Elachistidae Gelechiidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Ochsenheimeriidae Ochsenheimeriidae Pyralidae Pyralidae Pyralidae Pyralidae Satyridae Satyridae Satyridae Satyridae Satyridae Chaetocnema aridula (Gyllenhal, 1827) Agromyza nigrella Rondani Agromyza rondensis Strobl Cerodontha crassiseta (Strobl) Cerodontha flavocingulata (Strobl) Cerodontha fulvipes (Meigen) Liriomyza flaveola (Fallen) Phytomyza milii Kaltenbach Phytomyza nigra Meigen, 1830 Pseudonapomyza atra Sitodiplosis cambriensis Jones, 1940 Arthaldeus pascuellus (Fallen) Deltocephalus pulicaris (Fallen) Zyginidia scutellaris (Herrich-Schaffer) Criomorphus williamsi (China) Javesella forcipata (Boheman) Javesella pellucida (Fabr) Amblytylus nasutus (Kirschbaum) Leptopterna ferrugata (Fallen) Metopolophium dirhodum (Walker) Metopolophium festucae (Theobald) Metopolophium frisicum (Hille Ris Lambers) Rhopalomyzus poae (Gillette) Rhopalosiphum insertum (Walker) Sitobion fragariae (Walker) Atheroides serrulatus (Haliday) Sipha glyceriae (Kaltenbach) Aploneura lentisci (Passerini) Baizongia pistaciae (L) Colopha compressa (Koch) Forda formicaria (von Heyden) Forda marginata (Koch) Geoica utricularia (Passerini) Paracletus cimiciformis (von Heyden) Eutomostethus ephippium (Panz) Pachynematus obductus (Hartig) Cosmiotes freyerella (Hubn) Elachista albifrontella (Hubn) Elachista argentella (Clerck) Elachista canapennella (Hubn) Elachista monosemiella (Rossler) Elachista pomerana (Frey) Elachista subnigrella Dougl. Brachmia rufescens (Haw) Apamea furva (D&S) Apamea furva britannica (Cockayne) Mythimna conigera (D&S) Mythimna vitellina (Hubn) Pachetra sagittigera (Hufn) Pachetra sagittigera britannica (Turner) Tholera decimalis (Poda) Ochsenheimeria mediopectinellus (Haworth) Ochsenheimeria vacculella (Fischer von Roslerstamm) Agriphila inquinatella (D&S) Agriphila tristella (D&S) Crambus pascuella (L) Thisanotia chrysonuchella (Scopoli) Coenonympha pamphilus (L) Coenonympha pamphilus pamphilus (L) Maniola jurtina (L) Maniola jurtina insularis (Thomson) Pyronia tithonus (L.) Stem Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner OF OF OF OF OF M OF OF OF OF M OF OF OF OF OF OF OF OF OF OF OG OG OF OF OF OF OF + OF OF OF + OF + OF + OF + OF OF OF OF OF OF OF OF OF OF OF OG OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF Root Root Leaves Leaves Leaves Leaves Leaves Root, Lower stem Stem Stem, Leaves Leaves STATUS Jan A Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A A A A L LA A A A A A A A A A A A A A A A LP A A LP LA A LA A A A A AOLP L L LP PAO A A PA A L PA A A PA A LPA A AL A AO AO AOLP L L PA AO AO A A A L A L L L L L L L L A L L O L O L L L LD A L L O L O L L L LD L L L AOL AOP LPAO PA LPAO AOP LPAO AO Nb L L L L LPA A A A A LA LPA A PA L LP PA AOL A AO L P P PA LP A A L L L LD L L L LD L L L LD LP L L L P L L L PAO PAO LPA LP L L L L L L LPA L P LP RDB 2 RDB 1 RDB 1 + Nb N L L L LD L L L LD L L L L LPA L L L L L L L O L O L L O L O L L L L L L O L L L LP L L OL L L PA L PA LPA A PA LA L L L LP AOL PA L LP LP LP L A PA L L L L A L L A AOL O AO AL L L O L O L L L L AOL AO LPAO AOL OL A L L L L L LD L LD Poa trivialis 121 Poa trivialis ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Symphyta) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA THYSANOPTERA Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Bruchidae Bruchidae Bruchidae Bruchidae Bruchidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Aphididae Aphididae Argidae Gracillariidae Noctuidae Pieridae Pieridae Tortricidae Tortricidae Tortricidae Zygaenidae Zygaenidae Zygaenidae Zygaenidae Thripidae Thripidae Cyanapion afer (Gyllenhal, 1833) Eutrichapion ervi (Kirby, 1808) Eutrichapion viciae (Paykull, 1800) Holotrichapion pisi (Fabricius, 1801) Oxystoma cerdo (Gerstaecker, 1854) Oxystoma craccae (Linnaeus, 1767) Oxystoma pomonae (Fabricius, 1798) Oxystoma subulatum (Kirby, 1808) Syapion ebeninum (Kirby, 1808) Bruchidius cisti (Fabricius, 1775) Bruchus atomarius (Linnaeus) Bruchus loti Paykull, 1800 Bruchus rufimanus Boheman Bruchus rufipes Herbst Derocrepis rufipes (Linnaeus, 1758) Hypera suspiciosa (Herbst, 1795) Sitona ambiguus Gyllenhal, 1834 Sitona gemellatus Gyllenhal, 1834 Sitona suturalis Stephens, 1831 Agromyza lathyri Hendel Liriomyza congesta (Becker) Liriomyza pisivora Hering Asphondylia lathyri Rübsaamen, 1914 Contarinia jaapi Rübsaamen, 1914 Contarinia lathyri Kieffer, 1909 Dasyneura lathyri (Kieffer, 1909) Dasyneura lathyricola (Rübsaamen, 1890) Dasyneura pratensis (Kieffer, 1909) Jaapiella volvens Rübsaamen, 1917 Aphis pseudocomosa Stroyan Megourella purpurea (Hille Ris Lambers) Aprosthema melanura (Klug) Phyllonorycter nigrescentella (Logan) Lygephila craccae (D. & S.) Leptidea sinapis (L.) Leptidea sinapis sinapis (L.) Ancylis badiana (D. & S.) Cydia lunulana (Hb) Cydia nigricana (Fabr.) Zygaena lonicerae (Schev.) Zygaena viciae (D&S) Zygaena viciae argyllensis (Trem) Zygaena viciae ytenensis (Briggs) Kakothrips pisivorous (Westwood) Odontothrips phaleratus (Haliday) Vegetative buds Bud, Fruit, seeds Flowers; Anthers; Pistils M OT OT OF OT OT OT OF OF O OF OF OT OT OF OF OF2 OF OT OT OF OT OG M M M M M OG M OF OG2 OF OT OF OF3 OF OT OT OF OF2 OF2 OF2 OF OT Seed, Seed pod, Fruit Seeds, Fruits, Seed pod Seeds, Fruits, Seed pod Stem Seed pods Seed pods Seed pods Seed pods Seed pods Leaves Root nodules Root nodules Root nodules Leaf miner Leaf miner Leaf miner Shoot, Flower Leaves Stem, Leaves, Pods Pods Flower STATUS Jan Nb Nb RDB 1 Feb Mar Apr May A A AD A LA A AD A AD A AD A A AD A AD AD AD A AD AD A AD LA LD LD L A AD AD AD A AD AD AD A AD AD AD A AD AD A AD A AD AD AD LA A (rarely) A (rarely) A A (rarely) A (rarely) A (rarely) A (rarely) A A (rarely) A (rarely) A (rarely) A (rarely) A Jun Jul Aug Sep A LA LA A LA LA LA LA LA A A A A A LA LA A LA LA LA LA LA A A (rarely) A A (rarely) A LA LA A LA LA LA LA LA A (rarely) A (rarely) A (rarely) A (rarely) A LA LA LA LA LA LA LA LA A (rarely) A (rarely) A (rarely) A (rarely) Oct Nov Dec A A LA A A A A A LD LD LD AD AD AD AD AD LD LD LD AD AD AD AD AD A (rarely) A (rarely) A (rarely) A (rarely) A (rarely) A (rarely) A (rarely) A A AO A AL A A A A L A L A L A A A A AD A AD A AD L LA AOL AOL AOL PA LPA LPA LP A LA A A LP P LA LPA LPA L AOL LOPA LOPA PAOL A LA LA A LPA A LA AOL AO L L L L L L A LA AL O L L L LD LD L L L L P O P O P O P L LD LD LD L LD L P LD LD LD LD L LD L P LD LD LD LD A AD A AD A AO A AO A AOL RDB 3 P O P O P O PA O RDB 1 ! RDB 1 Extinct P LD LD LD LD L LD L P LD LD LD LD L LD L P LD LD LD LD L LD L P LD PA LD P LD L L L L A L A A A PA PA L L L L LA A LA LD L Lathyrus pratensis 122 Lathyrus pratensis ORDER FAMILY SPECIES COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Symphyta) LEPIDOPTERA Apionidae Apionidae Apionidae Apionidae Bruchidae Bruchidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Nitidulidae Nitidulidae Nitidulidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Platystomatidae Aphididae Aphididae Aphididae Callaphididae Chaitophoridae Pemphigidae Apidae Apidae Apidae Apidae Tenthredinidae Coleophoridae Eutrichapion ervi (Kirby, 1808) Ischnopterapion loti (Kirby, 1808) Oxystoma subulatum (Kirby, 1808) Syapion ebeninum (Kirby, 1808) Bruchidius cisti (Fabricius, 1775) Bruchus loti Paykull, 1800 Cleopmiarus plantarum (Germar, 1824) Hypera meles (Fabricius, 1792) Hypera nigrirostris (Fabricius, 1775) Hypera plantaginis (Degeer, 1775) Hypera postica (Gyllenhal, 1813) Hypera suspiciosa (Herbst, 1795) Hypera venusta (F., 1781) Pachytychius haematocephalus (Gyll.) Sitona ambiguus Gyllenhal, 1834 Sitona cinerascens (Fahraeus, 1840) Sitona gemellatus Gyllenhal, 1834 Sitona lineatus (Linnaeus, 1758) Sitona macularius (Marsham, 1802) SItona ononidis Sharp, 1866 Sitona puberulus Reit. Sitona puncticollis Stephens, 1831 Sitona sulcifrons (Thunberg, 1798) Sitona waterhousei Walton, 1846 Trachyphloeus aristatus (Gyllenhal, 1827) Trachyphloeus asperatus Boheman, 1843 Trachyphloeus digitalis (Gyllenhal, 1827) Trachyphloeus laticollis Boheman, 1843 Tychius flavicollis Stephens, 1831 Tychius junceus (Reich, 1797) Tychius picirostris (Fabricius, 1787) Tychius polylineatus (Germar, 1824) Tychius pusillus Germar, 1842 Tychius squamulatus Gyllenhal, 1836 Brachypterolus pulicarius (Linnaeus, 1758) Meligethes carinulatus Forster, 1849 Meligethes erythropus (Marsham, 1802) Liriomyza congesta (Becker) Melanagromyza cunctans (Meigen) Asphondylia melanopus Kieffer, 1890 Contarinia barbichei (Kieffer) Contarinia loti (De Geer, 1776) Dasyneura loti (Kieffer) Jaapiella loticola (Rübsaamen, 1889) Rivellia syngenesiae (Fabricius, 1781) Acyrthosiphon loti (Theob.) Aphis loti (Kalt) Aphis lotiradicis Stroyan Therioaphis trifolii (Monell) Sipha glyceriae (Kaltenbach) Paracletus cimiciformis (von Heyden) Andrena fuscipes (Kirby) Andrena wilkella (Kirby) Macropis europaea (Warncke) Melitta tricincta Kirby Tenthredo sulphuripes (Kreichbaumer) Coleophora discordella Zell. PLANT PARTS Seed-pod, Fruit, Seeds Seed pods Seed-pods Leaves Leaves, Flowers Seed, Seed-pod, Fruits Root nodules Root nodules Root nodules Root nodules Root nodules Root nodules Root nodules Root nodules Root Root Root Root Seed-pods Seed-pods Root Root Pollen Pollen Pollen Leaf miner Stem gall Seed-pods Buds Flower, Buds Flower, galls Root, Stem bases Root Flower Flower Flower Flower Leaves SPECIFICITY OT OG OF OF O OF O OF OF O OF OF OF OG OF2 M OF OF OF OF OG OF OF OF O O O O OG OF OF OF OF OT M M M OF M M M OG M OG OF OF OF M OF OF OF + Oligolectic Oligolectic Oligolectic Monolectic M OG STATUS Jan Feb Mar Apr AD AD AD AD AD AD AD AD AD AD A AD AD A AD A AD A A AD May A A A LA A (rarely) A (rarely) A (rarely) A (rarely) A (rarely) A Jun Jul Aug Sep Oct Nov Dec LA AL LA LA A A LA AL LA LA A A LA AL LA LA A (rarely) A (rarely) LA AL LA LA A (rarely) A (rarely) A AL A A LD AD AD AD LD AD AD AD A A A A A A A A A A A A A A A A A A A A L A L (?) A A A A A A A A L A A A A A A A (rarely) A (rarely) RDB K Na A A A A A A A RDB 1 RDB K RDB 1 Nb Nb RDB K Nb Nb Nb Na Na RDB K Nb Nb A A A A A A A AD AD AD A AD AD AD A A A A AO AO AO A L L AO A L L L A L L L A A A A A A A A A A A A L (?) A A A A A A A A A A A A A A A A A A A A A A A A A A A A A L (?) A A A A A A A L (?) A A A A A A A AD A AD A AD A AD AD AD A AD AD AD A A A A A A A A AD A A A AD A A A AD A A A A A A L A A A A A AOL AD LD PAOL LD AD LD LD LD AD LD LD LD AD LD LD L L LD LD A A RDB 3 Nb LD AD LD LD LD AD LD LD LD AD LD LD LD AD LD LD LD AO LD LD LD AOLP LP LD LPA PA AO LP LD LD LD L L P A AOL AD AOL PAOL Lotus corniculatus 123 ORDER FAMILY SPECIES LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA THYSANOPTERA THYSANOPTERA THYSANOPTERA Gelechiidae Gelechiidae Gelechiidae Gelechiidae Geometridae Geometridae Geometridae Geometridae Hesperiidae Hesperiidae Lycaenidae Lycaenidae Lycaenidae Lyonetiidae Nepticulidae Nepticulidae Nepticulidae Noctuidae Noctuidae Nolidae Pieridae Pieridae Pieridae Pyralidae Pyralidae Scythrididae Scythrididae Sesiidae Tortricidae Tortricidae Tortricidae Tortricidae Tortricidae Zygaenidae Zygaenidae Zygaenidae Zygaenidae Zygaenidae Zygaenidae Zygaenidae Zygaenidae Zygaenidae Zygaenidae Thripidae Thripidae Thripidae Thripidae Syncopacma cinctella (Cl.) Syncopacma sangiella (Stt.) Syncopacma taeniolella (Zell.) Xystophora pulveratella (H.-S.) Scotopteryx bipunctaria cretata (Prout) Selidosema brunnearia scandinaviaria Stdgr Semiothisa clathrata clathrata (L.) Siona lineata (Scopoli) Erynnis tages L. Erynnis tages tages (L.) Everes argiades (Pallas) Lysandra coridon (Poda) Plebejus argus cretaceus Tutt Leucoptera lotella (Stt.) Trifurcula cryptella (Stt.) Trifurcula eurema (Tutt) Trifurcula subnitidella (Dup.) Callistege mi (Clerck) Euclidia glyphica (L.) Nola aerugula (Hb.) Colias croceus (Geoffroy) Leptidea sinapis (L.) Leptidea sinapis sinapis (L.) Oncocera semirubella (Scopoli) Pima boisduvaliella (Guenee) Scythris picaepennis (Haw.) Scythris siccella (Zell.) Bembecia scopigera (Scopoli) Cydia compositella (Fabr.) Cydia succedana (D. & S.) Lathronympha strigana (Fabr.) Lobesia littoralis (Humph. & Westw.) Periclepsis cinctana (D. & S.) Zygaena filipendulae (L) Zygaena filipendulae stephensi Dupont Zygaena lonicerae (Schev.) Zygaena loti (D&S) Zygaena loti scotica (Rowland-Brown) Zygaena trifolii palustrella (Ver) Zygaena trifolli (Esper) Zygaena viciae (D&S) Zygaena viciae argyllensis (Trem) Zygaena viciae ytenensis (Briggs) Kakothrips pisivorous (Westwood) Odontothrips loti (Haliday) Sericothrips abnormis (Karny) Thrips physapus Linnaeus PLANT PARTS Leaves Stem Seed-pods Root Stem, Leaves, Flower Pods Flower, Seed Stem, Flower, Seed Flower Buds, Flower Leaves, Flower SPECIFICITY STATUS OF M OF OF OF O OF O OF OF3 OF OF M OG OG OG OG OF OF OF OF OF OF3 OF OF3 O2 O OF3 OF OF O O2 OF OG2 OG2 OF M M M OG2 OF2 OF2 OF2 OF OF OF2 O Nb N RDB 1 Nb Na RDB 1 ! Nb Nb Jan Mar Apr LD L P LD LD LD L LDO LDO P P P LD L P LD LD LD L LDO LDO P P P LD L P LD LD LD L LDO LDO P P P L L P L A LD P L L L P P P P P LD P LD P L P LD LD P LD LD P LD LD P L LD L LD LD L LD LD L LD LD L LDP LDP L L LD LD LD L LD L L LD L L L LD LD LD L LD L L LD L L L LD LD LD L LD L L LD L L L L L L L L LP L L L L A A A Believed extinct Nb RDB 3 Feb RDB 1 RDB 1 RDB 3 RDB 3 RDB 1 ! RDB 1 Extinct A May Jun Jul L L L A L L A LPA A PA LPA LPA LP A LP LP AO AO A AO L LP LP LP AOL AOL A A A PA PA PAO L LP LA A L AOL LA AOL LP PA P P PA AOL AOLP PA PA LP ALP LP LPA PAO A AOL LA LPA LP A LA A LA A LA OL LPA LP LA LPA PA PAL A A AO LP PA AOLP AO A PAO PAO PAOL AOL A L L LOPA PAOL A LA LA LA A L L AO A PA A A A L AO A A L LD L L LP PA A LPA LP L L L L LP L PAO LA L L L LA A LA A A PA LPA L A L Aug Sep L AO AO A L L L LD L L L AO L LD LD L AO AOLD P LP OL AO AO OLP LP A A L L A AOL LA AOL OL AL AOL PAOL A PA LP ALOP PAOL L L L L L L L L A LA LA A Oct Nov Dec LD L L LD LD LD L LDO LDO P P LP L LD L P LD LD LD L LDO LDO P P P LD L P LD LD LD L LDO LDO P P P P L LPAO P LD L P LD P L L P LD LD P LD LD L L AOL A PA L L L L L L L L L L L L L LD L LD LD L LD LD A L L LD LD LD L LD L L LD L L L LD LD LD L LD L L LD L L L LD LD LD L LD L A LA A A L P AOL LPA L L L L LD L Lotus corniculatus (Continued) 124 Lotus corniculatus ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA Apionidae Apionidae Apionidae Bruchidae Bruchidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Cecidomyiidae Cecidomyiidae Platystomatidae Miridae Aphididae Aphididae Callaphididae Pemphigidae Apidae Coleophoridae Gelechiidae Gelechiidae Gelechiidae Geometridae Geometridae Hesperiidae Hesperiidae Lycaenidae Lycaenidae Lyonetiidae Nepticulidae Nepticulidae Noctuidae Noctuidae Nolidae Pieridae Pieridae Scythrididae Sesiidae Tortricidae Tortricidae Zygaenidae Zygaenidae Zygaenidae Zygaenidae Zygaenidae Zygaenidae Thripidae Ischnopterapion loti (Kirby, 1808) Oxystoma subulatum (Kirby, 1808) Syapion ebeninum (Kirby, 1808) Bruchidius cisti (Fabricius, 1775) Bruchus loti Paykull, 1800 Cleopmiarus plantarum (Germar, 1824) Hypera meles (Fabricius, 1792) Hypera plantaginis (Degeer, 1775) Hypera suspiciosa (Herbst, 1795) Hypera venusta (F., 1781) Pachytychius haematocephalus (Gyll.) Sitona gemellatus Gyllenhal, 1834 Sitona macularius (Marsham, 1802) Sitona puberulus Reit. Sitona waterhousei Walton, 1846 Trachyphloeus aristatus (Gyllenhal, 1827) Trachyphloeus asperatus Boheman, 1843 Trachyphloeus digitalis (Gyllenhal, 1827) Trachyphloeus laticollis Boheman, 1843 Tychius flavicollis Stephens, 1831 Tychius junceus (Reich, 1797) Contarinia loti (De Geer, 1776) Jaapiella loticola (Rübsaamen, 1889) Rivellia syngenesiae (Fabricius, 1781) Adelphocoris ticinensis (Meyer-Dur) Acyrthosiphon loti (Theob.) Aphis loti (Kalt) Therioaphis trifolii (Monell) Paracletus cimiciformis (von Heyden) Macropis europaea (Warncke) Coleophora discordella Zell. Syncopacma cinctella (Cl.) Syncopacma larseniella (Gozm) Xystophora pulveratella (H.-S.) Semiothisa clathrata clathrata (L.) Siona lineata (Scopoli) Erynnis tages L. Erynnis tages tages (L.) Everes argiades (Pallas) Lysandra coridon (Poda) Leucoptera lotella (Stt.) Trifurcula cryptella (Stt.) Trifurcula eurema (Tutt) Callistege mi (Clerck) Euclidia glyphica (L.) Nola aerugula (Hb.) Colias croceus (Geoffroy) Leptidea sinapis (L.) Scythris siccella (Zell.) Bembecia scopigera (Scopoli) Cydia succedana (D. & S.) Periclepsis cinctana (D. & S.) Zygaena filipendulae (L) Zygaena filipendulae stephensi Dupont Zygaena lonicerae (Schev.) Zygaena trifolli (Esper) Zygaena trifolli decreta (Verity) Zygaena viciae (D&S) Odontothrips loti (Haliday) Seed-pod, Fruit, Seeds OG OF OF O OF O OF O OF OF OG OF OF OG OF O O O O OG OF OG OG OF OF2 OF OF OF OF + Oligolectic OG OF M OF OF O OF OF3 OF OF OG OG OG OF OF OF OF OF O OF3 OF OF OG2 OG2 OF OG2 M OF2 OF Seed-pods Seed-pods Leaves Leaves, Flowers Leaves Seed, Seed-pod, Fruits Root nodules Root nodules Root nodules Root nodules Root Root Root Root Seed-pods Flower, Buds Root Flower Leaves Leaves Root Pods Buds, Flower STATUS Jan Feb Mar Apr AD AD AD AD AD AD AD A AD AD A AD A A AD May Jun Jul Aug Sep Oct Nov Dec A A LA A (rarely) A (rarely) A (rarely) A (rarely) A (rarely) A AL LA LA A A AL LA LA A A AL LA LA A (rarely) A (rarely) AL LA LA A (rarely) A (rarely) AL A A AD AD AD AD AD AD A A A A A A A A A A A A AD A A AD A AO A L A L A A A A A A A AD A AD A AD A A A A A A A A A A A A A A A A A AD A A AD A A AD A A A A A A A L (?) A A A A A A A A A A A L (?) A A A A AO A A A AOL LD L LD L LD LD LD LD L A L L L LD L AO L LD LD L AO P LP OL L P AOL LPA L L LD LD LD L LD O P P LP P LD LD LD L LD O P P P P LD LD LD L LD O P P P P L LPAO P LD L P LD L LD L L LD LD L L L A L LD L L LD LD L L L L LD L L LD LD L L A (rarely) A (rarely) RDB K Na RDB 1 RDB 1 Nb RDB K Nb Nb Nb Na Na RDB 3 A LD LD LD LD LD LD LD L P LD LD LD L LD O P P P P LD LD LD L LD O P P P P LD LD LD L LD O P P P P L A LD P L L P P P P P LD P LD P L L LD L L LD LD L L L L LD L L LD LD L L L L LD L L LD LD L L L L LD P L L L L L L L A Nb RDB 1 RDB 1 ! Nb Believed extinct RDB 1 RDB 1 RDB 1 ! A LD L L L A A LPA A PA L AO A PA A A L AO A L LP A L L L L LA L L A A A A L A A A A A A LP P LPA LPA A AO AO A AO L LP LP AOL AOL LA A L AOL LA P PA AOLP LP ALP LP LPA LA L LPA A A A A A A A A A LPA L A L PA PAO L LP LA OL LPA LP LA A AO PA A PAO PAO PAOL L A LOPA LA AO OLP LP A L L A AOL LA AOL A ALOP PAOL L L A L LA A L AOL L L L L L L L A A Lotus pedunculatus 125 Lotus uliginosus ORDER FAMILY SPECIES COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Apionidae Apionidae Apionidae Apionidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Berytinidae Coreidae Coreidae Miridae Miridae Scutelleridae Aphididae Callaphididae Gelechiidae Gelechiidae Gracillariidae Noctuidae Noctuidae Nolidae Pieridae Pyralidae Catapion seniculus (Kirby, 1808) Holotrichapion pisi (Fabricius, 1801) Protapion filirostre (Kirby, 1808) Stenopterapion tenue (Kirby, 1808) Derocrepis rufipes (Linnaeus, 1758) Hypera fuscocinerea (Marsham, 1802) Hypera meles (Fabricius, 1792) Hypera plantaginis (Degeer, 1775) Hypera postica (Gyllenhal, 1813) Hypera punctata (Fabricius, 1775) Sitona gemellatus Gyllenhal, 1834 Sitona humeralis Stephens, 1831 Sitona macularius (Marsham, 1802) Sitona waterhousei Walton, 1846 Tychius crassirostris Kirsch, 1871 Tychius junceus (Reich, 1797) Agromyza frontella Rondani Agromyza nana Meigen Asphondylia lupulinae Kieffer, 1909 Dasyneura lupulinae (Kieffer, 1891) Jaapiella jaapiana (Rübsaamen, 1914) Berytinus montivagus (Meyer) Bathysolen nubilis (Fallen) Coriomeris denticulatus (Scop.) Chlamydatus pullus (Reuter) Chlamydatus saltitans (Fallen) Odontoscelis fuliginosa (L.) Aphis coronillae arenaria Ferrari Therioaphis trifolii (Monell) Syncopacma taeniolella (Zell.) Xystophora pulveratella (H.-S.) Phyllonorycter nigrescentella (Logan) Callistege mi (Clerck) Euclidia glyphica (L.) Nola aerugula (Hb.) Colias hyale (L.) Oncocera semirubella (Scopoli) PLANT PARTS Flower bud Stem, Buds Stem Root Leaves Leaves Leaves Leaves Root nodules Root nodules Root nodules Root nodules Leaves Leaf miner Leaf miner Base Leaves SPECIFICITY OT OF OT OF OF OF OF O OF OT OF OF OF OF OT OF OG2 OF M M M OG M OF OF3 OF2 M? M OF OF OF OF OF OF OF OF OF STATUS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Nb LD AD AD LD AD AD L AD A AL A A LA A L A A A A AL L AO A AL A AL A AL A AL A AL A A A AL A AL A A A LA A A A A LA A AD LD AD AD LD AD AD A A A A A OA AD A A A A A A A A A L (?) A A A A OA A AD A AD A LD A OA AD AD A LD A OA AD AD A A A AL A L L A A A A A A OA AO A A A AL A L L A A A A A A A A A AO A A A A L A A A A L PA L LP A L LPA L L A LPA OL L AL L P AOL AOL L Nb Na RDB 1 Nb Nb RDB K N A OA AD A A A A A A A L L A A A A A A A L (?) A A OA A A A A A A A A A P P P P L L L P LD LD LD P LD LD LD RDB 3 RDB 1 P Believed extinct Nb P LD LD LD P P LD LD LD P P LD LD L LD PA P L LP L LA A L AO LP A LP LA OL LPA LPAO PA Medicago lupulina 126 Medicago lupulina ORDER FAMILY SPECIES COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Apionidae Apionidae Apionidae Apionidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Micropezidae Alydidae Berytinidae Lygaeidae Miridae Aphididae Callaphididae Callaphididae Apidae Apidae Apidae Apidae Apidae Gelechiidae Gelechiidae Geometridae Gracillariidae Noctuidae Noctuidae Noctuidae Nolidae Nymphalidae Pieridae Pieridae Pyralidae Catapion seniculus (Kirby, 1808) Holotrichapion pisi (Fabricius, 1801) Protapion filirostre (Kirby, 1808) Stenopterapion tenue (Kirby, 1808) Derocrepis rufipes (Linnaeus, 1758) Hypera fuscocinerea (Marsham, 1802) Hypera meles (Fabricius, 1792) Hypera plantaginis (Degeer, 1775) Hypera postica (Gyllenhal, 1813) Hypera punctata (Fabricius, 1775) Sitona gemellatus Gyllenhal, 1834 Sitona hispidulus (Fabricius, 1777) Sitona humeralis Stephens, 1831 Sitona macularius (Marsham, 1802) Tychius crassirostris Kirsch, 1871 Agromyza frontella Rondani Agromyza nana Meigen Liriomyza congesta (Becker) Contarinia medicaginis Kieffer, 1895 Dasyneura medicaginis (Bremi, 1847) Micropeza corrigiolata (Linnaeus, 1767) Alydus calcaratus (L.) Berytinus montivagus (Meyer) Heterogaster urticae (Fabr.) Chlamydatus pullus (Reuter) Sitobion fragariae (Walker) Therioaphis ononidis (Kaltenbach) Therioaphis trifolii (Monell) Dasypoda hirtipes (Fabricius) Eucera longicornis (Linnaeus) Eucera nigrescens Perez Melitta leporina (Panzer) Melitta tricincta Kirby Syncopacma taeniolella (Zell.) Xystophora pulveratella (H.-S.) Semiothisa clathrata clathrata (L.) Phyllonorycter nigrescentella (Logan) Callistege mi (Clerck) Euclidia glyphica (L.) Tathorhynchus exsiccata (Lederer) Nola aerugula (Hb.) Argynnis lathonia (L) Colias croceus (Geoffroy) Colias hyale (L.) Oncocera semirubella (Scopoli) PLANT PARTS Flower bud Stem, Buds Stem Root Leaves Leaves Leaves Leaves Root nodules Root nodules Root nodules Root nodules Leaves Leaf miner Leaf miner Leaf miner Flower Root nodules, Root nodules Flower Flower Flower Flower Flower Leaves SPECIFICITY OT OF OT OF OF OF OF O OF OT OF OT OF OF OT OG2 OF OF M M OF OF OG O3 OF3 OF OF OF Oligolectic Oligolectic Oligolectic Oligolectic Monolectic OF OF OF OF OF OF OF OF O OF OF OF STATUS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Nb LD AD AD LD AD AD L AD A AL A A LA A L A A A A AL L AO A AL A AL A AL A AL A AL A A A AL A AL A A A LA A A A A LA A AD LD AD AD LD AD AD A A A A A OA OA AD A A OA OA A O A L L L A A AL A L L L A A A A A A A A A A A A A A A A A OA OA AD A A AL A L L L A A A A A OA OA A AD A LD A OA OA AD A LD A OA OA AD A A A A A LD AOL AOL LD LD L A A A A A LP AOLP AOLP LPA LD LP A AO AO AOLP AOLP AO LP A AOL LPAD LPAD OL PAOL LD AD AD L PAOL LD AD AD L LD LD AD AD LD LD LD AD AD LD LD L A LPA L L L AO AL L P L P P P P P LA A LPA LP LA OL P P P L A AO PA L L A AOL AO LP LPA A LP LPAO PA A A AOL LPA OL AOL A LPA AOL L L A LPAO L L LD LD L LD LD LD LD Nb Na RDB 1 Nb RDB K Nb Na RDB 1 Nb Nb LD AD AD LD LD LD AD AD LD LD LD AD AD LD LD LD AD AD LD LD P P P P P P P PA P P P P LD LD LD L RDB 1 Believed extinct Nb LD LD LD LD LD L LD LP L A A OA OA A Medicago sativa 127 Medicago sativa ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY STATUS Jan COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Apionidae Apionidae Bruchidae Bruchidae Chrysomelidae Curculionidae Curculionidae Cecidomyiidae Cecidomyiidae Apidae Apidae Apidae Apidae Gelechiidae Tortricidae Zygaenidae Hemitrichapion reflexum (Gyllenhal, 1833) Stenopterapion intermedium (Eppelsheim, 1875) Bruchidius cisti (Fabricius, 1775) Bruchidius olivaceus (Germar, 1824) Derocrepis rufipes (Linnaeus, 1758) Hypera venusta (F., 1781) Sitona macularius (Marsham, 1802) Bremiola onobrychidis (Bremi, 1847) Contarinia onobrychidis Kieffer, 1895 Andrena hattorfiana (Fabricius) Andrena similis Andrena wilkella (Kirby) Melitta dimidiata Morawitz Aproaerema anthyllidella (Hb.) Cydia caecana (Schlag.) Zygaena lonicerae (Schev.) Flowers, Flower galls Stem Seed-pods Seed-pods Root Leaves Root nodules OG OG O M OF OF OF OG M Oligolectic Oligolectic Oligolectic Monolectic OF M OF Na Na Flower Flower Flower Flower Pod Stem RDB 1 LD Feb Mar Apr May A A A Nb AD AD AO RDB 3 RDB 3 LD AD AD LD LD AD AD LD LD AD AD LD LD LD LD LD LD LD RDB 1 Jul Aug A A L A A A A A (rare A A AO AL A A L L A A A A A A A A A A A A A A (rare A (rarely) A A LD A A A A A A A AD AD LD AD AD LD L LD L LD P AOL AO LD LPA LD PA L AOLP AOLP PA AO LP AO PAOL AOLP PA AD OL PA L L LD Jun PAOL AOLP AOLP LPA A PA LPA Sep Oct Nov Dec LD AD LD AD AD L LD AD AD LD LD AD AD LD LD AD AD LD L L L LD LD LD LD LD Onobrychis viciifolia Onobrychis viciifolia ORDER 128 FAMILY SPECIES COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Bruchidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Scolytidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Lauxaniidae Miridae Pentatomidae Callaphididae Coleophoridae Gelechiidae Gelechiidae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Gracillariidae Catapion curtisi (Stephens, 1831) Catapion pubescens (Kirby, 1811) Catapion seniculus (Kirby, 1808) Ischnopterapion virens (Herbst, 1797) Protapion assimile (Kirby, 1808) Protapion difforme (Germar, 1818) Protapion dissimile (Germar, 1817) Protapion filirostre (Kirby, 1808) Protapion nigritarse (Kirby, 1808) Protapion schoenherri (Boheman, 1839) Protapion trifolii (Linnaeus, 1768) Protapion varipes (Germar, 1817) Bruchidius varius (Olivier) Cassida nebulosa Linnaeus, 1757 Longitarsus pellucidus (Foudras, 1860) Hypera fuscocinerea (Marsham, 1802) Hypera meles (Fabricius, 1792) Hypera nigrirostris (Fabricius, 1775) Hypera plantaginis (Degeer, 1775) Hypera postica (Gyllenhal, 1813) Hypera punctata (Fabricius, 1775) Hypera suspiciosa (Herbst, 1795) Sitona hispidulus (Fabricius, 1777) Sitona humeralis Stephens, 1831 Sitona lepidus Gyllenhal, 1834 Sitona lineatus (Linnaeus, 1758) Sitona macularius (Marsham, 1802) Sitona puncticollis Stephens, 1831 Sitona striatellus Gyllenhal, 1834 Sitona sulcifrons (Thunberg, 1798) Tychius junceus (Reich, 1797) Tychius picirostris (Fabricius, 1787) Tychius polylineatus (Germar, 1824) Tychius pusillus Germar, 1842 Hylastinus obscurus (Marsham, 1802) Agromyza nana Meigen Campylomyza ormerodi (Kieffer, 1913) Dasyneura axillaris Kieffer, 1896 Dasyneura gentneri Pritchard, 1953 Dasyneura leguminicola (Lintner, 1879) Dasyneura trifolii (F. Löw, 1874) Tricholaba trifolii Rübsaamen, 1917 Calliopum simillimum (Collin, 1933) Halticus luteicollis (Panzer) Piezodorus lituratus (Fabr.) Therioaphis trifolii (Monell) Coleophora frischella (L.) Aproaerema anthyllidella (Hb.) Syncopacma taeniolella (Zell.) Ematurga atomaria (L.) Scopula rubiginata (Hufnagel) Scotopteryx bipunctaria (D&S) Scotopteryx bipunctaria cretata (Prout) Scotopteryx chenopodiata (L.) Semiothisa clathrata (L.) Semiothisa clathrata clathrata (L.) Parectopa ononidis (Zell.) PLANT PARTS Stem, Stem galls Stem Flowers Stem, Buds Flowers Flowers Flower galls Seed-pods Leaves Leaves Leaves Leaves, Flowers Leaves Leaves Root nodules Root nodules Root nodules Root nodules Root nodules Root nodules Root nodules Leaf miner Leaves, midrib Leaf miner Pod Leaves SPECIFICITY STATUS OG OG OT OG OG O OG OT OG OG OG OG OG O O OF OF OF O OF OT OF OT OF OG OF OF OF OF not Trif OF OF OF OF OF OF OF OG OG OG OG OG OF OG O OF OF O OF OF OF O OF OF OF OF OF OF Na Nb Nb Nb Jan Feb AD AD A AD AD AD AD AD A AD AD AD AD AD Na Nb Nb Na A A LD Nb OA OA L AD AD AD OA OA L AD AD AD AD AD Mar Apr May Jun Jul Aug Sep Oct Nov Dec A L AD A AO A AD A LA AD A AL A A AD A A Ad A A AD A A A AD A A A A A (rarely) L L (?) A AL AL A LA L A A AL AL A A A A LA L (?) A AL AL AL LA L A AL AL AL A AL A A A AL (?) A AL AL AL LA AL A AL AL AL A AL A A (rarely) A AL (?) A A A AL LA AL A AL AL AL A AL A A (rarely) A A A A A LA A A AL A AL A A A A (rarely) A A A A A A A A A A A A AD AD AD AD A AD AD AD AD AD A AD AD AD A AD AD A A A A A A A A A A L A A A AL A A A LD A LD OA OA LA AO AO A AO L L A L L A AO A A A A A A AL A L L A L L A L A A A OA OA L AD AD AD OA OA L AD AD AD AD A AD A A RDB K Nb RDB 3 Nb A A A O A A A L A A A A A L A A A A A A A A A A A AO A A AOL A A A AOLP A LP LA PA L LP LP L AO AO A LP A LA AOL A PA AOL L LD LD LA LPA L AO AO L A PAO LP AL L L L L AO L LD L LD LD LD L LD LD LD L LD LD L L P LD P LD O A O A O A O A LD LD LD LD L LD L LD LD LD L LD LD LD L LD LD L L L L AO LPA L A LP L L L P LD P LD P L P LP A LPA A PA L LPA LP L (?) A OA OA O LA A A A A A A A A A A A A A A L (?) L A L (?) A RDB 3 L L A L L L (?) L A A (rarely) OA OA L A AD A AD A A AD A A Trifolium dubium 129 Trifolium dubium ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY STATUS Jan LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Gracillariidae Lycaenidae Noctuidae Noctuidae Nolidae Pieridae Pieridae Pyralidae Tortricidae Tortricidae Tortricidae Zygaenidae Zygaenidae Phyllonorycter insignitella (Zeller) Lysandra coridon (Poda) Callistege mi (Clerck) Euclidia glyphica (L.) Nola aerugula (Hb.) Colias croceus (Geoffroy) Colias hyale (L.) Nyctegretis lineana (Scopoli) Ancylis badiana (D. & S.) Celypha cespitana (Hb.) Cydia compositella (Fabr.) Zygaena lonicerae (Schev.) Zygaena lonicerae latomarginata (Tutt) Leaves OF OF OF OF OF OF OF O OF O OF OF OF RDB 3 P P P P LD O LD O LD O L Stem, Leaves, Flower Believed extinct RDB 3 Feb Mar Apr P LD P LD P LD P L LD L LD LD LD LD L LD L LD LD LD LD L LD L L LD LD LD LD L LP L LD PA L LD P L L May Jun Jul Aug Sep Oct Nov PA L A A L AO PA L A LP PA L L O LP LA A L AOL AO P AOL PA AOL LPA A LP PA LA OL LPA LP LPAO PA LPA A LP PAOL A PAO AO L L A AOL LPA L AO AO PAOL L L OL AO L P AOL LPA AOL L L OL L L L LP LD O P P LD O LD O Dec P L LPAO L L L LD L LD L P LD L LD L LD LD LD LD L P LD LD L LD LD LD LD L Trifolium dubium (Continued) Trifolium dubium ORDER 130 FAMILY SPECIES COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Bruchidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Scolytidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Lauxaniidae Micropezidae Coreidae Miridae Pentatomidae Aphididae Aphididae Catapion curtisi (Stephens, 1831) Catapion pubescens (Kirby, 1811) Catapion seniculus (Kirby, 1808) Ischnopterapion virens (Herbst, 1797) Protapion apricans (Herbst, 1797) Protapion assimile (Kirby, 1808) Protapion difforme (Germar, 1818) Protapion dissimile (Germar, 1817) Protapion filirostre (Kirby, 1808) Protapion nigritarse (Kirby, 1808) Protapion ryei (Blackburn, 1874) Protapion schoenherri (Boheman, 1839) Protapion trifolii (Linnaeus, 1768) Protapion varipes (Germar, 1817) Stenopterapion tenue (Kirby, 1808) Bruchidius varius (Olivier) Cassida nebulosa Linnaeus, 1757 Longitarsus pellucidus (Foudras, 1860) Hypera fuscocinerea (Marsham, 1802) Hypera meles (Fabricius, 1792) Hypera nigrirostris (Fabricius, 1775) Hypera plantaginis (Degeer, 1775) Hypera postica (Gyllenhal, 1813) Hypera punctata (Fabricius, 1775) Hypera suspiciosa (Herbst, 1795) Sitona hispidulus (Fabricius, 1777) Sitona humeralis Stephens, 1831 Sitona lepidus Gyllenhal, 1834 Sitona lineatus (Linnaeus, 1758) Sitona macularius (Marsham, 1802) Sitona puncticollis Stephens, 1831 Sitona striatellus Gyllenhal, 1834 Sitona sulcifrons (Thunberg, 1798) Tychius junceus (Reich, 1797) Tychius lineatulus Stephens, 1831 Tychius picirostris (Fabricius, 1787) Tychius polylineatus (Germar, 1824) Tychius pusillus Germar, 1842 Tychius stephensi Gyllenhal, 1836 Hylastinus obscurus (Marsham, 1802) Agromyza nana Meigen Campylomyza ormerodi (Kieffer, 1913) Clinodiplosis leguminicola Milne 1960 Dasyneura axillaris Kieffer, 1896 Dasyneura gentneri Pritchard, 1953 Dasyneura leguminicola (Lintner, 1879) Dasyneura trifolii (F. Löw, 1874) Giardomyia britanica Milne 1960 Tricholaba barnesi Milne, 1960 Tricholaba trifolii Rübsaamen, 1917 Calliopum simillimum (Collin, 1933) Micropeza corrigiolata (Linnaeus, 1767) Ceraleptus lividus Stein Halticus luteicollis (Panzer) Piezodorus lituratus (Fabr.) Aphis coronillae coronillae Ferrari Triphyllaphis luteola (Borner) PLANT PARTS Stem, Stem galls Stem Flowers, Florets Flowers Stem, Buds Flowers Flowers Flowers Flower galls Stem Seed-pods Leaves Leaves Leaves Leaves, Flowers Leaves Leaves Root nodules Root nodules Root nodules Root nodules Root nodules Root nodules Root nodules Flower Leaf miner Inflorescence, Flower heads Leaves, midrib Flower heads, infloresences Flower heads, infloresences Leaf miner Root nodules Base SPECIFICITY STATUS OG OG OT OG OF3 OG O OG OT OG M OG OG OG OF OG O O OF OF OF O OF OT OF OT OF OG OF OF OF OF not Trif OF OF OF OF OF OF OF OF OF OG OG2 OG OG OG OG OG2 OG2 OF OG OF OG O OF OG2 M Na Nb Nb Nb Jan Feb Mar AD AD AD A AD AD AD AD AD AD A AD AD AD AD AD AD AD A A RDB 5 Na Nb Nb Na LD Nb Na OA OA L AD AD AD OA OA L AD AD AD AD AD May Jun Jul Aug Sep Oct Nov Dec A L AD A AO A AD A LA AD A AL AD A AL A A AD A A AD A A AD A A AL AL A LA AL L A A AL AL AL AL AL LA AL L A AL AL AL AL AL AL LA AL AL A AL AL AL A A AL LA AL AL A AL AL AL A A A LA A A A AL A AL A A A A A A A A A A A AD AD AD AD AD A AD AD AD AD AD AD A AD AD AD A AD A A A A AL L A (rarely) L L (?) A A A A L A LA L (?) A A AL A A A A AL (?) A A AL A A A (rarely) A AL (?) A A AL A A A (rarely) A A A A A AD A A AD AD A (rarely) A (rarely) A A A A A A A A A A A A L A A A AL A A OA OA LA AO AO A AO L L A L L A AO A A A A A A A AL A L L A L L A L A A A A L L A L L L (?) L A A O A A A L A A A A A A A A L (?) L A L (?) A A OA OA OLA A A A A A A A A A A A A A A L A A A AL AL AL AL AL L AL AL AL AL AL AL A A A A A A A A A A A A A Apr RDB K Nb RDB 3 A O A A O A A O A A O A A A AO A A A A AOL A A A L (?) A A A A A A OA OA L A AD A AD A A AD A AD AD A LD A LD OA OA L AD AD AD OA OA L AD AD AD AD A AD A A A A A A A A A A A Trifolium pratense 131 Trifolium pratense ORDER FAMILY SPECIES HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Callaphididae Callaphididae Calliphididae Pemphigidae Apidae Apidae Apidae Apidae Coleophoridae Coleophoridae Gelechiidae Gelechiidae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Gracillariidae Gracillariidae Lycaenidae Noctuidae Noctuidae Nolidae Pieridae Pieridae Pyralidae Tortricidae Tortricidae Tortricidae Zygaenidae Zygaenidae Therioaphis ononidis (Kaltenbach) Therioaphis trifolii (Monell) Therioaphis luteola (Borner) Geoica utricularia (Passerini) Dasypoda hirtipes (Fabricius) Eucera longicornis (Linnaeus) Eucera nigrescens Perez Melitta leporina (Panzer) Coleophora deauratella Lien. & Zell. Coleophora frischella (L.) Aproaerema anthyllidella (Hb.) Syncopacma taeniolella (Zell.) Ematurga atomaria (L.) Scopula rubiginata (Hufnagel) Scotopteryx bipunctaria (D&S) Scotopteryx bipunctaria cretata (Prout) Scotopteryx chenopodiata (L.) Semiothisa clathrata (L.) Semiothisa clathrata clathrata (L.) Parectopa ononidis (Zell.) Phyllonorycter insignitella (Zeller) Lysandra coridon (Poda) Callistege mi (Clerck) Euclidia glyphica (L.) Nola aerugula (Hb.) Colias croceus (Geoffroy) Colias hyale (L.) Nyctegretis lineana (Scopoli) Ancylis badiana (D. & S.) Celypha cespitana (Hb.) Cydia compositella (Fabr.) Zygaena lonicerae (Schev.) Zygaena lonicerae latomarginata (Tutt) PLANT PARTS Flower Flower Flower Flower Seed Pod Leaves Leaves Stem, Leaves, Flower SPECIFICITY OF OF OF OF + Oligolectic Oligolectic Oligolectic Oligolectic M O OF OF OF O OF OF OF OF OF OF OF OF OF OF OF OF OF O OF O OF OF OF STATUS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Nb Na RDB 1 Nb LD AD AD LD LD LD LD AD AD LD LD LD LD AD AD LD LD LD LD AD AD LD LD LD L LD AD AD L L L LD AD AD LD LD LD LD AD AD LD LD LD LD L LD LD LD L LD LD L L L L AO AOLP AOLP AO A A LP A LA AOL LD AD AD L L AOL LD L LD LD LD L LD LD P L P LD O P LP P L L L LP LD O P LD P LD O P LD P LD O P LD P LD P LD P L LD L LD LD LD LD L LD L L LD LD LD LD L LP L LD PA L LD P L L P L LPAO L L L LD L LD L P LD L LD L LD LD LD LD L P LD LD L LD LD LD LD L LP AL L L L L AO L OL AO L P AOL LPA AOL L L OL L L L LD L LD LD P LD P LD O LA LPA L AO AO L A PAO PAO AO L L A AOL LPA L AO AO PAOL L L LD L LD LD P LD P LD O LP AOLP AOLP LPA A AOLP A LP LA PA L LP LP L AO AO O LP LA A L AOL AO P AOL PA AOL LPA A AOL LP AD LP AD OL L A PA RDB 3 LD AOL AOL LD LP AO LPA L A LP L L L Nb RDB 3 Believed extinct RDB 3 A LPA PA L A A L AO PA L A LP PA L L A PA L LPA LP LP PA LA OL LPA LP LPAO PA LPA A LP PAOL A LD L LD LD LD LD L Trifolium pratense (Continued) 132 Trifolium pratense ORDER FAMILY SPECIES COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Bruchidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Nitidulidae Scolytidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Lauxaniidae Berytinidae Miridae Miridae Miridae Catapion curtisi (Stephens, 1831) Catapion pubescens (Kirby, 1811) Catapion seniculus (Kirby, 1808) Ischnopterapion virens (Herbst, 1797) Protapion assimile (Kirby, 1808) Protapion dichroum (Bedel, 1886) Protapion difforme (Germar, 1818) Protapion dissimile (Germar, 1817) Protapion filirostre (Kirby, 1808) Protapion laevicolle (Kirby, 1811) Protapion nigritarse (Kirby, 1808) Protapion schoenherri (Boheman, 1839) Protapion trifolii (Linnaeus, 1768) Protapion varipes (Germar, 1817) Bruchidius varius (Olivier) Cassida nebulosa Linnaeus, 1757 Longitarsus pellucidus (Foudras, 1860) Hypera fuscocinerea (Marsham, 1802) Hypera meles (Fabricius, 1792) Hypera nigrirostris (Fabricius, 1775) Hypera plantaginis (Degeer, 1775) Hypera postica (Gyllenhal, 1813) Hypera punctata (Fabricius, 1775) Hypera suspiciosa (Herbst, 1795) Sitona hispidulus (Fabricius, 1777) Sitona humeralis Stephens, 1831 Sitona lepidus Gyllenhal, 1834 Sitona lineatus (Linnaeus, 1758) Sitona macularius (Marsham, 1802) Sitona puncticollis Stephens, 1831 Sitona striatellus Gyllenhal, 1834 Sitona sulcifrons (Thunberg, 1798) Tychius junceus (Reich, 1797) Tychius picirostris (Fabricius, 1787) Tychius polylineatus (Germar, 1824) Tychius pusillus Germar, 1842 Tychius stephensi Gyllenhal, 1836 Meligethes nigrescens Stephens, 1830 Hylastinus obscurus (Marsham, 1802) Agromyza nana Meigen Liriomyza congesta (Becker) Brachyneura squamigera (Winnertz, 1853) Campylomyza ormerodi (Kieffer, 1913) Clinodiplosis leguminicola Milne 1960 Dasyneura axillaris Kieffer, 1896 Dasyneura gentneri Pritchard, 1953 Dasyneura leguminicola (Lintner, 1879) Dasyneura trifolii (F. Löw, 1874) Giardomyia britanica Milne 1960 Isodiplosis deutera Milne, 1960 Tricholaba barnesi Milne, 1960 Tricholaba trifolii Rübsaamen, 1917 Calliopum simillimum (Collin, 1933) Berytinus minor (H-S.) Chlamydatus pullus (Reuter) Chlamydatus saltitans (Fallen) Halticus luteicollis (Panzer) PLANT PARTS Stem, Stem galls Stem Flowers Flowers, Seed Stem, Buds Gall, Seed Flowers Flowers Flower galls Seed-pods Leaves Leaves Leaves Leaves, Flowers Leaves Leaves Root nodules Root nodules Root nodules Root nodules Root nodules Root nodules Root nodules Seed-pods Flower Pollen Leaf miner Leaf miner Inflorescence, Flower heads Inflorescence, Flower heads Leaves, midrib Flower heads, infloresences Flower heads, infloresences Flower heads, infloresences Leaf miner SPECIFICITY STATUS OG OG OT OG OG OF O OG OT OG2 OG OG OG OG OG O O OF OF OF O OF OT OF OT OF OG OF OF OF OF not Trif OF OF OF OF OF OF M OF OF OF M OG OG2 OG OG OG OG OG2 M OG2 OF OG OF OF3 OF2 O Na Nb Nb Nb Na Jan Feb AD AD AD A AD AD AD AD AD AD AD A AD AD AD AD AD AD Na Nb Nb Na A A LD Nb OA OA L AD AD AD OA OA LAD AD AD AD AD Mar May Jun Jul Aug Sep Oct Nov A L AD A AO A AD A LA AD A AL AD A A A A AD A A AD A A AD A AD A A A AD A A A A A (rarely) L L (?) A Apr AL AL A LA L AL A A AL A AL A A A A LA L (?) A AL AL AL LA L AL A AL AL A AL A AL A A A AL (?) A AL AL AL LA AL AL A AL AL A AL A AL A A (rarely) A AL (?) A A A AL LA AL AL A AL AL A AL A AL A A (rarely) A A A A A LA A AL A AL A A AL A A A A (rarely) A A A A A A A A A A A A A A AD AD AD AD AD A AD AD AD AD AD AD AD A AD AD AD AD A AD AD A A A A A A A A A A L A A A AL A A A LD A LD OA OA LA AO AO A AO L L A L L A AO A A A A A A AL A L L A L L A L A A A L L A L L L (?) L A A O A A A L OA OA OLA A A A A A A OA OA L AD AD AD OA OA L AD AD AD AD A A A A A A A A L (?) L A L (?) A AD A A A A A A A A L A A A A A A A AL AL AL AL AL L AL AL AL AL AL AL AL AL A A A A A A A A RDB K Nb A A RDB 3 O O O O A A A L (?) A A Dec A (rarely) A A A OA OA L A AD A AD A A AD A A A A Trifolium repens 133 ORDER FAMILY SPECIES HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA Pentatomidae Aphididae Aphididae Callaphididae Cicadellidae Apidae Apidae Tenthredinidae Tenthredinidae Coleophoridae Coleophoridae Gelechiidae Gelechiidae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Gracillariidae Gracillariidae Lycaenidae Noctuidae Noctuidae Nolidae Pieridae Pieridae Pyralidae Pyralidae Tortricidae Tortricidae Tortricidae Zygaenidae Zygaenidae Thripidae Piezodorus lituratus (Fabr.) Aphis coronillae coronillae Ferrari Subacyrthosiphon crytobium (Hille Ris Lambers) Therioaphis trifolii (Monell) Sipha glyceriae (Kaltenbach) Andrena labialis (Kirby) Melitta leporina (Panzer) Tenthredo arcuata (Forster) Tenthredo perkinsi (Morice) Coleophora frischella (L.) Coleophora mayrella (Hb.) Aproaerema anthyllidella (Hb.) Syncopacma taeniolella (Zell.) Ematurga atomaria (L.) Scopula rubiginata (Hufnagel) Scotopteryx bipunctaria (D&S) Scotopteryx bipunctaria cretata (Prout) Scotopteryx chenopodiata (L.) Semiothisa clathrata (L.) Semiothisa clathrata clathrata (L.) Parectopa ononidis (Zell.) Phyllonorycter insignitella (Zeller) Lysandra coridon (Poda) Callistege mi (Clerck) Euclidia glyphica (L.) Nola aerugula (Hb.) Colias croceus (Geoffroy) Colias hyale (L.) Nyctegretis lineana (Scopoli) Oncocera semirubella (Scopoli) Ancylis badiana (D. & S.) Celypha cespitana (Hb.) Cydia compositella (Fabr.) Zygaena lonicerae (Schev.) Zygaena lonicerae latomarginata (Tutt) Sericothrips abnormis (Karny) PLANT PARTS Base Flower Flower Seed Pod Leaves Leaves Stem, Leaves, Flower SPECIFICITY OF OG2 OF OF OF Oligolectic Oligolectic M M O M OF OF OF O OF OF OF OF OF OF OF OF OF OF OF OF OF O OF OF O OF OF OF OF2 STATUS Nb RDB 3 Nb RDB 3 Believed extinct RDB 3 Nb Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A A A A AO AOL A A A A A A AD LD AD LD AD LD AD LD AO LD AOLP PA LPA AO AD OL AD L AD L AD LD AD LD LD LD LD LD LD LD LD LD L AOL L L L LD LD LD LD LD L LD LD LD L LD LD L L L L LD L LD LD P L P LD O P LP P L L L LP LD O P LD P LD O P LD P LD O P LD P LD P LD P L LD L LD LD LD LD LD L LD L L LD LD LD LD LD L LP L L LD PA L LD P L L P L LPAO L L L L LD L LD L P LD L LD L LD LD LD LD LD L P LD LD L LD LD LD LD LD L LP AL L L L L AO L OL AO L P AOL LPA AOL L L L OL L L L LD L LD LD P LD P LD O LA LPA L AO AO L A PAO PAO AO L L A AOL LPA L OL AO AO PAOL L L LD L LD LD P LD P LD O AOLP AO A LP LA PA L LP LP L AO AO O LP LA A L AOL AO P LP AOL PA AOL LPA A A LA PA LD L LD LD AO LP LPA L A LP L L L A LPA PA L A A L AO PA L L A LP PA L L A AO LP A LA AOL A PA L LPA LP LP PA LA OL LPA LP LPAO PA PA LPA A LP PAOL A LD L LD LD LD LD LD L Trifolium repens (Continued) 134 Trifolium repens ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY STATUS Jan Feb Mar COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA THYSANOPTERA THYSANOPTERA THYSANOPTERA Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Bruchidae Bruchidae Bruchidae Bruchidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Aphididae Aphididae Apidae Geometridae Geometridae Noctuidae Noctuidae Nolidae Pieridae Tortricidae Tortricidae Tortricidae Tortricidae Zygaenidae Zygaenidae Thripidae Thripidae Thripidae Thripidae Cyanapion gyllenhali (Kirby, 1808) Cynapion spencii (Kirby, 1808) Eutrichapion ervi (Kirby, 1808) Eutrichapion punctigerum (Paykull, 1792) Eutrichapion viciae (Paykull, 1800) Eutrichapion vorax (Herbst, 1797) Holotrichapion aethiops (Herbst, 1797) Holotrichapion pisi (Fabricius, 1801) Oxystoma cerdo (Gerstaecker, 1854) Oxystoma craccae (Linnaeus, 1767) Oxystoma pomonae (Fabricius, 1798) Bruchus atomarius (Linnaeus) Bruchus loti Paykull, 1800 Bruchus rufimanus Boheman Bruchus rufipes Herbst Derocrepis rufipes (Linnaeus, 1758) Hypera fuscocinerea (Marsham, 1802) Hypera suspiciosa (Herbst, 1795) Hypera venusta (F., 1781) Sitona humeralis Stephens, 1831 Sitona lineatus (Linnaeus, 1758) Sitona macularius (Marsham, 1802) SItona ononidis Sharp, 1866 Sitona puncticollis Stephens, 1831 Sitona sulcifrons (Thunberg, 1798) Sitona suturalis Stephens, 1831 Tychius quinquepunctatus (Linnaeus, 1758) Tychius stephensi Gyllenhal, 1836 Agromyza bicophaga Hering Agromyza erythrocephala Hendel Agromyza marionae Griffiths Agromyza vicifoliae Hering Liriomyza congesta (Becker) Contarinia craccae Kieffer, 1897 Dasyneura spadicea Rübsaamen, 1917 Dasyneura viciae (Kieffer, 1888) Tricholaba trifolii Rübsaamen, 1917 Aphis craccae (L) Submegoura heikinheimoi (Borner) Andrena wilkella (Kirby) Ematurga atomaria (L.) Scotopteryx chenopodiata (L.) Lygephila craccae (D. & S.) Lygephila pastinum (Treit.) Nola aerugula (Hb.) Leptidea sinapis (L.) Ancylis badiana (D. & S.) Cydia lunulana (Hb) Cydia nigricana (Fabr.) Cydia orobana (Treit.) Zygaena lonicerae (Schev.) Zygaena lonicerae latomarginata (Tutt) Kakothrips pisivorous (Westwood) Odontothrips biuncus John Odontothrips phaleratus (Haliday) Sericothrips gracilicornis Williams Stem, Stem gall OG OG OT OG OT OT OG OF OT OT OT OF OF OT OT OF OF OF OF OF OF OF OF OF OF OT OT OF M OG M OG OF OG M OG OF OF OF Oligolectic OF OF OT OF OF OF OF OT OT OT OF OF OF OG OT M Nb AD AD AD AD AD AD AD AD AD Bud Seed-pods Flowers, Anthers, Pistils Flowers Stem, Stem galls Seed, Seed-pods, Fruits Seeds, Fruits, Seed-pods Seed-pods Seed-pods Seed-pods Seed-pods Seed-pods Root Leaves Leaves Root nodules Root nodules Root nodules Root nodules Root nodules Root nodules Leaf miner Stem gall Stem Leaf miner Leaf miner Flower Stem Leaves Pods Pods Leaves Flower Nb Nb A Nb Nb Nb Apr A AD A AD A AD A AD AD A AD A A A LD LD L LA AD AD AD A AD AD AD AD A AD AD AD AD A AD A (rarely) A (rarely) A (rarely) A (rarely) A (rarely) A (rarely) A (rarely) A (rarely) A (rarely) OA AD AD AD OA AD AD AD OA AO AO AO A AD AD AO A A A L L L AO A A AO RDB 2 A May Jun Jul Aug Sep Oct Nov Dec LA A A A LA A A A A A A A A A LA LA LA A LA A A A LA LA LA A A A LA LA LA A LA A A A LA LA LA A (rarely) A A (rarely) A A LA A LA A A A LA LA LA A (rarely) A (rarely) A (rarely) A A LA A LA A A LA LA LA LA A (rarely) A (rarely) A (rarely) A A A AD AD LD AD AD LD A A LD LD LA A A A A (rarely) A (rarely) A (rarely) LD AD AD AD A (rarely) A (rarely) A (rarely) LD AD AD AD A (rarely) AO A A A L L L L A A AOL A A AL A A A A A A L L L L L (?) A A A A L L (?) A L A A A A L A OA A AD A AD A AD A A A AD OA AD AD AD OA AD AD AD L A OA A A A A A A A AD A AD A A A AD LA AO A L A LA AO L L AOL L L A LA LA LA AD LP L O L AOL L L LD LD L L L L A A A A RDB 3 Believed extinct AD AD AD AD LD O LD L LD O LD LD LD O LD LD L O L L LD LD LD LD LD L LD LD LD LD LD L LD LD LD LD LD L LD PA LD P LD LD P L L AO A L L LP L A A PA PA P L L LA A A AOLP LA LP L PA L LA AOL AOL PA P LPA A LA A A LA PA LA PA P AO LPA LA LPA L AOL A PAOL A LA LA LA LA LA LA LA AD AD AD LD O LD L LD O LD LD LD O LD LD L LD LD LD LD L LD LD LD LD LD L LD LD LD LD LD L A A Vicia cracca 135 Vicia cracca ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA THYSANOPTERA THYSANOPTERA THYSANOPTERA Apionidae Apionidae Bruchidae Bruchidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Bruchidae Bruchidae Curculionidae Curculionidae Agromyzidae Cecidomyiidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Aphididae Apidae Apidae Geometridae Geometridae Noctuidae Nolidae Tortricidae Zygaenidae Zygaenidae Tortricidae Tortricidae Thripidae Thripidae Thripidae Thripidae Protapion dichroum (Bedel, 1886) Holotrichapion pisi (Fabricius, 1801) Bruchus atomarius (Linnaeus) Bruchus loti Paykull, 1800 Hypera suspiciosa (Herbst, 1795) Hypera fuscocinerea (Marsham, 1802) Hypera venusta (F., 1781) Sitona lineatus (Linnaeus, 1758) Sitona macularius (Marsham, 1802) Sitona puncticollis Stephens, 1831 Sitona humeralis Stephens, 1831 Sitona sulcifrons (Thunberg, 1798) Tychius stephensi Gyllenhal, 1836 Protapion apricans (Herbst, 1797) Eutrichapion punctigerum (Paykull, 1792) Cyanapion gyllenhali (Kirby, 1808) Holotrichapion aethiops (Herbst, 1797) Cynapion spencii (Kirby, 1808) Oxystoma craccae (Linnaeus, 1767) Oxystoma cerdo (Gerstaecker, 1854) Eutrichapion ervi (Kirby, 1808) Eutrichapion viciae (Paykull, 1800) Eutrichapion vorax (Herbst, 1797) Oxystoma pomonae (Fabricius, 1798) Bruchus rufimanus Boheman Bruchus rufipes Herbst Sitona suturalis Stephens, 1831 Tychius quinquepunctatus (Linnaeus, 1758) Liriomyza congesta (Becker) Tricholaba trifolii Rübsaamen, 1917 Agromyza vicifoliae Hering Agromyza erythrocephala Hendel Contarinia craccae Kieffer, 1897 Dasyneura viciae (Kieffer, 1888) Aphis craccae (L) Eucera longicornis (Linnaeus) Eucera nigrescens Perez Ematurga atomaria (L.) Scotopteryx chenopodiata (L.) Lygephila pastinum (Treit.) Nola aerugula (Hb.) Ancylis badiana (D. & S.) Zygaena lonicerae (Schev.) Zygaena lonicerae latomarginata (Tutt) Cydia nigricana (Fabr.) Cydia lunulana (Hb) Kakothrips pisivorous (Westwood) Odontothrips biuncus John Frankliniella intonsa (Trybom) Odontothrips phaleratus (Haliday) Flowers OF OF OF OF OF OF OF OF OF OF OF OF OF OF3 OG OG OG OG OT OT OT OT OT OT OT OT OT OT OF OF OG OG OG OG OF Oligolectic Oligolectic OF OF OF OF OF OF OF OT OT OF OG OG2 OT Seed-pods Seed-pods Leaves Leaves Root nodules Root nodules Root nodules Root nodules Flowers Seed-pods Stem, Stem gall Stem, Stem galls Seeds, Fruits, Seed-pod Seed, Seed-pod, Fruits Bud Flowers, Anthers, Pistils Flowers Seed-pod Seed-pods Seed-pods Root nodules Leaf miner Leaf miner Stem gall Flower Flower Pods Stem, Leaves, Pods Flower STATUS Nb Nb Nb Nb Nb J F M A M LD LD L LA A A (rarely) A A (rarely) A (rarely) A (rarely) A (rarely) A A A A A A AD AD AO L L AD AD AO L L A A A OA OA OA L L A A A A AD AD AD A AL AL A A AD AD AD A AD LA A A AD AD AD A AD A AD AD AD A AD A AD AD AD A AD A AD AD AD A AD A AD AD A AD A LA A A AD AD AD A AD A A (rarely) A (rarely) A (rarely) A (rarely) A AD AD AO AO RDB 2 J J A A A A A LA LA LD LD A (rarely) A (rarely) A (rarely) A (rarely) A (rarely) A A (rarely) A (rarely) A (rarely) A (rarely) A A L L L (?) L A A A A L (?) A A A AL A LA A LA LA LA LA LA A LA A (rarely) A A A A OA A A A AL A A A A A A A A A LA LA LA LA LA LA LA LA A A LA LA A (rarely) A (rarely) A AD AD A AD AD A A A A A A A A (rarely) AD AD AD LD LD AD AD AD LD LD L L A A AD AD AD A AL A LA A LA LA LA LA LA A LA A AOL L A A A S A A A A A O A AD A AD A OA A N D AD AD AD AD OA A OA A AD AD A (rarely) A (rarely) A A Na RDB 1 Believed extinct AD AD AD AD AD AD AD AD LD LD L LD LD L LD LD LD LD LD LD LD L LD LD LD LD LD LD LD L LD LD L L L LD PA L L LD LD P AOL AOL A L LP L A L L PA PA LA A AOLP AOLP LA LP PA L AOL LPA A PA AOL LA A AOLP AOLP LA PA AO LPA LPA PAOL A AOL L LA LA LP AD LP AD LA AO L A AO L L L L A LA AD AD LP L L AOL L L L LD LD AD AD AD AD AD AD LD LD L L LD L LD LD LD LD LD LD LD L LD LD LD LD LD LD LD L LD LD LA A A A LA LA LA Vicia sativa 136 Vicia sativa ORDER 137 FAMILY SPECIES PLANT PARTS COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Phalacridae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Cicadellidae Cimicidae Miridae Miridae Miridae Aphalaridae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Apidae Apidae Bucculatricidae Bucculatricidae Cochylidae Cochylidae Coleophoridae Coleophoridae Coleophoridae Cassida denticollis Suff. Cassida prasina Illiger, 1796 Cassida sanguinosa Suffrian, 1844 Hypocassida subferruginea (Schr.) Longitarsus succineus (Foudras, 1860) Eusomus ovulum Germar, 1824 Microplontus triangulum (Boheman, 1845) Pseudostyphlus pillumus Trichosirocalus barnevillei (Grenier, 1866) Olibrus millefolii (Paykull, 1800) Liriomyza flavopicta Hendel Liriomyza hampsteadensis Spencer Liriomyza millefolii Hering Liriomyza ptarmicae Melanagromyza dettmeri Hering Melanagromyza oligophaga Phytomyza matricariae Hendel Phytomyza pullula Zetterstedt, 1848 Phytomyza syngenesiae (Hardy) Phytomyza tanaceti Hendel, 1923 Clinorrhyncha leucanthemi Kieff. Dasyneura francoisi (Kieffer) Macrolabis achilleae Rübsaamen, 1893 Rhopalomyia millefolii (Loew, 1850) Rhopalomyia ptarmicae (Vallot, 1849) Dithryca guttularis (Meigen, 1826) Oxyna flavipennis (Loew, 1844) Oxyna parietina (Linnaeus) Trupanea amoena (Frauenfeld) Trypeta zoe Meigen Urophora solstitialis (Linnaeus, 1758) Eupteryx tenella (Fallen) Orius niger (Wolff) Megalocoleus molliculus (Fallen) Megalocoleus pilosus (Schrank) Orthocephalus coriaceus (Fabr.) Craspedolepta nervosa (Forster) Aphis vandergooti (Borner) Coloradoa achilleae (Hille Ris Lambers) Macrosiphoniella absinthii (L) Macrosiphoniella millefolii (DeGeer) Macrosiphoniella sejuncta (Walker) Macrosiphoniella usquertensis (Hille Ris Lambers) Metopeurum fuscoviride (Stroyan) Microsiphum millefolii (Wahlgren) Pleotrichophorus duponti (Hille Ris Lambers) Toxopterina vandergooti (Borner) Uroleucon achilleae (Koch) Andrena nitidiuscula Schenck Macropis europaea (Warncke) Bucculatrix capreella (Krogerus) Bucculatrix cristatella (Zell) Aethes margaritana (Haw.) Aethes smeathmanniana (Fabr.) Coleophora argentula (Steph.) Coleophora gardesanella Toll Coleophora trochilella (Dup.) Leaves Leaves Leaves SPECIFICITY OF OF OF O OF OG Stem OT Capitula, Seed pods OT OF Flower OG Stem miner M M Leaf miner M Leaf miner OG2 Stem borer OF Stem OF3 Leaf miner OT Leaf miner M Leaf miner OF Leaf miner OF2 Flower OT M M OG2 OG Stem, Gall stem OG2 Root, Gall root OG Stem OT Capitula OF Leaves OF Capitula OF M OF O OT O OG Root, Stolon, Petioles OF OF OF OF OF OF OF OF OF OT OF Flower Oligolectic Flower Oligolectic Leaves M Leaves M Flower, Seed OT Flower, Seed OF Withering flowers O3 Leaves OT OT STATUS Jan Feb RDB 1 Nb A A Mar Apr May Jun Jul Aug Sep Oct LA LA LA LA A A L (?) LA (?) LA (?) A A A A A Nov Dec Extinct L (?) Extinct Nb Na Nb Nb A A A A A A A A A AOL AOL AOL AOL Rare Nb AOL AOL AOL RDB 2 RDB 3 RDB 3 N LD LD LD LD LD LD LPA LD AOLP AOL LPA AOL AOL AOL L L LD LD LD LD LD LD LD LD O O O O O OL LA A A O O O A A A AO LP L PAO P A LP LPA LP AOLP AO LPA LP AO A A A PA AOLP AOL A PA AO A A A A AOLP LD LD LD A A LD LD A LD LD A L L L L OL LD LD LD LD LD LD LD LD LD LD LD LD A LD LD A LD LD A LD LD LD LD LD LD LD LD LD LD LD LD LD LD LD LD LD A L LD LD LD L LD LD P LD AO LP P LD PA LD L L L L L L Achillea millefolium Achillea millefolium ORDER FAMILY SPECIES LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA THYSANOPTERA THYSANOPTERA Geometridae Geometridae Geometridae Oecophoridae Oecophoridae Pterophoridae Pyralidae Tortricidae Tortricidae Tortricidae Tortricidae Tortricidae Tortricidae Tortricidae Phlaeothripidae Phlaeothripidae Thripidae Eupithecia icterata (de Villers) Eupithecia icterata subfulvata (Haw.) Eupithecia millefoliata Rossler Depressaria olerella Zell. Depressaria silesiaca (Hein) Platyptilia pallidactyla (Haw) Phycitodes maritima (Tengstrom) Dichrorampha gueneeana (Obraztsov) Dichrorampha montanana (Duponchel) Dichrorampha petiverella (L.) Dichrorampha plumbagana (Treit.) Dichrorampha plumbana (Scop.) Dichrorampha sequana (Hubn) Thiodia citrana (Hb.) Haplothrips propinquus Bagnall Haplothrips setiger Priesner Thrips pillichi Priesner PLANT PARTS Leaves, Flower Seed, Seed heads Root, Stem, Shoot Flower Root, Rootstock Rootstock, Stem Root, Rootstock Flower Flower Flower SPECIFICITY OT OG2 M M OT OG OF2 OT OT OT M OT OT OT M OF OF STATUS Nb RDB 3 J F M A M J J A S O N D P P A A LD LD L L L L L L LD L P P A A LD LD L L L L L L LD P P A A LD LD L L L L L L LD L P P A A L LD P L LP L L LP L LD P P P A L A A A LP LP AO PA A A A A LA AO OL PA PA AO L A A AO L L L A A L L L L L L A A L L L L L L L L LD P P A A LD LD L L L L L L LD P P A A LD LD L L L L L L LD L PA LP P P P PA P LD A LPA LP PA A A PA A PA P A A LA L L AOL LA L L L L L LA A A A A A Achillea millefolium (Continued) Achillea millefolium ORDER 138 FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Cecidomyiidae Apidae Incurvariidae Pieridae Pieridae Pieridae Pieridae Phyllotreta atra (F., 1775) Phyllotreta nemorum (Linnaeus, 1758) Phyllotreta nigripes (F., 1775) Ceutorhynchus cochleariae (Gyllenhal, 1813) Ceutorhynchus pectoralis Weise, 1895 Ceutorhynchus pervicax Weise, 1883 Dasyneura cardaminicola Rübsaamen, 1915 Andrena nitida (Muller) Adela rufimitrella (Scop) Anthocharis cardamines (L) Anthocharis cardamines britannica (Ver) Pieris napi (L) Pieris napi sabellicae (Steph) Root Leaf miner Root Seed, Fruit Stem, Petiole OF OF OF OF OF OF3 OG Oligolectic OF2 OF OF OF OF Flower Leaves Leaves, Flower, Flower buds, Seed pods Seed pods STATUS Jan LD AD A Na Na AD Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec LD AD A A A L A A L AL L(?) A LA A L(?) A A A L(?) A A A A A A A LD A A LD AD LD AD A A A A L AL L(?) A A A AD AOL AD L AD L AD P P P P P P A PA A PAOL A A A A AOLP A A AOL LA AOLP AOLP A A AOL LA AOLP AD L AD L AD LP P P P P LA LA LA AOLP AOLP AOLP AOLP P AD P P Cardamine pratensis Cardamine pratensis ORDER 139 140 FAMILY SPECIES COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Apionidae Apionidae Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Nitidulidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Lygaeidae Miridae Nabidae Aphididae Lachnidae Lachnidae Apidae Apidae Apidae Apidae Coleophoridae Coleophoridae Coleophoridae Gelechiidae Gelechiidae Gelechiidae Gelechiidae Gelechiidae Oecophoridae Oecophoridae Oecophoridae Oecophoridae Oecophoridae Pyralidae Tortricidae Tortricidae Tortricidae Tortricidae Tortricidae Tortricidae Tortricidae Tortricidae Zygaenidae Ceratapion armatum (Gerstaecker, 1854) Ceratapion onopordi (Kirby, 1808) Root, Stem Cassida rubiginosa Mueller, 1776 Leaves Sphaeroderma rubidum (Graells, 1858) Sphaeroderma testaceum (F., 1775) Larinus planus (Fabr.) Flower Rhinocyllus conicus (Froel.) Rhynchaenus pratensis (Germ.) Leaves, Leaf miner Meligethes subrugosus (Gyllenhal, 1808) Pollen Liriomyza centaureae Hering Leaf miner Liriomyza strigata (Meigen) Leaf miner Melanagromyza dettmeri Hering Stem borer Melanagromyza oligophaga Stem Napomyza hirticornis Hendel Stem borer Phytomyza autumnalis Griffiths Leaf miner Phytomyza spinaciae Hendel, 1928 Leaf miner Phytomyza syngenesiae (Hardy) Leaf miner Clinodiplosis cilicrus (Kieffer, 1889) Dasyneura miki (Kieffer, 1891) Loewiola centaureae (F. Löw, 1875) Acanthiophilus helianthi (Rossi, 1794) Capitula, infloresence Acinia corniculata (Zetterstedt, 1819) Capitula, infloresence Chaetorellia jaceae (Robineau-Desvoidy, 183 Capitula, Inflorescence Chaetostomella cylindrica (Robineau-DesvoidCapitula, Inflorescence Paroxyna misella (Loew) Stem, Capitula Trupanea amoena (Frauenfeld) Capitula Urophora cuspidata (Meigen) Capitula Urophora jaceana (Hering, 1935) Flower, Galls Urophora quadrifasciata (Meigen, 1826) Capitula, Flower Urophora solstitialis (Linnaeus, 1758) Capitula Peritrechus sylvestris Fabr. Oncotylus viridiflavus (Goeze) Nabis flavomarginatus Scholtz Uroleucon jaceae (L) Protrama radicis (Kalt.) Root Trama centaureae (Borner) Root Macropis europaea (Warncke) Flower Melitta leporina (Panzer) Flower Melitta tricincta Kirby Flower Osmia leaiana (Kirby) Flower Coleophora conspicuella Zell. Leaves Coleophora frischella (L.) Coleophora paripennella Zell. Leaves Metzneria metzneriella (Stt.) Seed Metzneria neuropterella (Zeller) Seed Ptocheuusa paupella (Zell.) Scrobipalpa acuminatella (Sirc.) Scrobipalpa pauperella (Hein.) Agonopterix arenella (D. & S.) Agonopterix carduella (Hb.) Agonopterix kaekeritziana (L.) Agonopterix pallorella (Zeller) Agonopterix subpropinquella (Stt.) Microstega hyalinalis (Hubner) Leaves Aethes smeathmanniana (Fabr.) Flower, Seed Agapeta zoegana (L.) Root Conchylimorpha straminea (Haw.) Stem, Flower Endothenia oblongana (Haw.) Root Epiblema cirsiana (Zell.) Root, Stem Eucosma cana (Haw.) Flower Eucosma hohenwartiana (D. & S.) Flower Pelochrista caecimaculana (Haw.) Root Adscita globulariae (Hb.) PLANT PARTS SPECIFICITY STATUS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec OG OT OT OT OT OT OST M O3 M OF OF OF3 O2 OT OT3 OF OG OG OG OF OF OG OT OF2 OF OG OG OF OF M OG O OF OF OF Oligolectic Oligolectic Monolectic Oligolectic M O OT OT2 OT OF OT OT OT OT OG OT OT O2 OF O2 M M OT2 OT OT OT OG2 RDB K AD AD AD AD AD AD AD A AD A AD A A A A L LA A LA A LA (?) LA (?) A A A A LA A A A A A A A AD AD AD AD AD AD L (?) A A A A LA LA L (?) LA (?) A A A A A A A A A A A L LA L (?) LA (?) A A A A AOL AOL Nb Na Nb N Nb RDB 1 RDB 2 N RDB 3 RDB 3 Nb Nb N RDB I RDB 3 A LD LD AD LD LD AD LD LD AD LD P AD LP AOL AD AOL AOL AOL AOLP AOL L LD LD AOL LD LD LD LD AOLP PAOL AOLP AOLP AD LD LD AD LD LD LD LD LD LD LD LD LD LD LD LD LD LD LD LD LPA LPA LPA LPA AOL AOL AOL AOL AOL AOL AOLP AOL L L AOL L LD LD L LD LD LD LD LD LD LD LD LD LD LD LD LD O O O O O L LA AO O O O O LD LD LD AD LD LD LD LD LD P P LD LD LD AD LD LD LD LD LD P P LD LD LD AD LD LD LD LD LD P P LD LD LD AD L LD L LD LD P P LD LD LD A L AO L P LD P PA AOL OL PAOL AOLP L A LA A A PA PA LD L PAOL LP L AOL L AL L LD L LD P AD LD L L L L L P LD LD LD AD LD LD LD L L P P LD LD LD AD LD LD LD LD LD P P A A A A A A A A A LD LD LD LD L LD L LD L LD A A LD LD LD LD L LD L LD L L A A L LD LD P L L LD P L LD L L LPA A A LPA PA OL A AO LPA O L AOL AOL PA A A LD LD LD LD L LD L LD L LD AO AO LP AOLP PA A LPA A A L LP A L LPA PA LP LP AO A AO AOLP A A A L L L AOL L L L L L LD A A LD L L L L L LD LD L LD A A LD LD LD LD L LD L LD L LD A A LD LD LD LD L LD L LD L LD RDB K N A LP LPA LD AO LP AOLP LPA A P A A A A L L L L LP L LP L L PA LD PA A PA AO LPA A LPA PA PA A LP PA LP PA L P LP PAO PA PA A AOL L Centaurea nigra Centaurea nigra ORDER ORDER FAMILY SPECIES HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Berytinidae Lygaeidae Aphididae Coleophoridae Gelechiidae Gelechiidae Gelechiidae Gelechiidae Geometridae Noctuidae Scythrididae Berytinus crassipes (H.-S.) Pionosomus varius (Wolff) Brachycolus cerastii (Kaltenburg) Coleophora striatipennella (Tengstrom) Caryocolum alsinella semidecandrella (Threl) Caryocolum marmoreum (Haw) Caryocolum proximum (Haw) Eulamprotes wilkella (L.) Eupithecia pygmaeata (Hb) Panemeria tenebrata (Scop.) Scythris siccella (Zell.) PLANT PARTS Seed Flower, Seed Flower, Seed Flower, Seed heads Flower, Seed capsules SPECIFICITY OG O OF OF3 OG2 M OF O OF OF O STATUS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec LD LD LD AL A A LD LD P P P P A A A A LP L LP A L L L LPA P A PA PA AOL LA P L A L LD LP P LP LP A PA L P P P P P P P P RDB 3 LD RDB K Nb P P RDB 1 P P PA P P Cerastium fontanum Cerastium fontanum 141 142 FAMILY SPECIES PLANT PARTS SPECIFICITY STATUS Jan COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) Chrysomelidae Mordellidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Nitidulidae Chrysomelidae Chrysomelidae Apionidae Apionidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Mycteridae Apionidae Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Cecidomyiidae Agromyzidae Agromyzidae Cecidomyiidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Agromyzidae Tephritidae Tephritidae Tephritidae Agromyzidae Coreidae Tingidae Cimicidae Miridae Tingidae Tingidae Assiorestia impressa Mordellistena acuticollis Schil. Assiorestia impressa Oulema lichenis (Voet, 1806) Oulema melanopa (Linnaeus, 1758) Psylliodes picina (Marsham, 1802) Phyllobius roboretanus Gredler, 1882 Meligethes ruficornis (Marsham, 1802) Cassida denticollis Suff. Cassida sanguinosa Suffrian, 1844 Ceratapion carduorum (Kirby, 1808) Ceratapion lacertense (Tottenham, 1941) Lema cyanella (Linnaeus, 1758) Psylliodes chalcomera (Illiger, 1807) Hadroplontus litura (Fabricius, 1775) Hadroplontus trimaculatus (Fabricius, 1775) Lixus elongatus (Goeze, 1777) Rhinocyllus conicus (Froel.) Trichosirocalus horridus (Panzer, 1801) Mycterus curculioides (Fabr.) Ceratapion onopordi (Kirby, 1808) Cassida rubiginosa Mueller, 1776 Sphaeroderma rubidum (Graells, 1858) Sphaeroderma testaceum (F., 1775) Cleonis pigra (Scopoli, 1763) Larinus planus (Fabr.) Phytomyza continua Hendel, 1920 Liriomyza strigata (Meigen) Liriomyza tanaceti de Meijere Phytomyza syngenesiae (Hardy) Jaapiella compositarum (Kieffer, 1888) Acanthiophilus helianthi (Rossi, 1794) Ensina sonchi (Linnaeus, 1767) Tephritis cometa (Loew, 1840) Trypeta zoe Meigen Urophora quadrifasciata (Meigen, 1826) Urophora solstitialis (Linnaeus, 1758) Dasyneura spp. Liriomyza soror Hendel Phytomyza cirsii Hendel Jaapiella cirsiicola Rübsaamen, 1915 Tephritis conura (Loew, 1844) Terellia ruficauda (Fabricius, 1794) Urophora cardui (Linnaeus, 1758) Terellia serratulae (Linnaeus, 1758) Urophora stylata (Fabricius, 1775) Phytomyza autumnalis Griffiths Cerajocera tussilaginis (Fabricius) Chaetostomella cylindrica (Robineau-Desvoidy, 1830) Xyphosia miliaria (Schrank, 1781) Phytomyza spinaciae Hendel, 1928 Arenocoris falleni (Schilling) Tingis ampliata (H.-S.) Orius niger (Wolff) Psallus lepidus Fieb. Tingis angustata (H.-S.) Tingis cardui (L.) Root O M O O O O O O OF OF OST OST OST OST OST OST OST OST OST OST OT OT OT OT OT OT M OF OF OF OF OF OF OF OF OF OF OF2 OG OG OG OG OG OG OST OST OT OT OT OT OT3 O O OF OG OST OST Na RDB K Na Root Root Pollen Leaves Leaves Root, Leaves Root, Stem, Leaves Root Flower Stem Leaves Stem Flower Leaf miner Leaf miner Leaf miner Leaf miner Capitula Capitula Capitula, Flower Leaf miner Capitula Capitula Leaf miner Leaf miner Leaf miner Capitula Capitula Stem, Gall Capitula, Inflorescence, Flower Capitula, Flower, Gall Leaf miner Stem, Capitula Flower Capitula Leaf miner Feb Mar A A A Apr A A A A May Jun Jul Aug Sep A A A A A A A A L(?) A A L(?) A A A A A A A L(?) A A A A AL (?) A A A A Oct Nov Dec A A A A A A RDB 1 Nb Nb Extinct Na Na Extinct Nb Nb AD AD AD AD AD AD A A LA AD A AL A A A AL A A AD A A AD A L LA A A A A A A A A A LA A A AL A A A A A AL A A A A A AL A A A A A AL A A L LA L (?) AL (?) A A LA LA L (?) AL (?) A A LA A AL (?) AL (?) A A LA A A A A A AD AD A A AD AD AD AD A A L (?) A A AOL AOL AD AOL AOL AOL AOL L AOL LPA LD AD LD AD LD AD LD Nb RDB 3 AD A A AD LD AD LD AD LD AD LPA AOL AD AD AOLP AOL LD LD LD LD LPA AOL AOL L LD LD LD LD AD LD LD LD LD AD LD LD LD LD AD LD LD LD LD AD LP LD LD LD AD AOL LPA LPA LPA AD AOL AOL AOLP AOL AD AOL AOL AOL AOL AOL L L L L LPA LD LD LD LD AD LD LD LD LD AD LD LD LD LD AD LD LD LD LD LD LD LD LD LD LD LD LD LD P P LPA AOL AOL AOL AOL AOL LD AOL AOL LD AOLP AOLP AOL LD LD AOL LD LD LD LD LD LD LD LD LD A A A A AO AO AOL LA LA A A A A A A A A AO A AOL OLA LA A LA A A A RDB 3 Cirsium arvense Cirsium arvense ORDER 143 FAMILY SPECIES HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Lachnidae Apidae Apidae Apidae Tortricidae Tortricidae Noctuidae Oecophoridae Pyralidae Pyralidae Tortricidae Coleophoridae Coleophoridae Gelechiidae Gelechiidae Noctuidae Oecophoridae Oecophoridae Oecophoridae Tortricidae Tortricidae Phlaeothripidae Capitophorus horni gynoxantha (Hille Ris Lambers) Dysaphis lappae cirsii (Borner) Capitophorus carduinus (Walker) Capitophorus elaeagni (Del Guercio) Capitophorus similis (van der Goot) Dysaphis lappae (Koch) Sitobion fragariae (Walker) Uroleucon cirsii (L) Protrama radicis (Kalt.) Andrena fuscipes (Kirby) Andrena rosae Panzer Macropis europaea (Warncke) Lobesia abscisana (Doubl.) Aethes cnicana (Westw.) Eublemma ostrina (Hubn) Agonopterix propinquella (Treit.) Myelois cribrella (Hubner) Phlyctaenia perlucidalis (Hb) Agapeta hamana (L.) Coleophora paripennella Zell. Coleophora peribenanderi (toll) Scrobipalpa acuminatella (Sirc.) Scrobipalpa pauperella (Hein.) Lygephila craccae (D. & S.) Agonopterix arenella (D. & S.) Agonopterix carduella (Hb.) Agonopterix subpropinquella (Stt.) Eucosma hohenwartiana (D. & S.) Pelochrista caecimaculana (Haw.) Haplothrips distinguendus (Uzel) PLANT PARTS Root, Stem Root Root Flower Flower Flower Stem, Seed Shoots, Flower, Seed heads Stem, Flower, Seed Root Leaves Flower Root Flower SPECIFICITY M M OF OF OF OF OF OF OF Oligolectic Oligolectic Oligolectic M OG OST OST OST OST OST OT OT OT OT OT OT OT OT OT OT O STATUS Jan RDB 3 N RDB K RDB 3 Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec LD LD LD LD LD LD LD LD LD LD LD LD LD AOL AOL AOL AOL O AOL DL LD L L LD LD LD LD LPA AOL AO PA AO LD LD LD LD LD AO LP OL PAO LD D LD LD LD LDP LD PA P L LD LD A LD LD LD LD LD P A LD LD LD LD LD P A LD LD LD LD LD P A LD LD LD L L P A L P PA L LP PA PA L L AOL L L L A L LD L L LD P A LD LD LD LD LD P A LD LD LD LD LD P O A O A O A L A L O A O A O A A LD L A LD L A LD L A LPA A PA AOL O PA A LD L AL PA A AO LPA A LP A P L LPA LP PA A LA LP AL L AOL LA O PA O A A P PA AO LPA PA A A L L L L PA P A A L L A LD L A LD L A LD L LP L LA Cirsium arvense (Continued) Cirsium arvense ORDER 144 FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Apionidae Apionidae Apionidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Mycteridae Nitidulidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Cimicidae Coreidae Miridae Rhopalidae Tingidae Tingidae Tingidae Aphididae Aphididae Aphididae Aphididae Aphididae Lachnidae Apidae Coleophoridae Coleophoridae Gelechiidae Gelechiidae Ceratapion carduorum (Kirby, 1808) Ceratapion lacertense (Tottenham, 1941) Ceratapion onopordi (Kirby, 1808) Assiorestia impressa Cassida denticollis Suff. Cassida rubiginosa Mueller, 1776 Cassida sanguinosa Suffrian, 1844 Lema cyanella (Linnaeus, 1758) Psylliodes chalcomera (Illiger, 1807) Psylliodes picina (Marsham, 1802) Sphaeroderma rubidum (Graells, 1858) Sphaeroderma testaceum (F., 1775) Cleonis pigra (Scopoli, 1763) Hadroplontus litura (Fabricius, 1775) Hadroplontus trimaculatus (Fabricius, 1775) Larinus planus (Fabr.) Lixus elongatus (Goeze, 1777) Rhinocyllus conicus (Froel.) Trichosirocalus horridus (Panzer, 1801) Mycterus curculioides (Fabr.) Meligethes ruficornis (Marsham, 1802) Liriomyza soror Hendel Liriomyza strigata (Meigen) Phytomyza albiceps Meigen, 1830 Phytomyza autumnalis Griffiths Phytomyza cirsii Hendel Phytomyza syngenesiae (Hardy) Jaapiella cirsiicola Rübsaamen, 1915 Jaapiella compositarum (Kieffer, 1888) Acanthiophilus helianthi (Rossi, 1794) Chaetostomella cylindrica (Robineau-Desvoidy, 1830) Tephritis conura (Loew, 1844) Terellia ruficauda (Fabricius, 1794) Terellia serratulae (Linnaeus, 1758) Terellia winthemi (Meigen) Urophora cardui (Linnaeus, 1758) Urophora stylata (Fabricius, 1775) Vidalia spinifrons (Schroeder) Xyphosia miliaria (Schrank, 1781) Orius niger (Wolff) Arenocoris falleni (Schilling) Psallus lepidus Fieb. Aeschyntelus maculatus (Fieber) Tingis ampliata (H.-S.) Tingis angustata (H.-S.) Tingis cardui (L.) Capitophorus carduinus (Walker) Capitophorus elaeagni (Del Guercio) Capitophorus similis (van der Goot) Dysaphis lappae (Koch) Uroleucon cirsii (L) Protrama radicis (Kalt.) Andrena fuscipes (Kirby) Coleophora paripennella Zell. Coleophora peribenanderi (toll) Scrobipalpa acuminatella (Sirc.) Scrobipalpa pauperella (Hein.) Root, Leaves Root, Stem, Leaves Stem Root Leaves Leaves Leaves OST OST OT O OF OT OF OST OST O OT OT OT OST OST OT OST OST OST OST O OG OF O2 OT OG OF OG OF OF OT OG OG OST OST OG OST OF OT OF O OG O2 O OST OST OF OF OF OF OF OF Oligolectic OT OT OT OT Root Stem Flower Flower Pollen Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Capitula Flower Capitula Capitula Capitula, Inflorescence, Flower Capitula Stem, Gall Capitula, Flower, Gall Leaves Capitula Root Root Flower Leaves STATUS Jan Feb Mar Apr Jul Aug Sep A A LA A A A LA A A A LA A AD AD AD A A L A AD AD AD A LA LA LA A A A A A LA L(?) A L (?) A A L(?) L (?) AL (?) A A A A AL A A A AL (?) AL (?) AL (?) A A A A AL A A A A A A A A A A AL A A Nb Nb Nb Extinct Na Na Extinct Jun A A L A Na RDB 1 Nb May AD A A AL A A A AL A A LA L(?) L (?) AL (?) A A A A AL A A A A A A AD AD A Nb RDB 3 RDB 3 LD AD LD LD LD LD LD LD LD LD AD LD LD LD LD LD LD LD LD AD LD LD LD LD LD LD LD P AD LP LD LP LD LD LPA LPA AOL AD AOL LPA AOL LPA LPA AOL AOL AOL AD AOL AOLP AOL AOL AOL L AOLP A A A A A A A A AO A AO AO A AOL LD LD LD P LD LD LD P LD LD LD P LD L L P LD L LP PA LD LPA PA A A RDB 3 N RDB K Oct Nov Dec A AD AD A AD AD A A A A AD AD AD A AOL AOL AD AOL AOL AOL AOL AOL L AOLP AOL LD AOL L L L L L LD AOL AOL LA OLA LPA LPA A LP A LD LPA LD LD LD LD LD LD AOL LD AD LD LD LD LD LD LD LD LD AD LD LD LD LD LD LD LD LD AD LD LD LD LD LD LD LD A A A LA LA A LA A A A AOL LA O PA AOL L L L LD L LD P LD LD LD P LD LD LD P Cirsium palustre Cirsium palustre ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA Noctuidae Oecophoridae Oecophoridae Oecophoridae Oecophoridae Pyralidae Pyralidae Tortricidae Tortricidae Tortricidae Tortricidae Tortricidae Phlaeothripidae Eublemma ostrina (Hubn) Agonopterix arenella (D. & S.) Agonopterix carduella (Hb.) Agonopterix propinquella (Treit.) Agonopterix subpropinquella (Stt.) Myelois cribrella (Hubner) Phlyctaenia perlucidalis (Hb) Aethes cnicana (Westw.) Agapeta hamana (L.) Epiblema cirsiana (Zell.) Eucosma hohenwartiana (D. & S.) Pelochrista caecimaculana (Haw.) Haplothrips distinguendus (Uzel) Shoots, Flower, Seed heads OST OT OT OST OT OST OST OG OST OT2 OT OT O Stem, Flower, Seed Stem, Seed Root Root, Stem Flower Root Flower STATUS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A A A A A A A LD LD LD LD LD P LD L LPA A LP PA AL L O AOL L AOL A A A LD LD LD LD LD LD L L LPA AL LP PA A AO AO A A A LD LD LD LD LD LD L L L A L P PA PAO AO A PA P A PA A A LD LD LD LD LD LD L A L A PA A L L L AOL L L L A A L LD L L L LD L A A LD LD LD LD LD LD L A A LD LD LD LD LD LD L L P P PA PA LP L PA A LA LA Cirsium palustre (Continued) Cirsium palustre ORDER 145 146 FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) LEPIDOPTERA Apionidae Apionidae Apionidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Mycteridae Nitidulidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Cimicidae Coreidae Miridae Tingidae Tingidae Tingidae Aphididae Aphididae Aphididae Aphididae Aphididae Lachnidae Apidae Apidae Coleophoridae Ceratapion carduorum (Kirby, 1808) Ceratapion lacertense (Tottenham, 1941) Ceratapion onopordi (Kirby, 1808) Assiorestia impressa Cassida denticollis Suff. Cassida rubiginosa Mueller, 1776 Cassida sanguinosa Suffrian, 1844 Lema cyanella (Linnaeus, 1758) Psylliodes chalcomera (Illiger, 1807) Psylliodes picina (Marsham, 1802) Sphaeroderma rubidum (Graells, 1858) Sphaeroderma testaceum (F., 1775) Cleonis pigra (Scopoli, 1763) Hadroplontus litura (Fabricius, 1775) Hadroplontus trimaculatus (Fabricius, 1775) Larinus planus (Fabr.) Lixus elongatus (Goeze, 1777) Rhinocyllus conicus (Froel.) Trichosirocalus horridus (Panzer, 1801) Mycterus curculioides (Fabr.) Meligethes ruficornis (Marsham, 1802) Liriomyza soror Hendel Liriomyza strigata (Meigen) Phytomyza autumnalis Griffiths Phytomyza cirsii Hendel Phytomyza syngenesiae (Hardy) Jaapiella cirsiicola Rübsaamen, 1915 Jaapiella compositarum (Kieffer, 1888) Acanthiophilus helianthi (Rossi, 1794) Cerajocera tussilaginis (Fabricius) Chaetorellia jaceae (Robineau-Desvoidy, 1830) Chaetostomella cylindrica (Robineau-Desvoidy, 1830) Ensina sonchi (Linnaeus, 1767) Tephritis cometa (Loew, 1840) Tephritis conura (Loew, 1844) Terellia ruficauda (Fabricius, 1794) Terellia serratulae (Linnaeus, 1758) Urophora cardui (Linnaeus, 1758) Urophora quadrifasciata (Meigen, 1826) Urophora solstitialis (Linnaeus, 1758) Urophora stylata (Fabricius, 1775) Xyphosia miliaria (Schrank, 1781) Orius niger (Wolff) Arenocoris falleni (Schilling) Psallus lepidus Fieb. Tingis ampliata (H.-S.) Tingis angustata (H.-S.) Tingis cardui (L.) Capitophorus carduinus (Walker) Capitophorus elaeagni (Del Guercio) Capitophorus similis (van der Goot) Dysaphis lappae (Koch) Uroleucon cirsii (L) Protrama radicis (Kalt.) Andrena fuscipes (Kirby) Osmia leaiana (Kirby) Coleophora paripennella Zell. Root, Leaves Root, Stem, Leaves Stem Root Leaves Leaves Leaves OST OST OT O OF OT OF OST OST O OT OT OT OST OST OT OST OST OST OST O OG OF OT OG OF OG OF OF OT OG OT OF OF OG OG OST OG OF OF OST OT OF O OG O OST OST OF OF OF OF OF OF Oligolectic Oligolectic OT Root Stem Flower Flower Pollen Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Capitula Stem, Capitula Flower Flower Capitula Capitula, Flower Capitula Capitula Capitula,Inflorescence, Flower Stem, Gall Capitula Capitula Capitula, Flower, Gall Capitula Root Root Flower Flower Leaves STATUS Jan Feb Mar Apr Jul Aug Sep A A LA A A A LA A A A LA A AD AD AD A A L A AD AD AD A LA LA LA A A A A LA L(?) A L(?) L (?) AL (?) A A A A AL A A A AL (?) AL (?) AL (?) A A A A AL A A A A A A A A A A AL A A Nb A A AL A A A AL A A LA L(?) L (?) AL (?) A A A A AL A A A Nb Nb Extinct Na Na Extinct Jun A A L A Na RDB 1 Nb May A AD A AD AD A L (?) A Nov Dec A AD AD A AD AD A A A A AD AD AD LD LD LD A LD A LPA A AOL AOLP AOL L LD A LD LD LD LD LD LD LD LD LD LD LD P LD P AOL LP AOL AD AD LP LD LD AD AD AOL LPA LPA LD L LD AOL LPA LPA LD LD LD LD LD LD AD AD LD LD LD AOL LD AOL LD AOL AOL AOL L L L LD LD LD AD AD LD LD LD AOL AOL AOLP AOL AOL AD AD AOL AOL AOL LD LD LD AD AD LD LD LD AOL AOL AOL AOL AD AD AOL AOLP AOL AD AD LD LD LD AD AD LD LD LD AD AD LD LD LD LD LD LD LD LD LD LD LD LD LD LD LPA LPA LPA AOL AOL AOL L AOL AOL L AOLP AOLP AOL LD LD AOL LD LD LD LD LD LD LD LD LD A A A A LA A A A A OLA LA LA A LA A A AO A AOL AOL A AO A AO A A A LD AD LD LD AD LD LD AD LD LD AD L LD A L LD AO LPA LPA AOL AOL AOLP AOLP LP LPA LA L Nb RDB 3 Oct RDB 3 LD LD P AD AD L LD LD AD LD Cirsium vulgare Cirsium vulgare ORDER FAMILY SPECIES LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA Coleophoridae Gelechiidae Gelechiidae Noctuidae Oecophoridae Oecophoridae Oecophoridae Oecophoridae Pyralidae Pyralidae Pyralidae Pyralidae Tortricidae Tortricidae Tortricidae Tortricidae Tortricidae Tortricidae Phlaeothripidae Coleophora peribenanderi (toll) Scrobipalpa acuminatella (Sirc.) Scrobipalpa pauperella (Hein.) Eublemma ostrina (Hubn) Agonopterix arenella (D. & S.) Agonopterix carduella (Hb.) Agonopterix propinquella (Treit.) Agonopterix subpropinquella (Stt.) Homoeosoma nebulella (D.&S.) Myelois cribrella (Hubner) Phlyctaenia perlucidalis (Hb) Phycitodes binaevella (Hubner) Aethes cnicana (Westw.) Agapeta hamana (L.) Epiblema scutulana (D. & S.) Eucosma cana (Haw.) Eucosma hohenwartiana (D. & S.) Pelochrista caecimaculana (Haw.) Haplothrips distinguendus (Uzel) PLANT PARTS Shoots, Flower, Seed heads Flower, Seed Stem, Flower, Seed Flower, Seed heads Stem, Seed Root Root, Stem Flower Flower Root Flower SPECIFICITY STATUS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec OT OT OT OST OT OT OST OT OF2 OST OST M OG OST OST OT OT OT O N LD P LD P LD P L P LP PA PA A A A LP A O PA L L LD P LD P LD P A A A A A A A LD LD LD LD LD LD LP L LD L LPA A LP PA AOL AL L AL O AOL L AOL AOL A A A LD LD LD LD LD LD LD L LD L L LPA AL LP PA PA A PA AO AO A A A LD LD LD LD LD LD LD L LD L L L A L PA P PA P PAO AO A PA PA P A PA A A LD LD LD LD LD LD LD L LD L A L A PA A OL L L L L AOL L L L L A A LD L LD LD L L L LD LD L A A LD LD LD LD LD LD LD L LD L A A LD LD LD LD LD LD LD L LD L RDB K Nb LD L P LD P PA PA LP LP L PA PA A LA LA Cirsium vulgare (Continued) Cirsium vulgare ORDER 147 FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Chrysomelidae Kateretidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cicadellidae Cicadellidae Aphididae Apidae Apidae Argidae Cephidae Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae Geometridae Nepticulidae Tortricidae Galerucella lineola (F., 1781) Kateretes bipustulatus (Paykull, 1798) Agromyza spiraeae Kaltenbach Agromyza sulfuriceps Strobl Dasyneura harrisoni (Bagnall, 1922) Dasyneura pustulans (Rübsaamen, 1889) Dasyneura spiraeae (Loiselle, 1912) Dasyneura ulmaria (Bremi, 1847) Eupteryx signatipennis (Boheman) Macrosteles septemnotatus (Fallen) Aphis ulmariae Schrank Andrena denticulata (Kirby) Andrena tarsata Nylander Arge ciliaris (L) Hartigia xanthostoma (Eversmann) Allantus calceatus (Klug) Caliroa alector (Benson) Caliroa baltica (Conde) Caliroa pumila (Konow) Monophadnoides geniculata (Hartig) Monophadnoides tenuicornis (Klug) Pachyprotasis antennata (Lepeletier) Scopula immutata (L) Stigmella ulmariae(Wocke) Acleris shepherdana (Steph) Leaves O O OF OF M M M OG M M OF Oligolectic Oligolectic M M OF M? M M? OF OF O O2 M M Leaf miner Leaf miner Leaves Terminal leaves Flower Flower Stem Leaves STATUS Jan RDB 1 + Nb Nb Feb Mar Apr May Jun OL LA Jul Aug Sep Oct Nov Dec LD LD LD LD LD LD LD LD LD LD A A LPA LD A A LPAO LPA A A AOL AOL A A AOL AOL LD LD LD LD LD LD LD P LD P LD P L P LP PAO L PA OL LP A LP P AO PAO A L OL A L LP LD P LD P Filipendula ulmaria 148 Filipendula ulmaria ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY STATUS COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA THYSANOPTERA THYSANOPTERA Chrysomelidae Chrysomelidae Chrysomelidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cydnidae Miridae Miridae Miridae Miridae Miridae Miridae Miridae Aphididae Aphididae Aphididae Aphididae Triozidae Triozidae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Sphingidae Sphingidae Sphingidae Sphingidae Thripidae Thripidae Thripidae Chrysolina violacea (Mueller, 1776) Sermylassa halensis (Linnaeus, 1767) Timarcha tenebricosa (F., 1775) Liriomyza morio (Brischke) Paraphytomyza orphana (Hendel) Dasyneura galiicola (F. Löw, 1880) Dasyneura hygrophila (Mik, 1883) Geocrypta galii (Loew, 1850) Legnotus limbosus (Geoffroy) Charogochilus gyllenhali (Fallen) Dichrooscytus rufipennis (Fallen) Halticus luteicollis (Panzer) Orthocephalus coriaceus (Fabr) Polymerus nigrita (Fallen) Polymerus nigritus (Fallen) Polymerus palustris (Reuter) Dysaphis pyri (Boyer de Fonscolombe) Galiobium langei (Borner) Linosiphon galiophagum (Wimshurst) Staegeriella necopinata (Borner) Trioza galii typica (Forster) Trioza galii velutina (Forster) Catarhoe cuculata (Hufn.) Catarhoe rubidata (D. & S.) Colostygia multistrigaria (Haw.) Colostygia olivata (D. & S.) Colostygia pectinataria (Knoch) Cosmorhoe ocellata (L.) Costaconvexa polygrammata (Borkh.) Epirrhoe alternata alternata (Mull.) Epirrhoe galiata (D. & S.) Epirrhoe tristata (L) Eulithis pyraliata (D. & S.) Lampropteryx otregiata (Metc.) Lampropteryx suffumata (D. & S.) Nebula salicata (Hubn) Nebula salicata latentaria (Curt.) Orthonama vittata (Borkh.) Phibalapteryx virgata (Hufn.) Xanthorhoe munitata (Hubn) Deilephila porcellus (L.) Hyles gallii (Rott.) Hyles lineata (Fabr.) Macroglossum stellatarum (L.) Anaphothrips validus Karny Platythrips tunicatus (Haliday) Tmetothrips subapterus (Haliday) Leaves O OG OG OG OG2 OG M OG OG O OG O O OG OG OG O OG2 OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG M O O O OF M OG O2 Nb Leaf miner Stem miner Flower Leaves, Flower Jan Feb Mar Apr May Jun Jul A A L (?) A A L (?) A A A AL (?) A A A A Aug Sep Oct Nov Dec A A A A A A A A A A A A A Nb RDB 3 Believed extinct Nb Nb A A O O O A A O O O A A O O O A A O O O O O O O O O P P P LD LD LD P P P LD LD LD P P A LD LD LD P P P O P P LD LD L P P P P O P P LD LD L P P P P A O A AOL A A OL A LA A A L LA A A L O O OL OL A LA A A A A A A O O O P P L L PA PA L A PA PA LP PA AOL P PA PA PA PA PA L P AO A AL AO A A PA AOL L AOL AOL P A AO AOL L LP AOL AOL A L P L AO L LD L L P A AOL PA AL LPA LPA L A PA P L L PA AO LP P P L AOL AOL P P P L L L P P P LD LD LD P P P LD LD LD P P P O P P LD LD L P P P AO L LP P A P P P OL P A P P LP P AOL OL P O AOL P LD L AO L P P P O L P LD LD L P P P P O P P LD LD L P P P P O P P LD LD L P P P P A P P P A P P P A L L PA ALP A LA LA P P P A P P P A A L A L AOL AL LA LA P P LP A A AO A AOL A A LA P L AOL A A A A A A A A A LA A A A A Rare A AO OL A AO AO A Galium palustre 149 Galium palustre ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY STATUS COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA Chrysomelidae Chrysomelidae Chrysomelidae Agromyzidae Cecidomyiidae Cecidomyiidae Cydnidae Cydnidae Miridae Miridae Miridae Miridae Miridae Miridae Miridae Aphididae Aphididae Aphididae Aphididae Triozidae Triozidae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Sphingidae Sphingidae Sphingidae Sphingidae Thripidae Chrysolina violacea (Mueller, 1776) Sermylassa halensis (Linnaeus, 1767) Timarcha tenebricosa (F., 1775) Liriomyza morio (Brischke) Dasyneura galiicola (F. Löw, 1880) Geocrypta galii (Loew, 1850) Legnotus limbosus (Geoffroy) Legnotus picipes (Fallen) Charogochilus gyllenhali (Fallen) Dichrooscytus rufipennis (Fallen) Halticus luteicollis (Panzer) Orthocephalus coriaceus (Fabr) Polymerus nigrita (Fallen) Polymerus nigritus (Fallen) Polymerus palustris (Reuter) Dysaphis pyri (Boyer de Fonscolombe) Galiobium langei (Borner) Linosiphon galiophagum (Wimshurst) Staegeriella necopinata (Borner) Trioza galii typica (Forster) Trioza galii velutina (Forster) Catarhoe cuculata (Hufn.) Catarhoe rubidata (D. & S.) Colostygia multistrigaria (Haw.) Colostygia olivata (D. & S.) Colostygia pectinataria (Knoch) Cosmorhoe ocellata (L.) Costaconvexa polygrammata (Borkh.) Epirrhoe alternata alternata (Mull.) Epirrhoe galiata (D. & S.) Epirrhoe tristata (L) Eulithis pyraliata (D. & S.) Lampropteryx suffumata (D. & S.) Nebula salicata (Hubn) Nebula salicata latentaria (Curt.) Orthonama vittata (Borkh.) Phibalapteryx virgata (Hufn.) Xanthorhoe munitata (Hubn) Deilephila porcellus (L.) Hyles gallii (Rott.) Hyles lineata (Fabr.) Macroglossum stellatarum (L.) Platythrips tunicatus (Haliday) Leaves O OG OG OG OG OG OG OG2 O OG O O OG OG OG O OG2 OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG M O O O OF OG Nb Leaf miner Flower Leaves, Flower Jan Feb Mar Apr May Jun Jul A A L (?) A A L (?) A A N Nb RDB 3 Believed extinct Nb Aug Sep Oct Nov Dec A A AL (?) A A A A A A A A LA A A L A LA A A L A A A A A A A A A A A A A A A O O O A A A O O O A A A O O O A A A O O O A A AO OL O A A AOL A A OL O O O O O O O O OL OL A LA A A A A A A O O O P P P LD LD LD P P P LD LD LD P P A LD LD LD L L P A AOL PA AL LPA LPA L A P L L PA AO P P P LD LD LD A AO AO AOL AOL P A AO AOL L LP AOL AOL A P L AO L LD P P P LD LD LD P P P O P LD LD L P PA PA L P AO A AL AO A A PA L P P P L L L P P P O P LD LD L P P P L L PA PA L A PA PA LP AOL P PA PA PA LP P P L AOL AOL P P P O P LD LD L P P P AO L LP P A P P P OL A P P LP P AOL OL P O P LD L AO L P P P O P LD LD L P P P P O P LD LD L P P P P O P LD LD L P P P P A A P P P A A P P P A A P P P A A A A A A A AO A AOL A LA L A L AOL LA L L PA ALP LA P L AOL A LA P P LP A A P P P A A P P P A A A Galium saxatile 150 Galium saxatile ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY STATUS COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Symphyta) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA THYSANOPTERA Chrysomelidae Chrysomelidae Chrysomelidae Agromyzidae Cecidomyiidae Cecidomyiidae Cydnidae Cydnidae Miridae Miridae Miridae Miridae Miridae Miridae Miridae Miridae Aphididae Aphididae Aphididae Aphididae Aphididae Triozidae Triozidae Tenthredinidae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Sphingidae Sphingidae Sphingidae Sphingidae Thripidae Thripidae Chrysolina violacea (Mueller, 1776) Sermylassa halensis (Linnaeus, 1767) Timarcha tenebricosa (F., 1775) Liriomyza morio (Brischke) Dasyneura galiicola (F. Löw, 1880) Geocrypta galii (Loew, 1850) Legnotus limbosus (Geoffroy) Legnotus picipes (Fallen) Charogochilus gyllenhali (Fallen) Dichrooscytus rufipennis (Fallen) Halticus luteicollis (Panzer) Halticus macrocephalus Fieber Orthocephalus coriaceus (Fabr) Polymerus nigrita (Fallen) Polymerus nigritus (Fallen) Polymerus palustris (Reuter) Dysaphis pyri (Boyer de Fonscolombe) Galiobium langei (Borner) Hydaphias hofmanni (Borner) Linosiphon galiophagum (Wimshurst) Staegeriella necopinata (Borner) Trioza galii typica (Forster) Trioza galii velutina (Forster) Aglaostigma fulvipes (Scopoli) Catarhoe cuculata (Hufn.) Catarhoe rubidata (D. & S.) Colostygia multistrigaria (Haw.) Colostygia olivata (D. & S.) Colostygia pectinataria (Knoch) Cosmorhoe ocellata (L.) Costaconvexa polygrammata (Borkh.) Epirrhoe alternata alternata (Mull.) Epirrhoe galiata (D. & S.) Epirrhoe rivata (Hb.) Epirrhoe tristata (L) Eulithis pyraliata (D. & S.) Lampropteryx suffumata (D. & S.) Nebula salicata (Hubn) Nebula salicata latentaria (Curt.) Orthonama vittata (Borkh.) Phibalapteryx virgata (Hufn.) Xanthorhoe munitata (Hubn) Deilephila porcellus (L.) Hyles gallii (Rott.) Hyles lineata (Fabr.) Macroglossum stellatarum (L.) Belothrips acuminatus Haliday Platythrips tunicatus (Haliday) Leaves O OG OG OG OG OG OG OG2 O OG O M O OG OG OG O OG2 M OG OG OG OG OG2 OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG OG M O O O OF M OG Nb Leaf miner Flower Leaves, Flower Jan Feb Mar Apr May Jun Jul A A L (?) A A L (?) A LA A A A L A LA A A A L A N Nb RDB 3 Believed extinct Nb Aug Sep Oct Nov Dec A A AL (?) A A A A A A A A A A A A A A A A A A A A A A A O O A A A O O A A A O O A A A O O A A AO OL O O O O O A A AOL A A L OL O O O O O O O O OL OL A LA A A A A A A O O O P P P LD LD LD P P P LD LD LD P P A LD LD LD L L P A AOL PA AL LPA LPA AOL L A P L L PA AO P P P LD LD LD A AO AO AOL AOL P A AO AOL L LP AOL A AOL A P L AO L LD P P P LD LD LD P P P P O P LD LD L P PA PA L P AO A AL AO A PA A PA L P P P L L L P P P P O P LD LD L P P P L L PA PA L A PA P PA LP AOL P PA PA PA LP P P L AOL AOL P P P P O P LD LD L P P P AO L LP P A P P P P OL A P P LP P AOL OL L P O P LD L AO L P P P P O P LD LD L P P P P P O P LD LD L P P P P P O P LD LD L P P P P A P P P A P P P A P P P A A A L A L AOL LA LA L L PA ALP L LA P L AOL A L LA P P LP A L A P P P A A AO A AOL A A LA P P P A A A A A A A A A A A Galium verum 151 Galium verum ORDER FAMILY SPECIES COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) LEPIDOPTERA THYSANOPTERA THYSANOPTERA Curculionidae Curculionidae Phalacridae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Chloropidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Aphididae Aphididae Aphididae Lachnidae Psyllidae Apidae Apidae Oecophoridae Thripidae Thripidae Glocianus marginatus (Paykull, 1792) Orthochaetes setiger (Beck, 1817) Olibrus affinis (Sturm, 1807) Ophiomyia beckeri (Hendel) Ophiomyia cunctata (Hendel) Ophiomyia heringi Stáry, 1930 Ophiomyia pulicaria (Meigen) Phytomyza cecidonomia britannica Griffiths Phytomyza nigra Meigen, 1830 Contarinia hypochoeridis (Rübsaamen, 1891) Cystiphora spp. Jaapiella compositarum (Kieffer, 1888) Heterostylodes pratensis (Meigen, 1826) Ensina sonchi (Linnaeus, 1767) Paroxyna producta (Loew, 1844) Tephritis formosa (Loew, 1844) Tephritis vespertina (Loew, 1844) Trypeta immaculata Macquart Aphis hypochoeridis (Borner) Aulacorthum palustre (Hille Ris Lambers) Uroleucon hypochoeridis (Hille Ris Lambers) Neotrama caudata (Del Guercio) Craspedolepta sonchi (Forster) Osmia leaiana (Kirby) Panurgus banksianus (Kirby) Depressaria badiella (Hb.) Thrips physapus Linnaeus Thrips validus Uzel PLANT PARTS Flower Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Flower Leaves, Gall Flower Capitula, Flower Capitula, Flower Capitula Capitula, Inflorescence, Flower Leaf miner Root collar, Lower stem Root Flower Flower Flower Flower SPECIFICITY M O OT OT OT M OT M OF M M OF M OF OT OT OT OT OF OT OT OT OF Oligolectic Oligolectic OT O OG STATUS Jan Feb Mar Apr May Jun Jul Aug Sep A A A A A L (?) A L (?) A A A Nb AOL AOL AOL AOL Oct Nov A A Dec A N AD PD AD PD AD PD AD PD AD AOL AOL AOL PAOL AOL L L LPA PD AD PD AD PD AD PD AD LD AD LD AD LD AD LD A LD L A AO PAO LP A AOLP AO LPA A LP LD A A PAD LD A AD LD AD LD AOLP LD PA A Hypochaeris radicata 152 Hypochaeris radicata ORDER FAMILY SPECIES COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) Curculionidae Phalacridae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Tephritidae Tephritidae Tephritidae Aphididae Aphididae Lachnidae Psyllidae Psyllidae Apidae Glocianus moelleri (Thomson, C.G., 1868) Olibrus flavicornis (Sturm, 1807) Chromatomyia farfarella Liriomyza taraxaci Hering Ophiomyia beckeri (Hendel) Ophiomyia pinguis (Fallen) Ophiomyia pulicaria (Meigen) Phytomyza farfarella Hendel Cystiphora leontodontis (Bremi, 1847) Ensina sonchi (Linnaeus, 1767) Paroxyna producta (Loew, 1844) Tephritis leontodontis (De Geer) Aulacorthum palustre (Hille Ris Lambers) Uroleucon hypochoeridis (Hille Ris Lambers) Neotrama caudata (Del Guercio) Craspedolepta flavipennis (Forster) Craspedolepta sonchi (Forster) Hoplosmia spinulosa (Kirby) PLANT PARTS Flower Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Capitula Capitula Capitula, Inflorescence Root Flower SPECIFICITY STATUS Jan OT M M OT OT OT OT OT OG OF OT OG OT OT OT OF OF Oligolectic RDB K RDB K Feb Mar Apr May Jun Jul Aug Sep A A A A A A A A AOL AOL AOL AOL Oct Nov Dec N AD AD AD AD AD AD AOL AOL LPA AD AD AD LD LD LD LD LD PAO AO AOL AOL LD LD LD Leontodon autumnalis Leontodon autumnalis ORDER 153 FAMILY SPECIES COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) Curculionidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Tephritidae Tephritidae Tephritidae Aphididae Lachnidae Psyllidae Apidae Apidae Glocianus moelleri (Thomson, C.G., 1868) Ophiomyia beckeri (Hendel) Ophiomyia pinguis (Fallen) Ophiomyia pulicaria (Meigen) Cystiphora leontodontis (Bremi, 1847) Ensina sonchi (Linnaeus, 1767) Paroxyna producta (Loew, 1844) Tephritis leontodontis (De Geer) Aulacorthum palustre (Hille Ris Lambers) Neotrama caudata (Del Guercio) Craspedolepta flavipennis (Forster) Hoplosmia spinulosa (Kirby) Macropis europaea (Warncke) PLANT PARTS Leaf miner Leaf miner Leaf miner Capitula Capitula Capitula, Inflorescence Root Flower Flower SPECIFICITY STATUS Jan OT OT OT OT OG OF OT OG OT OT OF Oligolectic Oligolectic RDB K Feb Mar Apr May Jun Jul Aug Sep A A A A A A AOL AOL AOL AOL Oct Nov Dec N RDB 3 AD AD AD AD AD AD AOL AOL LPA AD AD AD LD LD LD LD LD LD LD LD LD LD PAO LP AO AO AOL AOL AOL LD LD LD LD LD LD LD Leontodon hispidus Leontodon hispidus ORDER 154 FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Apionidae Apionidae Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Psilidae Psilidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Lygaeidae Tingidae Tingidae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Psyllidae Psyllidae Triozidae Apidae Apidae Bucculatricidae Coleophoridae Coleophoridae Pterophoridae Pyralidae Tortricidae Tortricidae Tortricidae Tortricidae Tortricidae Diplapion confluens (Kirby, 1808) Diplapion stolidum (Germar, 1817) Cryptocephalus bilineatus (L.) Longitarsus succineus (Foudras, 1860) Mantura chrysanthemi (Koch, 1803) Microplontus campestris (Gyllenhal, 1837) Microplontus triangulum (Boheman, 1845) Liriomyza tanaceti de Meijere Melanagromyza eupatorii Spencer Phytomyza leucanthemi Hering Phytomyza matricariae Hendel Phytomyza syngenesiae (Hardy) Clinorrhyncha leucanthemi Kieff. Clinorrhyncha millefolii Rubsaamen Contarinia chrysanthemi Kieff. Dasyneura chrysanthemi Heath, 1962 Dasyneura spp. Diarthronomyia chrysanthemi Ahlberg Rhopalomyia hypogaea F.L.W. Psila bicolor Meigen, 1826 Psila limbatella (Zetterstedt) Acanthiophilus helianthi (Rossi, 1794) Dioxyna bidentis (Robineau-Desvoidy) Oxyna nebulosa (Wiedemann) Tephritis neesii (Meigen, 1830) Trypeta zoe Meigen Urophora quadrifasciata (Meigen, 1826) Trapazonotus ullrichi (Fieber) Catoplatus fabricii (Stal) Derephysia foliacea (Fallen) Hyperomyzus lactucae (L) Macrosiphoniella oblonga (Mordvilko) Macrosiphoniella sanborni (Gillette) Macrosiphoniella tanacetaria (Kaltenbach) Macrosiphoniella trimaculata H.R.L. Pleotrichophorus glandulosus (Kaltenbach) Toxopterina vandergooti (Borner) Uroleucon tanaceti (L) Craspedolepta flavipennis (Forster) Craspedolepta sonchi (Forster) Trioza abdominalis (Flor) Colletes daviesanus Smith Colletes similis Schenck Bucculatrix nigricomella () Coleophora gardesanella Toll Coleophora trochilella (Dup.) Leioptilus lienigianus (Zell.) Homoeosoma nebulella (D.&S.) Aethes margaritana (Haw.) Dichrorampha aeratana (Pierce & Metcalfe) Dichrorampha alpinana (Treitschke) Dichrorampha consortana (Stephens) Dichrorampha plumbana (Scop.) Root collars, Stem Root, Root-stock, Stem Leaves OT OT O2 OF O3 M OT OF OF M OT OF OT M M OG OF2 M M M OG OF OF2 OF OG OF OF M M O OF OF OF OF M OF OT OF OF OF O Oligolectic Oligolectic M OT OT OT OF2 OT M M M OT Flower Leaf miner Stem borer Leaf miner Leaf miner Leaf miner Flower Flower Flower Stem galls, Leaf galls Flower Capitula Capitula Root Capitula, Inflorescence Leaves Capitula Flower Flower Leaves Flower, Seed Flower, Seed Root Root Stem Root, Rootstock STATUS Jan Nb Nb AD AD Feb Mar Apr AD AD AD A A AD A A L (?) Na Nb Nb Nb N A Jun Jul Aug Sep Oct Nov Dec L L AL AL A AL (?) APL A A AL AL A A A AD AD AD AD AD L (?) A A A L L A AL (?) AL A A A APL A A AP A A AD AOL AD AOL AOL AD AD AD AD AD AOLP AD AD AD AD LD LD AD LD LD AD LD LD AD LPA LD AD AOL AOLP AOL LPA AOL A AOL AOL AOL L AOLP AOL LPA LD L AD LD LD AD LD LD AD LD LD LD LD L LD LD LD LD L LD LD LD LD L LD LD LD LD L L LD AOL AOL L L LD LD LD LD L OL L LD LD LD LD LD LD L L LD LD L L AOL AO OL L AO L LD L L L LD LD L L LD LD L L L L L LD LD LP L L LP AOL AOL L A PA PA PA AO A PA A AOL AOL PA A A LD LD L L LD LD PA L L L LD P PA L LP PA L L L L L RDB 3 Nb N May LPA LPA AO LP LP LP PA P A LPA PA A Leucanthemum vulgare 155 Leucanthemum vulgare ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY STATUS Jan COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Symphyta) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Agromyzidae Cecidomyiidae Cicadellidae Aphididae Aphididae Aphididae Aphididae Tenthredinidae Coleophoridae Geometridae Geometridae Gracillariidae Nymphalidae Pyralidae Pyralidae Scythrididae Tortricidae Thripidae Apteropeda splendida Allard, 1859 Chrysolina crassicornis (Helliesin, 1911) Chrysolina haemoptera (Linnaeus, 1758) Longitarsus aeruginosus (Foudras, 1860) Longitarsus kutscherae (Rye, 1872) Longitarsus pratensis (Panzer, 1794) Longitarsus reichei (Allard, 1860) Mniophila muscorum (Koch, 1803) Alophus triguttatus (Fabricius, 1775) Cathormiocerus britannicus Blair Cathormiocerus maritimus Rye. Cathormiocerus socius Boh. Hypera plantaginis (Degeer, 1775) Mecinus circulatus (Marsham, 1802) Mecinus collaris Germar, 1821 Mecinus labilis (Herbst, 1795) Mecinus pascuorum (Gyllenhal, 1813) Mecinus pyraster (Herbst, 1795) Trachyphloeus alternans Gyllenhal, 1834 Trachyphloeus aristatus (Gyllenhal, 1827) Trachyphloeus laticollis Boheman, 1843 Trachyphloeus spinimanus Germar, 1824 Trichosirocalus dawsoni (Brisout, Ch., 1869) Trichosirocalus rufulus (Dufour, 1851) Trichosirocalus troglodytes (Fabricius, 1787) Phytomyza plantaginis Robineau-Desvoidy Jaapiella schmidti (Rübsaamen, 1912) Utecha trivia (Germar) Aphis plantaginis (Goeze) Brachycaudus lucifugus (Muller) Dysaphis aucupariae (Buckton) Dysaphis plantaginea (Passerini) Tenthredo obsoleta (Klug) Coleophora argentula (Steph.) Idaea sylvestraria (Hubner) Scopula immorata (L.) Aspilapteryx tringipennella (Zell.) Melitaea cinxia (L.) Homoeosoma sinuella (Fabricius) Pyrausta cespitalis (D.&S.) Scythris siccella (Zell.) Falseuncaria degreyana (McLach.) Thrips nigropilosus Uzel Leaf miner O O O O3 O O OG O O O2 OG OG O OG2 OG OG OG2 OG O O O M OG OG OG OG M M OG M O O M O3 O O M OG OG OG O O2 O RDB 1 RDB 2 Nb RDB 1 Root Root Leaves Root Leaf miner Root Root collars, Stem Root collars, Stem Seed-pods, fruits Root, Stem, Flower galls? Root Root Root Root Stem Leaf miner Root collar, Basal rosette Root, Lower stem, Leaves Withering flowers Leaves Root Flower, Seed Feb Mar A AO A Nb Nb RDB 1 RDB 3 RDB 2 Nb Nb A A A A A A A A A A A Nb Nb Na Nb Nb Na A A RDB 3 RDB 1 RDB 2 May Jun LA A LA A LA L AL AOL A L (?) A A A A A A A A A A A A A A AL (?) L(?) A Nb RDB 1 + A A A Apr LD L L LD LD L LD LD L L LD LD L LD LD L L L LD LD LD L L LP L LD P P LD A LD A LD A LD A Jul A A LA AOL AL A A A AOL AL L (?) AL (?) AL (?) A AL (?) L A A A A A A A A A A A A A A A A A LA LA L A A A A A A A A A A A A A L (?) L (?) L (?) A A A A (?) A (?) A LD LP LP PAO LP P A L LD PA A LP PA PA OL AOL PA AOL P AOL A A A A LP AOL PA PA A PA A Aug Sep Oct Nov Dec A A A A A A A A A A A A A A A A A A AP A A A A A A A A A A A A A A A A A A A A A A A A A A A A AO L PA L AL AL L L L O LD L L L L L L LD L LD L L LD LD L LD LD L L LD LD L LD AOL A L A LD LD LD A LA A A A A AL A A AP A A A A A A A A A A Plantago lanceolata 156 Plantago lanceolata ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Attelabidae Chrysomelidae Agromyzidae Agromyzidae Pentatomidae Aphididae Apidae Apidae Apidae Geometridae Hesperiidae Nepticulidae Neccoenorrhinus germanicus (Herbst, 1797) Batophila aerata (Marsham, 1802) Agromyza spiraeae Kaltenbach Agromyza sulfuriceps Strobl Sciocoris cursitans (Fabr.) Amphophora rubi (Kaltenbach) Andrena tarsata Nylander Chelostoma campanularum (Kirby) Heriades truncorum (Linnaeus) Aspitates gilvaria gilvaria (D. & S.) Pyrgus malvae (L.) Stigmella aeneofasciella (H.-S.) Stem Root Leaf miner Leaf miner OF OF OF OF O OF Oligolectic Oligolectic Oligolectic O OF OF Flower Flower Flower Leaves STATUS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Nb L L L LA AO L L L L L L L N A A A A AO AO A A A A A LD PD LD L P P LD PD LD L P P LD PD LD L P P LD PD LD L P P LD PD LD L A PAO LD AOL LP LP A OL AOL PD AOL AO L PAO AOL PD LD L LP OL LD PD LD L P L LD PD LD L P P LD PD LD L P P RDB 3 LPA AOLP AO A OL LP Potentilla reptans Potentilla reptans ORDER 157 FAMILY SPECIES PLANT PARTS SPECIFICITY DIPTERA HEMIPTERA (Sternorrhyncha) LEPIDOPTERA LEPIDOPTERA Agromyzidae Pemphigidae Nemeobiidae Tortricidae Phytomyza primulae Robineau-Desvoidy Thecabius auriculae (Murray) Hamearis lucina (L.) Falseuncaria ruficiliana (Haworth) Leaf miner OG OG OG2 O3 Seed STATUS Jan P LD Feb Mar Apr May Jun Jul Aug P LD P LD P LDP A AOL L LP PAOL AOLP PAOL AOL Sep Oct Nov Dec P LD P LD P LD P LD Primula veris Primula veris ORDER 158 FAMILY SPECIES PLANT PARTS SPECIFICITY STATUS Jan COLEOPTERA COLEOPTERA DIPTERA HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA Apionidae Nitidulidae Cecidomyiidae Aphididae Apidae Coleophoridae Nepticulidae Squamapion cineraceum (Wencker, 1864) Meligethes umbrosus Sturm, 1845 Macrolabis brunellae Tavares, 1907 Aphis brunellae (Schouteden) Anthophora furcata (Panzer) Coleophora albitarsella Zell. Fedalmia headleyella (Stt.) Root stocks? Pollen M OG M M Oligolectic OF M Na N Stem, Flowering bracts Flower Stem, Leaves, Petiole LD LD P Feb LD LD P Mar LD L P Apr May Jun Jul Aug Sep Oct A A A A A A A A A A A A LD L PA LPAO AOLP AOLP AOLP AOL LP PA A LA PA A AOL AOL AOL LD LD LP Nov Dec LD LD P LD LD P Prunella vulgaris Prunella vulgaris ORDER 159 FAMILY SPECIES PLANT PARTS SPECIFICITY STATUS Jan COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) LEPIDOPTERA Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Nitidulidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Aphididae Lachnidae Pemphigidae Apidae Apidae Apidae Apidae Apidae Apidae Apidae Tenthredinidae Tenthredinidae Tenthredinidae Geometridae Cryptocephalus aureolus Suffrian, 1847 Hydrothassa hannoveriana (F., 1775) Hydrothassa marginella (Linnaeus, 1758) Bagous tempestivus (Herbst, 1795) Leiosoma deflexum (Panz.) Leiosoma oblongulum Boh. Leiosoma troglodytes Meligethes viridescens (F., 1787) Napomyza evanescens Napomyza nigritula Ophiomyia ranunculicaulis Hering Phytomyza albipennis Fallen Phytomyza cineracea Hendel Phytomyza evanescens Hendel Phytomyza fallaciosa Brischke Phytomyza notata Meigen Phytomyza ranunculi (Schrank) Phytomyza ranunculivora Hering Phytomyza rydeni Hering Dasyneura ranunculi (Bremi, 1847) Dasyneura traili (Kieffer, 1909) Geodiplosis ranunculi Kieffer, 1909 Dysaphis ranunculi (Kaltenbach) Protrama ranunculi (Del Guercio) Thecabius affinis (Kalt.) Andrena labialis (Kirby) Andrena nitida (Muller) Chelostoma campanularum (Kirby) Chelostoma florisomne (Linnaeus) Hoplosmia spinulosa (Kirby) Osmia leaiana (Kirby) Osmia xanthomelana (Kirby) Athalia bicolor (Lepeletier) Monophadnus pallescens (Gmelin) Pseudodineura fuscula (Klug) Horisme vitalbata (D. & S.) Leaves O OF OG OG OF OF OG O M OG2 M OG OG OG OG OG OG OG M OG OG OG2 O OF O Oligolectic Oligolectic Oligolectic Oligolectic Oligolectic Oligolectic Oligolectic OG? OG2 OG OF Nb RDB 3 Stem Root, Rhizome Pollen Stem Stem Stem miner Stem borer Stem borer Stem borer Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Root, Runner Flower Flower Flower Flower Flower Flower Flower Leaves Feb Mar A A A Nb RDB 2 Apr May Jun Jul A A A A A A A A A A A A A A A A A A Aug Sep Oct Nov L (?) L (?) A A A A A A A PA AD AOLP PD AO AOLP AOLP AD AD PD PD AOL AOLP AD AD AD PD PD AOL LP AD AD AD PD PD LD PAD AD AD AD PD PD LD AD AD L L L Dec A A A RDB 1 AD AD PD PD LD AD AD AD AD PD PD LD AD AD AD AD PD PD LD AD AD AD AOL PD PD LD AD AD AO AOLP PD AOL LD A AOL AOLP AOLP AOL AOLP PAO AO AOLP AD AD PD PD LD AD AD Ranunculus acris 160 Ranunculus acris ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY STATUS Jan COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) LEPIDOPTERA THYSANOPTERA Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Nitidulidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Aphididae Aphididae Aphididae Lachnidae Pemphigidae Apidae Apidae Apidae Apidae Apidae Apidae Apidae Tenthredinidae Tenthredinidae Tenthredinidae Geometridae Thripidae Cryptocephalus aureolus Suffrian, 1847 Hydrothassa hannoveriana (F., 1775) Hydrothassa marginella (Linnaeus, 1758) Bagous tempestivus (Herbst, 1795) Barynotus obscurus (F., 1775) Leiosoma deflexum (Panz.) Leiosoma oblongulum Boh. Leiosoma troglodytes Meligethes viridescens (F., 1787) Napomyza nigritula Phytomyza albipennis Fallen Phytomyza cineracea Hendel Phytomyza evanescens Hendel Phytomyza fallaciosa Brischke Phytomyza notata Meigen Phytomyza ranunculi (Schrank) Phytomyza ranunculi var. flava Fallen Phytomyza ranunculivora Hering Dasyneura ranunculi (Bremi, 1847) Dasyneura traili (Kieffer, 1909) Geodiplosis ranunculi Kieffer, 1909 Dysaphis crataegi (Kaltenbach) Dysaphis ranunculi (Kaltenbach) Tubaphis ranunculina (Walker) Protrama ranunculi (Del Guercio) Thecabius affinis (Kalt.) Andrena labialis (Kirby) Chelostoma campanularum (Kirby) Chelostoma florisomne (Linnaeus) Hoplosmia spinulosa (Kirby) Macropis europaea (Warncke) Osmia leaiana (Kirby) Osmia xanthomelana (Kirby) Athalia bicolor (Lepeletier) Monophadnus pallescens (Gmelin) Pseudodineura fuscula (Klug) Horisme vitalbata (D. & S.) Thrips discolor Haliday Leaves O OF OG OG M OF OF OG O OG2 OG OG OG OG OG OG M OG OG OG OG2 M O OF OF O Oligolectic Oligolectic Oligolectic Oligolectic Oligolectic Oligolectic Oligolectic OG? OG2 OG OF M Nb RDB 3 Stem Root, Rhizome Pollen Stem Stem borer Stem borer Stem borer Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Root, Runner Flower Flower Flower Flower Flower Flower Flower Leaves Leaves Feb Nb RDB 2 Mar Apr May Jun Jul A A A A A A A A A A A A A A A A A A A A A Aug Sep Oct Nov L (?) L (?) A A A A A A A A Dec A RDB 3 RDB 1 AD PD PD LD LD AD AD AD PD PD LD LD AD AD AD PD PD LD LD AD AD AD PD PD LD LD AD AD AO PD AOL LD LD A AOL AOLP AOL AOLP PAO LP AO AOLP PA AOLP PD AO AO AOLP AOLP AD PD PD AOL AOL AOLP AD AD PD PD AOL LD LP AD AD PD PD LD LD PAD AD AD PD PD LD LD AD AD AD PD PD LD LD AD AD A A A A A A L A L LA L LA A A A Ranunculus repens 161 Ranunculus repens ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY DIPTERA HEMIPTERA (Sternorrhyncha) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Agromyzidae Aphididae Geometridae Geometridae Geometridae Pyralidae Phytomyza varipes Macquart Hyperomyzus rhinanthi (Schouteden) Eupithecia plumbeolata (Haworth) Perizoma albulata (D. & S.) Perizoma albulata albulata (D. & S.) Opsibotys fuscalis (D.&S.) Seed heads OG O OF2 M M O Ripening seeds Seed Flower, Seed STATUS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec P P LD P P LD P P LD A P PA P A L A A L L AOL L L L L L P P LD P P LD P P LD P P LD Nb P P LD Rhinanthus minor Rhinanthus minor ORDER 162 FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Anthomyidae Cecidomyiidae Cecidomyiidae Cecidomyiidae Scathophagidae Delphacidae Aphalaridae Aphalaridae Aphalaridae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Tenthredinidae Tenthredinidae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Lycaenidae Lycaenidae Nepticulidae Nepticulidae Noctuidae Scythrididae Sesiidae Sphingidae Zygaenidae Apion cruentatum Walton, 1844 Apion frumentarium (Linnaeus, 1758) Perapion affine (Kirby) Perapion curtirostre (Germar, 1817) Perapion marchicum (Herbst, 1797) Perapion violaceum (Kirby, 1808) Galerucella lineola (F., 1781) Gastrophysa viridula (Degeer, 1775) Mantura chrysanthemi (Koch, 1803) Mantura obtusata (Gyllenhal, 1813) Mantura rustica (Linnaeus, 1767) Hypera rumicis (Linnaeus, 1758) Neophytobius quadrinodosus (Gyllenhal, 1813) Rhinoncus castor (F., 1792) Rhinoncus pericarpius (Linnaeus, 1758) Trachyphloeus asperatus Boheman, 1843 Trachyphloeus laticollis Boheman, 1843 Pegomya haemorrhoa (Zetterstedt) Contarinia acetosellae (Rübsaamen, 1891) Contarinia rumicis (Loew, 1850) Jaapiella rubicundula (Rübsaamen, 1891) Norellisoma spinimanum (Fallén, 1819) Criomorphus williamsi (China) Aphalara exilis (Weber & Mohr) Aphalara polygoni (Forster) Aphalara polygoni var rumicicola (Loginova) Aphis acetosae (L) Aphis acetosae L. (R. acel form) Aphis rumicis (L) Dysaphis plantaginea (Passerini) Rhopalosiphoninus staphyleae (Koch) Thuleaphis sedi (Jacob) Ametastegia tener (Fallen) Pachynematus rumicis (Linne) Idaea degeneraria (Hubner) Idaea humiliata (Hufn.) Rhodometra sacraria (L) Scopula floslactata (Haworth) Scopula floslactata floslactata (Haworth) Scopula immorata (L.) Selidosema brunnearia scandinaviaria Stdgr Siona lineata (Scopoli) Timandra griseata (Petersen ) Lycaena phlaeas eleus (Fabr) Lycaena phlaeas L. Enteucha acetosaa (Stt.) Johanssonia acetosae (Stainton) Mythimna comma (Hubn) Scythris potentillella (Zell) Bembecia chrysidiformis (Esper) Hyles lineata (Fabr.) Adscita statices (L.) Root, Stem Root, Rootstock, Stem Flower galls Stem Roots, Rootstock, Galls, Root collar Stem Leaves Leaves Leaf miner Leaf miner Leaf miner Leaves OG OG OG2 OG OG2 OG O OG O3 OG OG OF OF OG OF O O OG OG2 OG OG OG OF OG OF OG OG M OG O OG OG OG OG O O OF O O O O O OG OG2 OG OG2 OG2 OF OG2 OG O OG2 Root Root, Stem Root Root Leaf miner Stem, Leaf rolls, Flower Leaves Leaves Root, Crowns STATUS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec AD AD AD AD AD AD AD AD AD AD AD AD AD A AD A AD A AL AD A AD A AL AO AL L AL AD A AL AL AL AL AL AL AL AL AL AL A A A A A A A A AD AD AD AD AD AD AD AD AD AD AD AD A A A A A A A Na A A AL (?) L (?) L APL LPA LPA APL (?) A AL APL LPA LPA APL (?) AL (?) AP PA AP A L (?) A A A AL AL AL AL AL AL LA AL AL LA AL AP A AL AL AL AL AL AL Na Nb Nb L L AL AL AL L O L A A A A AL (?) AL (?) A A A A A L A A A A A A A A Nb Na A A L A A L A A A A A A A A A L A A A A A Nb RDB 3 Extinct RDB 1 + Na RDB 1 ! N RDB 2 RDB 1 LD L LD L L L L L LP L A PA P A AO AO L L L LA L L L LD L LD L LD L LD L L LD L LD LD L L LD L LD LD L L LD L LD L LP L L L L LP PA LP L LPA A PAO A AOL L P L L A PA AO PA LP AO A LP A LP L A PA A AOL PAO L A PA L A PAO A PAO L AO A A L AOL L L AO L A AOL A OL L L L L L L LA LP A L L L LD L L LD L AOL A LP L LD LD L L LD L LD LD L L LD L LD LP P LD LD L PA L L AOL L L LP L L P L L P L P P P PA LD LD LD L P L L P L L P L LD P L L P L Rumex acetosa 163 Rumex acetosa ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Apionidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Anthomyidae Cecidomyiidae Cecidomyiidae Scathophagidae Delphacidae Aphalaridae Aphalaridae Aphalaridae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Tenthredinidae Tenthredinidae Gelechiidae Gelechiidae Gelechiidae Gelechiidae Gelechiidae Gelechiidae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Lycaenidae Lycaenidae Nepticulidae Nepticulidae Noctuidae Opostegidae Scythrididae Sesiidae Sphingidae Zygaenidae Apion cruentatum Walton, 1844 Apion frumentarium (Linnaeus, 1758) Apion haematodes Kirby, 1808 Apion rubens Stephens, 1839 Perapion affine (Kirby) Perapion curtirostre (Germar, 1817) Perapion marchicum (Herbst, 1797) Perapion violaceum (Kirby, 1808) Galerucella lineola (F., 1781) Gastrophysa viridula (Degeer, 1775) Mantura chrysanthemi (Koch, 1803) Mantura obtusata (Gyllenhal, 1813) Mantura rustica (Linnaeus, 1767) Coniocleonus hollbergi (Fåhraeus, 1842) Hypera rumicis (Linnaeus, 1758) Neophytobius quadrinodosus (Gyllenhal, 1813) Rhinoncus castor (F., 1792) Rhinoncus pericarpius (Linnaeus, 1758) Trachyphloeus asperatus Boheman, 1843 Trachyphloeus laticollis Boheman, 1843 Pegomya haemorrhoa (Zetterstedt) Contarinia rumicis (Loew, 1850) Jaapiella rubicundula (Rübsaamen, 1891) Norellisoma spinimanum (Fallén, 1819) Criomorphus williamsi (China) Aphalara exilis (Weber & Mohr) Aphalara polygoni (Forster) Aphalara polygoni var rumicicola (Loginova) Aphis acetosae (L) Aphis acetosae L. (R. asca form) Aphis etiolata (Stroyan) Aphis rumicis (L) Dysaphis plantaginea (Passerini) Dysaphis radicola (Mordvilko) Rhopalosiphoninus staphyleae (Koch) Thuleaphis rumexicolens (Patch) Thuleaphis sedi (Jacob) Ametastegia tener (Fallen) Pachynematus rumicis (Linne) Aroga velocella (Zell.) Monochroa palustrella (Dougl) Monochroa tenebrella (Hb.) Neofriseria peliella (Treit) Neofriseria singula (Stdgr) Teleiopsis diffinis (Haw) Idaea degeneraria (Hubner) Idaea humiliata (Hufn.) Rhodometra sacraria (L) Scopula floslactata (Haworth) Scopula floslactata floslactata (Haworth) Scopula immorata (L.) Selidosema brunnearia scandinaviaria Stdgr Siona lineata (Scopoli) Timandra griseata (Petersen ) Lycaena phlaeas eleus (Fabr) Lycaena phlaeas L. Enteucha acetosaa (Stt.) Johanssonia acetosae (Stainton) Mythimna comma (Hubn) Opostega salaciella (Treitschke) Scythris potentillella (Zell) Bembecia chrysidiformis (Esper) Hyles lineata (Fabr.) Adscita statices (L.) Root, Stem Root, Rootstock, Stem Root, Rootstock, Leaves Stem, Petiole gall, Midrib gall Flower galls Stem Roots, Rootstock, Galls, Root collar Stem Leaves Leaves Leaf miner Leaf miner Leaf miner OG OG M? M? OG2 OG OG2 OG O OG O3 OG OG O OF OF OG OF O O OG OG OG OG OF OG OF OG OG M M OG O OF OG M OG OG OG M M M M M M O O OF O O O O O OG OG2 OG OG2 OG2 OF M OG2 OG O OG2 Leaves Root Root, Stem Root Root Leaf miner Root Stem, Leaf rolls, Flower Root, Stem Leaves Leaves Root, Crowns STATUS Na Nb Nb Extinct Na Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD A AD A AD A AD A AD A AL AD A AD A AL AO AL AL AL L AL AD A AL AL AL AL AL AL AL AL AL AL AL AL AL AL A A A A A A A A A A AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD AD A A A A A L APL LPA LPA AL APL LPA LPA AP PA AP A A A AL AL AL AL AL AL AL AL LA AL AL LA AL AL AL AL AL AL AL AL AL A A L L L L AL AL AL L OL A A A A A A A A A A AL (?) L (?) A A A Nb Na A A A AL (?) AP AL (?) A APL (?) APL (?) A A AL (?) L (?) A A A A A A L A A A A A L A A A A A A A L PA PA P P A L L L L L L L LD LD L LD LD PA P A P A A A A L AO AO L L L L LA PAL L L L AL LD L L LD L L LD L AO PA LP AO A LP A LP L A A PA A AOL PAO L A PA L A PAO A PAO L AO A A A L AOL L L AO L A AOL A OL L L L L L L LA LP A L L L LD L L LD L AOL A LP L LD LD L L LD L LD LD L L LD L LD LP P LD LD L PA L L AOL L L LP L L P L L P L L A A L A Nb Nb RDB 3 Extinct RDB 1 + Na RDB 1 ! N RDB 2 RDB 1 L LD LD L LD LD L LD LD LP LD P LD P PA P P L L PA LP L A L LD L L LD L L L L L L L LD L L LD L LD LD L L LD L LD LD L L LD L LD A LP L L L L LP P P P PA LD LD LD LD P PA LP L LPA A PAO A AOL L P L P L L P L L P L L L P L L L A PA Rumex acetosella 164 Rumex acetosella ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA THYSANOPTERA THYSANOPTERA Apionidae Apionidae Apionidae Apionidae Apionidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Anthomyidae Anthomyidae Anthomyidae Cecidomyiidae Cecidomyiidae Scathophagidae Delphacidae Aphalaridae Aphalaridae Aphalaridae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Tenthredinidae Tenthredinidae Gelechiidae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Lycaenidae Noctuidae Sesiidae Sphingidae Thripidae Thripidae Thripidae Apion cruentatum Walton, 1844 Apion frumentarium (Linnaeus, 1758) Perapion curtirostre (Germar, 1817) Perapion hydrolapathi (Marsham, 1802) Perapion violaceum (Kirby, 1808) Galerucella lineola (F., 1781) Gastrophysa polygoni (Linnaeus, 1758) Gastrophysa viridula (Degeer, 1775) Mantura obtusata (Gyllenhal, 1813) Mantura rustica (Linnaeus, 1767) Hypera rumicis (Linnaeus, 1758) Neophytobius quadrinodosus (Gyllenhal, 1813) Pelenomus quadrituberculatus (F., 1787) Rhinoncus castor (F., 1792) Rhinoncus pericarpius (Linnaeus, 1758) Trachyphloeus laticollis Boheman, 1843 Pegomya bicolor (Hoffmannsegg) Pegomya haemorrhoa (Zetterstedt) Pegomya nigritarsis (Zetterstedt, [1838]) Contarinia rumicis (Loew, 1850) Jaapiella rubicundula (Rübsaamen, 1891) Norellisoma spinimanum (Fallén, 1819) Criomorphus williamsi (China) Aphalara exilis (Weber & Mohr) Aphalara polygoni (Forster) Aphalara polygoni var rumicicola (Loginova) Aphis acetosae (L) Aphis rumicis (L) Dysaphis plantaginea (Passerini) Dysaphis radicola (Mordvilko) Rhopalosiphoninus staphyleae (Koch) Thuleaphis sedi (Jacob) Ametastegia tener (Fallen) Pachynematus rumicis (Linne) Scrobipalpa clintoni (Pov) Idaea degeneraria (Hubner) Idaea humiliata (Hufn.) Rhodometra sacraria (L) Scopula floslactata (Haworth) Scopula floslactata floslactata (Haworth) Scopula immorata (L.) Selidosema brunnearia scandinaviaria Stdgr Siona lineata (Scopoli) Timandra griseata (Petersen ) Lycaena phlaeas L. Mythimna comma (Hubn) Bembecia chrysidiformis (Esper) Hyles lineata (Fabr.) Thrips flavus Schrank Thrips major Uzel Thrips tabaci Lindeman Root, Stem Root, Rootstock, Stem Stem Stem Stem Leaves OG OG OG OG OG O OF OG OG OG OF OF OF OG OF O OG2 OG OG2 OG OG OG OF OG OF OG OG OG O OF OG OG OG OG M O O OF O O O O O OG OG OF OG O O3 OG2 O3 Leaves Leaf miner Leaf miner Leaves Root Root. Stem Root Leaf miner Leaf miner Leaf miner Stem, Leaf rolls, Flower Leaves Root, Crowns STATUS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec AD AD AD AD AD AD AD AD AD AD AD A AD A AL AD A AD A AL AO L AD A AD A AL AL AL AL AL AL AL AL AL A A A A A A AD AD AD AD AD AD AD AD AD AD A A A A A A AL (?) L (?) A A PA AP A L (?) A A A A AL LPA LPA APL (?) AL (?) A A A A A L LPA LPA APL (?) A A A A Na AL AL AL L AL LA A AL LA AL AP A AL AL AL AL AL Nb Nb L L AL L L OL A A A A AL (?) AL (?) A A A A A A A A A A A A L L A A A A A A Na A A A L A A A L Nb Nb RDB 3 Extinct P LD L P LD L P L L P L L PA LP L A A PA P A L AO AO L P L L LA P L L L P LD L P LD L P LD L RDB 1 + Na RDB 1 ! LD L L LD L LD L L LD L LD L L LD L LP L L L L LD L P LD L P LD P L P A L A PA L A A AO A L A L L AO L A A L L PA A L L L L LA A L L AOL A LD L L LD L A LD L LP LD L L LD L LD L P AO PA LP AO A A A A AOL A LD L L LD L RDB 1 PA LP L LPA A A P L A A LD L P LD L P Rumex crispus 165 Rumex crispus ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Symphyta) HYMENOPTERA (Symphyta) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA THYSANOPTERA THYSANOPTERA Apionidae Apionidae Apionidae Apionidae Apionidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Curculionidae Curculionidae Curculionidae Anthomyidae Anthomyidae Anthomyidae Cecidomyiidae Cecidomyiidae Scathophagidae Delphacidae Aphalaridae Aphalaridae Aphalaridae Aphididae Aphididae Aphididae Aphididae Aphididae Aphididae Tenthredinidae Tenthredinidae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Lycaenidae Lycaenidae Noctuidae Sesiidae Sphingidae Thripidae Thripidae Thripidae Apion cruentatum Walton, 1844 Apion frumentarium (Linnaeus, 1758) Perapion curtirostre (Germar, 1817) Perapion hydrolapathi (Marsham, 1802) Perapion violaceum (Kirby, 1808) Galerucella lineola (F., 1781) Gastrophysa polygoni (Linnaeus, 1758) Gastrophysa viridula (Degeer, 1775) Mantura rustica (Linnaeus, 1767) Hypera rumicis (Linnaeus, 1758) Neophytobius quadrinodosus (Gyllenhal, 1813) Rhinoncus castor (F., 1792) Rhinoncus pericarpius (Linnaeus, 1758) Trachyphloeus laticollis Boheman, 1843 Pegomya bicolor (Hoffmannsegg) Pegomya haemorrhoa (Zetterstedt) Pegomya nigritarsis (Zetterstedt, [1838]) Contarinia rumicis (Loew, 1850) Jaapiella rubicundula (Rübsaamen, 1891) Norellisoma spinimanum (Fallén, 1819) Criomorphus williamsi (China) Aphalara exilis (Weber & Mohr) Aphalara polygoni (Forster) Aphalara polygoni var rumicicola (Loginova) Aphis acetosae (L) Aphis rumicis (L) Dysaphis plantaginea (Passerini) Dysaphis radicola (Mordvilko) Rhopalosiphoninus staphyleae (Koch) Thuleaphis sedi (Jacob) Ametastegia tener (Fallen) Pachynematus rumicis (Linne) Idaea degeneraria (Hubner) Idaea humiliata (Hufn.) Rhodometra sacraria (L) Scopula floslactata (Haworth) Scopula floslactata floslactata (Haworth) Scopula immorata (L.) Selidosema brunnearia scandinaviaria Stdgr Siona lineata (Scopoli) Timandra griseata (Petersen ) Lycaena dispar rutilus Werneburg Lycaena phlaeas L. Mythimna comma (Hubn) Bembecia chrysidiformis (Esper) Hyles lineata (Fabr.) Thrips flavus Schrank Thrips major Uzel Thrips tabaci Lindeman Root, Stem Root, Rootstock, Stem Stem Stem Stem Leaves OG OG OG OG OG O OF OG OG OF OF OG OF O OG2 OG OG2 OG OG OG OF OG OF OG OG OG O OF OG OG OG OG O O OF O O O O O OG M OG OF OG O O3 OG2 O3 Leaves Leaf miner Leaves Root Root, Stem Root Leaf miner Leaf miner Leaf miner Stem, Leaf rolls, Flower Leaves Root, Crowns STATUS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec AD AD AD AD AD AD AD AD AD AD AD A AD A AL AD A AD A AL AO L AD A AD A AL AL AL AL AL AL AL AL AL A A A A A A AD AD AD AD AD AD AD AD AD AD A A A A A AL (?) L (?) A AL LPA AP APL (?) A AL (?) L (?) A A A L LPA APL (?) A A A Na AL AL AL L AL LA A AL AL A P A AL AL AL AL AL Nb L L AL L L OL A A A AL (?) AL (?) A A A A A A L L A A A A A A Na A A L A A A A A A L Nb RDB 3 Extinct LD L LD L L L L L LP L A PA P A AO AO L L L LA L L L LD L LD L LD L RDB 1 + Na RDB 1 ! LD L L LD L LD L L LD L LD L L LD L LP L L L L PA LP L LPA A LD L L LD L LD L L LD L LD L P LD L P LD P L P A A P L A A L L AO L A A A L L PA A LD L L LD L LD L P L A PA L A A A AO A L A L L L L LA RDB 1 AO PA LP AO A P A A A AOL A A L L AOL A A LD L LP LD L P LD L P Rumex obtusifolius 166 Rumex obtusifolius ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA DIPTERA DIPTERA HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA Attelabidae Agromyzidae Agromyzidae Aphididae Aphididae Nepticulidae Nepticulidae Nepticulidae Neccoenorrhinus germanicus (Herbst, 1797) Agromyza spiraeae Kaltenbach Agromyza sulfuriceps Strobl Aphis sanguisorbae Schr. Cerosipha poterii (Borner) Stigmella poterii (Stt.) Stigmella poterii serella (Stt.) Stigmella poterii tengstoemi (Nolck) Stem Leaf miner Leaf miner Base OF OF OF OG M OF OF3 OF3 STATUS Jan P P P Feb Mar Apr May Jun Jul Aug P P P P P P PA P P AO P P L PAO PA LP PAO OLPA PAO AO L Sep Oct Nov Dec OL OL P LP LP P P P P P P P Sanguisorba minor Sanguisorba minor ORDER 167 FAMILY SPECIES PLANT PARTS SPECIFICITY STATUS Jan COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA THYSANOPTERA THYSANOPTERA THYSANOPTERA THYSANOPTERA Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Anthomyidae Cecidomyiidae Cecidomyiidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tephritidae Tingidae Aphididae Apidae Apidae Apidae Apidae Apidae Apidae Apidae Apidae Geometridae Pterophoridae Pterophoridae Pyralidae Pyralidae Pyralidae Pyralidae Pyralidae Tortricidae Tortricidae Tortricidae Tortricidae Phlaeothripidae Phlaeothripidae Thripidae Thripidae Thripidae Longitarsus dorsalis (F., 1781) Longitarsus flavicornis (Stephens, 1831) Longitarsus ganglbaueri Heikertinger, 1911 Longitarsus gracilis Kutsch. Longitarsus jacobaeae (Waterhouse, 1858) Longitarsus succineus (Foudras, 1860) Longitarsus suturellus (Duftschmid, 1825) Orthochaetes setiger (Beck, 1817) Liriomyza erucifolii de Meijere Liriomyza strigata (Meigen) Melanagromyza dettmeri Hering Melanagromyza eupatorii Spencer Melanagromyza oligophaga Napomyza lateralis (Fallen) Ophiomyia senecionina Hering Phytomyza alpina Groschke Phytomyza syngenesiae (Hardy) Pegomya depressiventris (Zetterstedt, 1845) Contarinia aequalis Kieffer, 1898 Contarinia jacobaeae (Loew, 1850) Acidia cognata (Wieidemann) Ensina sonchi (Linnaeus, 1767) Icterica westermanni (Meigen) Noeeta pupillata (Robineau-Desvoidy) Paroxyna lhommei Hering, 1936 Sphenella marginata (Fallén, 1814) Tephritis praecox (Loew) Trupanea stellata (Fuessly, 1775) Trypeta artemisiae (Fabriciua) Trypeta zoe Meigen Oncochila simplex (H.-S.) Aphis jacobaeae (Schrank) Andrena nitidiuscula Schenck Andrena tridentata (Kirby) Colletes daviesanus Smith Colletes fodiens (Geoffroy in Fourcroy) Colletes halophilus Verhoeff Colletes similis Schenck Dasypoda hirtipes (Fabricius) Melitta leporina (Panzer) Eupithecia virgaureata Doubl. Leioptilus chrysocomae (Rag) Leioptilus osteodactylus (Zell) Homoeosoma nebulella (D.&S.) Homoeosoma nimbella (Dup.) Perinephela lancealis (D.&S.) Phycitodes maritima (Tengstrom) Udea uliginosalis (Stephens) Cochylis atricapitana (Steph.) Commophila aeneana (Hb.) Epiblema costipunctana (Haw.) Eucosma campoliliana (D. & S.) Haplothrips senecionis Bagnall Haplothrips setiger Priesner Thrips flavus Schrank Thrips pillichi Priesner Thrips tabaci Lindeman Root Root Root OG OG OG OG OG OF OG O OG2 OF OF OF OF3 OF OG2 M OF OF OG OG OF OF OG OF2 OF OG OF OF OF OF M OF Oligolectic Oligolectic Oligolectic Oligolectic Oligolectic Oligolectic Oligolectic Oligolectic OF2 OF OF OF2 OF O OF2 OG M M M M OG2 OF O3 OF O3 Na Root Root Leaf miner Leaf miner Stem borer Stem borer Stem Leaf miner Stem miner Leaf miner Leaf miner Leaf miner Shoot Leaves Capitula Capitula Capitula Capitula? Capitula, gall, Inflorescence Capitula Capitula Leaves Leaves, Leaf miner Base of plant, Stem base, Flower Flower Flower Flower Flower Flower Flower Flower Flower Flower Flower, Seed Flower Leaves, Flower, Seed Flower Root, Stem, Flower Root Root, Stem Stem, Seed Flower Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec OL OL A L AL L A A L OL A OL A A OL A A L AOL A AL (?) AOL A A A A A OL A A OL A L AL A L (?) AL AL (?) A L L (?) A OL A OL AL AL A L (?) AL AL (?) AL L (?) A OL A OL AL A A L (?) A L (?) AO A A A A A AOL LP PD PD Na Nb N L L (?) A A OL PD PD PD PD PAO PD PD PD LD PD LD PD LD PD LD AOL LD LP PAOL AOL L LD AOLP AOLP AOLP AOLP AOLP PD A PAOL AOL AOL LD PD LD PD PD LD PD LD PD LD PD LPA P AOL AOLP AOL AOL AOL AOL L L AOL PD LD PD LD PD LD PD LD LD LD LD LD LD LD LD LD P LD LD LD LD LD LD LD LD LD LD LD LD LD LD P LD LD LD LD LD LD LD LD LD LD LD LD LD LD P LD LD LD LD LD LD LD LD LD LD LD LD LD LD P LD LD LD LD LD LD P LD P LD LD LD LD LD LD LD A P P LD P LD P PA LD LD LD LD LD LD LD LD P LD LD LD LD LD LD LD LD LD LD LD LD LD LD P LD LD LD LD LD LD LD LD LD LD LD P LD LD P LD A PA A LP LA AOLP AOL AOL AOL AOL AOL AOL OL AO O O AOL AO AL L A AO O A AOL LA LD LD L L L L LD L L L L LD L LD L LD LD LD LD AOLP LPA AOL AOL LDP AOL AO AO P A A PA A A PA PA OLPA AO LPA A LA AOLP L AOL AOL AOL AOL LD L L L L OL L L L LD LD LD LD AO LD LPA LPA LD LPA LP LPA AO P P PA A PA LP LP AO AO AOL PA LA OL L L L LA LD L L LD LA LD LD L LD LD LD LD LD A A A A A A A A A A A RDB 1 RDB 1 N RDB 1 Na Nb Nb Nb RDB K Nb N Senecio jacobaea 168 Senecio jacobaea ORDER FAMILY SPECIES COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA THYSANOPTERA Curculionidae Curculionidae Curculionidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Tephritidae Tephritidae Tephritidae Aphididae Aphididae Aphididae Lachnidae Lachnidae Lachnidae Pemphigidae Pemphigidae Apidae Apidae Apidae Apidae Apidae Apidae Apidae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Geometridae Oecophoridae Tortricidae Tortricidae Thripidae Thripidae Alophus triguttatus (Fabricius, 1775) Glocanus pilosellus (Gyllenhal, 1837) Glocianus punctiger (Gyllenhal, 1837) Liriomyza strigata (Meigen) Liriomyza taraxaci Hering Ophiomyia beckeri (Hendel) Ophiomyia cunctata (Hendel) Ophiomyia pulicaria (Meigen) Phytomyza farfarella Hendel Phytomyza marginella Fallen Phytomyza syngenesiae (Hardy) Phytomyza taraxacocecis Hering Cystiphora taraxaci (Kieffer, 1888) Ensina sonchi (Linnaeus, 1767) Paroxyna producta (Loew, 1844) Trypeta immaculata Macquart Aphis taraxacicola (Borner) Aulacorthum palustre (Hille Ris Lambers) Uroleucon taraxaci (Kaltenbach) Neotrama caudata (Del Guercio) Protrama radicis (Kalt.) Trama rara (Mordvilko) Paracletus cimiciformis (von Heyden) Pemphigus borealis (Tullgren) Andrena lapponica Zetterstedt Andrena nitida (Muller) Andrena rosae Panzer Andrena ruficrus Nylander Andrena wilkella (Kirby) Chelostoma campanularum (Kirby) Chelostoma florisomne (Linnaeus) Idaea degeneraria (Hubner) Idaea fuscovenosa (Goeze) Idaea humiliata (Hufn.) Idaea straminata (Borkh) Idaea sylvestraria (Hubner) Scopula emutaria (Hubner) Scopula floslactata (Haworth) Scopula floslactata floslactata (Haworth) Scopula immorata (L.) Scopula nigropunctata (Hufnagel) Scopula rubiginata (Hufnagel) Depressaria badiella (Hb.) Celypha rosaceana (Schlag) Celypha striana (D. & S.) Thrips hukkineni Priesner Thrips physapus Linnaeus PLANT PARTS Capitula Flower, Capitula Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaf miner Leaves Capitula Capitula Leaves Root collar Root Root Flower Flower Flower Flower Flower Flower Flower Root Root Flower Flower SPECIFICITY STATUS Jan O OG OG OF OT OT OT OT OT OT OF M OG OF OT OT M OT OF OT OF OF OF + OF Oligolectic Oligolectic Oligolectic Oligolectic Oligolectic Oligolectic Oligolectic O M O O O O O O O O2 O OT OT OG OF O Nb RDB 2 Nb Feb Mar Apr May Jun A A A L A A LA LA A Jul Aug Sep Oct A A A A A A AOL AOL AOL AOL A Nov Dec A A N PD PD PD PD AOL AOL L L PD PD PD PD Nb Nb AD AD LD AD AD PD PD LD L L L L LD AD AD LD AD AD PD PD LD L L L L LD AD AD LD AOL AD PD PD L L L L L LD AOL AOL LD AOLP AD PD PD L L L L L L AOLP AOLP LDP AOLP AO PD AOL LP LP L L LP LP AOLP AOLP AO AD AOLP AOL AOLP PA PA P P PA PA AD AD AOL AD PA AOLP PD AO AO AO AO A A AD AD AOL AD AD PD PD L L L L AO L AD AD DL AD AD PD PD L L L L L L AD AD D AD AD PD PD LD L L L L L AD AD LD AD AD PD PD LD L L L L LD AD AD LD AD AD PD PD LD L L L L LD RDB 1 + RDB 2 RDB 3 LD L LD LD LD L LD LD LD L LD LD LP L L L LD L LD LD L A L L AL LPA PA A AO A A LD L LD LD L L A A AOL LPA A AO A A LD L LD LD A L AO PA P PA LP LPA PA A A L L L AL A L PA LP L LP L L LP A A AOL A A L L L RDB 3 Extinct Taraxacum officinale 169 Taraxacum officinale ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Heteroptera) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) HEMIPTERA (Sternorrhyncha) LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA LEPIDOPTERA THYSANOPTERA Apionidae Chrysomelidae Curculionidae Curculionidae Curculionidae Kateretidae Kateretidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Agromyzidae Cecidomyiidae Cecidomyiidae Cicadellidae Cicadellidae Cicadellidae Cicadellidae Coreidae Lygaeidae Miridae Miridae Miridae Miridae Miridae Miridae Miridae Miridae Miridae Miridae Aphididae Aphididae Aphididae Triozidae Choreutidae Incurvariidae Noctuidae Noctuidae Noctuidae Noctuidae Noctuidae Nymphalidae Nymphalidae Nymphalidae Nymphalidae Nymphalidae Pyralidae Thripidae Taeniapion urticarium (Herbst, 1784) Psylliodes attenuata (Koch, 1803) Nedyus quadrimaculatus (Linnaeus, 1758) Parethelcus pollinarius (Forster, 1771) Phyllobius pomaceus Gyllenhal, 1834 Brachypterus glaber (Stephens, 1835) Brachypterus urticae (F., 1792) Agromyza anthracina Meigen, 1830 Agromyza pseudoreptans Nowakowski, 1967 Agromyza reptans Fallén, 1823 Melanagromyza aenea Phytomyza flavicornis Fallén, 1823 Dasyneura dioicae Rübsaamen, 1895 Dasyneura urticae (Perris, 1840) Eupteryx cyclops (Matsumura) Eupteryx urticae (Fabr) Macropsis scutellata (Boheman) Macrosteles variatus (Fallen) Arenocoris falleni (Schilling) Heterogaster urticae (Fabr.) Calcoris major (Schilling) Calocoris alpestris (Meyer-Dur) Calocoris stysi Charogochilus gyllenhali (Fallen) Heterotoma meriopterum (Scop.) Heterotoma planicornis (Palles) Liocoris tripustulatus (Fabr) Orthonotus rufifrons (Fallen) Orthotylus ochrotrichus Fieb. Plagionathus arbustorum (Fabr) Aphis urticata Gmelin Metopolophium dirhodum (Walker) Microlophium carnosum (Buckton) Trioza urticae (L) Anthophila fabriciana (L) Adela reaumurella (L) Abrostola trigemina (Werneburg) Abrostola triplasia (L) Hypena obesalis (Treitschke) Hypena obsitalis (Hubn) Hypena proboscidalis (L) Aglais urticae (L) Araschnia levana (L) Inachis io (L) Polygonia c-album (L) Vanessa atalanta L. Pleuroptya ruralis (Scop) Thrips urticae Fabricius Stem Root Stem Root Root, Leaves? Flower, Pollen Flower, Pollen Leaf miner Leaf miner Leaf miner Stem borer Stem OG O3 OG M OG OG OG OG2 M OG2 M OG2 M OG2 M OF3 OG2 OG2 O O3 OG2 OG2 OG2 O OG2 OG2 OG2 OG2 O OG M OF M OG OF OG O2 O2 M OF2 M OG2 OG2 O2 O OF3 M OG2 Stem, Flower, Bud, Fruit Flower buds, Unripe fruit Leaves STATUS Jan Feb Mar Apr May RDB 1 A A A A A A A A LA A A A A A A A A A A A A L L P P L L P P L L P P L L A L A L A L AO A A A A L A L A L AO O A L P P RDB 3 AO LPA A P PA A L LP AOL Extinct Rare AL LO AO L LA Jun Jul Aug Sep Oct Nov Dec L L A A A A A L L L L LA A A L LA A AL A A A AL A A A A A A A A A AL L L A A A A A L L L A L L L L L L L A A AOL LA LA A A A A A A A A A A LPA PAOL AOL L LA LA L L AOL L P P AOL L P P L L P P LA AOL LPA L PA AOL AOLP A A A AOL A L A L A A A A A L A L L PAOL A A A LA L PA LP L AL L AOL LP A AO AOL L LA AOL LPA L LPA AOL AOLP A A LA LP A L A A AOLP AL LA Urtica dioica 170 Urtica dioica ORDER FAMILY SPECIES PLANT PARTS SPECIFICITY STATUS Jan COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA COLEOPTERA DIPTERA DIPTERA HEMIPTERA (Auchenorrhyncha) HEMIPTERA (Sternorrhyncha) HYMENOPTERA (Aculeata) HYMENOPTERA (Aculeata) LEPIDOPTERA LEPIDOPTERA Chrysomelidae Chrysomelidae Chrysomelidae Chrysomelidae Curculionidae Curculionidae Agromyzidae Cecidomyiidae Cicadellidae Aphididae Apidae Apidae Incurvariidae Pterophoridae Apteropeda splendida Allard, 1859 Phaedon armoraciae (Linnaeus, 1758) Phaedon cochleariae (F., 1792) Prasocuris junci (Brahm) Gymnetron melanarium (Germar, 1821) Gymnetron villosulum Gyllenhal, 1838 Phytomyza crassiseta Zetterstedt Dasyneura similis (F. Löw, 1888) Eupteryx origani (Zachvatkin) Cryptomyzus galeopsidis (Kaltenbach) Andrena lapponica Zetterstedt Andrena nitida (Muller) Adela fibulella (D. & S.) Stenoptilia pterodactyla (L.) Leaf miner Leaves Leaves O O O OG OG3 OG OG OG O2 OF Oligolectic Oligolectic OG M RDB 1 Flower Leaf miner Flower Flower Leaves, Seeds, Seed capsules Stem, Flower Feb Mar Apr L (?) A A AL (?) L (?) A A Nb Nb A AD AD L LD AD AD L LD AD AD L LD AOL AOL L L May Jun Jul Aug Sep Oct Nov Dec A A A AL (?) A A A A A A A A A A A A A A AOLP AOLP LPA LP AOLP AOLP AO PA AD AD L PA AD AD L AOL AD AD L L AD AD L LD AD AD L LD AD AD L LD Veronica chamaedrys Veronica chamaedrys ORDER 171 Appendix 4 The occurrence of different plant species in the diet of 42 farmland birds POACEAE Agrostis spp. Agrostis capillaris A. stolonifera Alopecurus pratensis Dactylis glomerata Festuca spp. Festuca ovina F. pratensis F. rubra Holcus lanatus Lolium perenne Phleum pratense Poa spp. Poa pratensis P. trivialis Anthoxanthum odoratum Cynosurus cristatus IWP IWC IP P ASTERACEAE Achillea millefolium Centaurea spp. Centaurea nigra Cirsium spp. Cirsium arvense C. palustre C. vulgare Hypochaeris spp. Hypochaeris radicata Leontodon spp. Leontodon autumnalis L. hispidus Leucanthemum vulgare Senecio spp. Senecio jacobaea Taraxacum spp. Taraxacum officinale P P P P P P P CP SP P C SCP P P P P I S P IP ISCP I P W W P CP P P P P P SP SP P P P P P P P P P BRASSICACEAE Cardamine pratensis CARYOPHYLLACEAE Cerastium spp. Cerastium fontanum IW ISWC I P P FABACEAE Lathyrus spp. Lathyrus pratensis Lotus spp. Lotus corniculatus L. pedunculatus Medicago spp. Medicago lupulina M. sativa Onobrychis spp. Onobrychis vicifolia Trifolium spp. Trifolium dubium T. pratense T. repens Vicia spp. Vicia cracca Vicia sativa IW ISW I P I ISP IP IP I I P P P P P P 172 P IWC I ISCP ISC SCP P IP P ISCP WP P P SP P P P ISCP ISWP IP P P P P P P P P Mistle Thrush Song Thrush Whitethroat Meadow Pipit Tree Pipit Skylark Woodlark Turtle Dove Collared Dove Wood Pigeon Stock Dove Black-headed Gull Curlew Snipe Golden Plover Lapwing Stone Curlew Quail Pheasant Grey Partridge Red-legged Partridge (data underlying Figure 1 and 2). Codes represent : P= present, I=important (based on criteria in Wilson and others 1999). For some species where season or value as chick food were specifically mentioned and these are indicated by W=winter, S=summer, C=chick. The majority of data are taken from Wilson and others 1999, Buxton and others 1998, Holland and others 2006. LAMIACEAE Prunella vulgaris IW ISWCIP C P P P ROSEACEAE Filipendula spp. Filipendula ulmaira Potentilla spp. Potentilla reptans Sanguisorba minor P P P P P SWC P PSC P IWP P P P P P C P P P C P ICP IP CP P P W P P P P P RUBIACEAE Galium spp. Galium palustre G. saxatile G. verum P IP SCROPHULARIACEAE Rhinanthus minor Veronica spp. Veronica chamaedrys P P P P URTICACEAE Urtica dioica P P 173 P P P C P P P Mistle Thrush Song Thrush Whitethroat Meadow Pipit Tree Pipit Skylark Woodlark P P PRIMULACEAE Primula spp. Primula veris RANUNULACEAE Ranunculus spp. Ranunculus acris R. repens Turtle Dove Collared Dove IWP P P P IW Wood Pigeon Stock Dove Black-headed Gull Curlew Snipe Golden Plover Lapwing Stone Curlew ISWCI PLANTAGINACEAE Plantago spp. Plantago lanceolata POLYGONACEAE Rumex spp. Rumex acetosa R. acetosella R. crispus R. obtusifolius Quail Pheasant Grey Partridge Red-legged Partridge Appendix 4 (continued) POACEAE Agrostis spp. Agrostis capillaris A. stolonifera Alopecurus pratensis Dactylis glomerata Festuca spp. Festuca ovina F. pratensis F. rubra Holcus lanatus Lolium perenne Phleum pratense Poa spp. Poa pratensis P. trivialis Anthoxanthum odoratum Cynosurus cristatus ASTERACEAE Achillea millefolium Centaurea spp. Centaurea nigra Cirsium spp. Cirsium arvense C. palustre C. vulgare Hypochaeris spp. Hypochaeris radicata Leontodon spp. Leontodon autumnalis L. hispidus Leucanthemum vulgare Senecio spp. Senecio jacobaea Taraxacum spp. Taraxacum officinale P P P P P SWP SWP SWP P I CP P P Corn Bunting Reed Bunting WCP SWP WP P IP I IP IP IP IP IP IWCPIP ISWCIWCPSWP P P P P P SP IP P I P P P P P P P P P P P P I P ISW P P IC WP SWP ISWP P P ISP ICP P ISP CP P P P I P P ICP IW ISWPIP P ICP ICP ISP P I P W P P WP SW ISW ISWCISWC I CARYOPHYLLACEAE Cerastium spp. Cerastium fontanum IP P ISWPIP ISWP SP ISCP ICP SP SP P P IP P P P P P P P P P P P P P P P P P P P P W P P IW P P P P P P P P P P P P P P 174 W SP BRASSICACEAE Cardamine pratensis FABACEAE Lathyrus spp. Lathyrus pratensis Lotus spp. Lotus corniculatus L. pedunculatus Medicago spp. Medicago lupulina M. sativa Onobrychis spp. Onobrychis vicifolia Trifolium spp. Trifolium dubium T. pratense T. repens Vicia spp. Vicia cracca Vicia sativa Cirl Bunting Yellowhammer P C SP P Bullfinch Goldfinch Greenfinch Linnet Brambling Chaffinch Tree Sparrow House Sparrow Starling Dunnock Jackdaw Rook Crow Magpie Great Tit Blue Tit Fieldfare Appendix 4 (continued) P P P PW IP P W W LAMIACEAE Prunella vulgaris P P POLYGONACEAE Rumex spp. Rumex acetosa R. acetosella R. crispa R. obtusifolius P PRIMULACEAE Primula spp. Primula veris P P P P P P P P P P IP P P SWP P P P P P P P P P P P P P P P P P P P P S P P P P P P ISW SW ISWPP P P ISWCISWCSWP IP CP P SWP P P P P P P SCP P SCP P W WP P P PP P PW P P P P P P P P P P SWP PWP P P P IP P P SWC WP WP IP WP P WP P I P P P P P P P P SCROPHULARIACEAE Rhinanthus minor Veronica spp. Veronica chamaedrys P URTICACEAE Urtica dioica P I 175 P P P P P P P P P P P SP P P P P P P P P I P Corn Bunting Reed Bunting Cirl Bunting Yellowhammer Bullfinch Goldfinch Greenfinch Linnet Brambling Chaffinch Tree Sparrow House Sparrow P P RANUNULACEAE Ranunculus spp. Ranunculus acris R. repens RUBIACEAE Galium spp. Galium palustre G. saxatile G. verum Starling P PLANTAGINACEAE Plantago spp. Plantago lanceolata ROSEACEAE Filipendula spp. Filipendula ulmaira Potentilla spp. Potentilla reptans Sanguisorba minor Dunnock Jackdaw Rook Crow Magpie Great Tit Blue Tit Fieldfare Appendix 4 (continued) WCP P WCP Appendix 5 Summary of agronomic and ecological information for the plant species Information is drawn from the sources listed under ‘Species profile’ unless alternative reference given (BFBI denotes Biological Flora of the British Isles series in the Journal of Ecology; BCW denotes Biology of Canadian Weeds series in Canadian Journal of Botany). Information is given in cases where the comments are supported by research findings. ‘No information’ is used for cases where no auditable information on the aspect was found for that species in the literature search; ‘no reliable information’ is used where only anecdotal comments were found in the literature. The methods employed to quantify some of the important agronomic characteristics vary considerably between studies. Data on agricultural grass species and forage legumes is often quoted with reference to values for Lolium perenne (see Section 5.1 for further details). Agrostis capillaris Grime, Hodgson & Hunt (1996), Peeters (2004) Small perennial, with short rhizomes, often stoloniferous. Mesotrophic to oligotrophic soils with low or high pH, soils with low P status. Tolerant of both hot and cold conditions. Regeneration/ Persistent seed bank. Slow to establish (Charles and others 1979). Able to resist persistence invasion and inhibits growth of other species, eg Trifolium. Competitive ability Can become dominant on poor or dry soils with extensive grazing. Reduced via competitive exclusion under high fertiliser input situations. Productivity Average to low. In low input systems can he higher yielding than Lolium perenne, especially in hills and uplands and if infrequently cut. Low rate of development of new leaves. Production reported to increase over time (Charles and others 1979). Seasonality Evergreen. Peak growth in summer, and complements early-growing grasses in a mixed species permanent pasture. Its herbage production is lower at other times of year. Flowers June to August. Utilization/feed value Widely accepted as a grazed forage by domestic and wild animals. Good live weight gain in upland habitats compared to Molinia caerulea and Nardus stricta (Common and others 1991).Can tolerate frequent cutting. Allocates proportionally more resource to regrowth than L. perenne or Poa trivialis. Less ensilable than L. perenne. Favoured by horses (O’Beirne-Ranelagh 2005). Digestibility Low, especially when infrequently cut. Other feed values Good mineral content values for N, P, K and Mg (but not Ca) (Frame 1991). Animal health Little or no reliable information available Grass Agrostis stolonifera Grime, Hodgson & Hunt (1996), Peeters (2004) Species profiles Growth form and habit Small, tufted stoloniferous perennial. Shallow root system. Environmental factors Prefers cool and wet soil conditions. Intolerant of drought conditions. Tolerates acidic soil except of very low pH. Subspecies maritima salt tolerant. Persistent seed bank. Good persistence, and increases in abundance from time of Regeneration/ establishment in sown pastures. persistence Poor competitor but can become dominant, excluding other species if conditions ideal. Competitive ability In wet soil conditions can out-produce L. perenne. Produces less biomass in freer Productivity drained and fertile (high N) systems, but can equal that of L. perenne in drained low N systems. Maintains productivity in fluctuating soil moisture conditions. Evergreen. Peak in growth in late summer / autumn. Flowers July to August. Seasonality Intake of young leaves high. Productive under frequent cutting and mixed cuttingUtilization grazing regime. Relatively unwettable leaf laminae so little reduction of intake under wet conditions (Tallowin and others 1991). Favoured by horses. Lower annual organic matter digestibility than L. perenne, but only slightly so Digestibility (approximately 3%) (Sheldrick and others 1990, Bruinenberg and others 2002). Digestibility declines rapidly at beginning of spring, but rate of decline after then is slower than for L. perenne (Haggar 1976). Comparable P, K, Ca and Mg content to L. perenne. Other feed values Little or no reliable information available Animal health Grass Species profiles Growth form and habit Environmental factors 177 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Grass Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Grass Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Alopecurus pratensis Grime, Hodgson & Hunt (1996), Peeters (2004) Tufted rhizomatous perennial. Intolerant of low pH soil conditions. Excluded from dry soils, and rarely in soils waterlogged during summer. Good growth on rich to very rich soils. Very tolerant of low temperatures and shade. No persistent seed bank. Regenerates via seeding into gaps in autumn. Intolerant of heavy trampling. Tolerates moderate grazing and cutting. Can exclude other species if not checked by early season grazing as later in season stemy growth is avoided compared to other pasture species. Very good yield in frequently cut systems, less so if cutting infrequent. Evergreen. Peak growth in spring. Flowers very early in spring, from April to June. On-set of senescence early in year. Poor intake if animals have choice of other species, even as hay. Poor liveweight gain. Often avoided by horses (O’Beirne-Ranelagh 2005). Low if cut late in season, but higher than other grasses if cut at same growth stage. Faster rate of decline in digestibility than other grasses. Good N, P, Ca, Mg content Possibly contains adverse chemicals which retard liveweight gain after switching from Alopecurus pratensis feed to other species (Rode & Pringle 1986). However, does not contain alkaloid, cyanogenic, glycoside or nitro-toxin compounds. Anthoxanthum odoratum Grime, Hodgson & Hunt (1996), Peeters (2004) Caespitose perennial, with relatively short lifespan. Limited tillering so tufts not dense. Optimum habitat dry soil, but also found in wetter conditions. Found on nutrient poor soils with low P. Will tolerate full range of soil pH but 4.5-6 is optimal. Resistant to drought and extremes of temperature. Tolerates wetness. Will disappear from the sward, if cutting regime and fertilization are high. Regeneration is mostly by seed, which persists in the seed bank. Poor competitor, often forms a component of species-rich grassland. Incompatible with competitive forage species. When cut infrequently, can achieve high yields, comparable to Lolium, and can out-yield it at low N fertilization. But on a 6 cuts per year regime, it is one of the lower yielding grasses. Evergreen. Earliest flowering common grass (April to June). Has a second flush of growth in autumn and has some growth during winter. Eaten readily by cattle. Suitable for hay production. Moderately high digestibility. Average organic matter digestibility is 75.8%, slightly lower than Lolium. No reliable information. Contains an alkaloid, coumarin, which is toxic at high levels, but no cases of livestock poisoning have been recorded. 178 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Grass Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Grass Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Cynosurus cristatus BFBI: Lodge (1959), Grime, Hodgson & Hunt (1996), Peeters (2004) Caespitose perennial, with erect stems. Limited tillering so tufts not dense. Optimum habitat normally drained soils. Tolerant of a wide range of soil fertility, apart from the very richest and poorest. Found at soil pHs above 4 and generally 5-7.5. Moderately resistant to drought and cold, although may not tolerate extreme frosts. Germination rate is high but establishment is slow. Will persist under moderately intensive grazing, but will disappear with high nutrient/high stocking regimes. Will not persist in regularly cut grassland. Individual plants are short-lived. Mortality is high if defoliated heavily in first year. Regenerates mainly by seed Poor competitor Moderate yield, lower than Lolium at high fertilizer rates, but comparable yields at low to moderate fertilizer rates. Evergreen. Flowers mainly in June, but through to August. Summer leaves shortlived. Readily accepted by livestock and horses at leafy stage. Sheep will graze it down very tightly. Seed culms are hardened to resist grazing and these often need removal by topping. Digestibility good, though lower than Lolium. Nutritive value good at leafy stage. Richer in N than Lolium at same fertilization level, and similar P, K, Ca and Mg levels. No information. Dactylis glomerata BFBI: Beddows (1959), Grime, Hodgson & Hunt (1996), Peeters (2004). Erect tufted perennial. Suited to dry to moderately dry soils, of moderate to high fertility. Grows in soils from pH 5.5 – 8 (Spurway 1941). Tolerates both hot, cold and drought conditions. Low ability to regenerate by vegetative spread via tussocks, but good sexual regeneration. Relatively poor seed bank, more so if seeds buried. Intolerant of heavy trampling (Beddows 1959). Can become dominant in cut systems, though less tolerant of heavy grazing. May be sensitive to trampling (Beddows 1955). Less compatible with Trifolium repens than L. perenne and can reduce T. repens abundance. Less competitive in first year after sowing. Becomes dominant within a sward if grazed in spring and summer, though disappears if grazed in autumn, winter and early spring before active growth initiation (Davies 1938). Very high production, though high inputs for intensive systems required though less than L. perenne here for same dry matter production. Stays productive in low input systems. Evergreen. Production good throughout growing season, with peak shoot production in late spring and summer. Flowers May to July. Accepted well while at leafy stage, but avoided if allowed to age. Conversion to hay results in lower P, Ca and K concentrations, but higher neutral detergent fibre and NO3-N. Crude protein content higher in fresh grass. Live weight gains similar to L. perenne, and potentially higher in droughted conditions. Ranges from 4 to 7% lower organic matter digestibility (OMD) than L. perenne, with the same rate or slightly greater rate of decline over time from April to midJune. Cell wall digestibility similar to L. perenne. Poor in soluble carbohydrates while high in cellulose and lignin compared with L. perenne. N content similar to other productive grasses. High Na but low Ca and Fe contents. High fructan content. No information. 179 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Grass Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Grass Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Festuca ovina Grime, Hodgson & Hunt (1996), Peeters (2004) Small tufted perennial. More abundant on oligotophic soils or at higher altitudes. Very tolerant to low temperatures and drought. Not tolerant of wet soils and shade. Very persistent unless soil moisture very low. Seed set is high and can re-establish successfully. Seemingly low ability to regenerate vegetatively. No persistent seed bank. Low competitive ability, though able to persist if conditions correct, ie water and nutrient resources scarce due to slow turnover of tissues. Generally very low, though can be productive relative to other species in dry high altitude areas. Evergreen. Peak in production early in year. Flowers May to July. Very tolerant of heavy grazing. Not useful in cutting regimes due to low stature and production. Grazed more readily by sheep than cattle, though avoided in comparison to other pasture species. Tolerant of moderate trampling. Intolerant to burning. Very low animal production, though allows sheep production in otherwise unfavourable conditions on hills. Very low in comparison to productive species (Davies & Riley 1992). Little or no reliable information available No information. Festuca pratensis Grime, Hodgson & Hunt (1996), Peeters (2004), Tufted erect perennial. Tolerant of wet winter soils, and somewhat tolerant of summer drought. Absent only from very nutrient poor and pH <5 soils. Resistant to hot and cold conditions and temporary droughted soils. No persistent seed bank. Requires some disturbance to allow seeds to regenerate population lost in previous year. Poor persistence due to relatively short lifespan. Intolerant of heavy grazing, though poor persistence in exclusively cut regimes. Moderately competitive, more so in soils of fluctuating seasonal moisture content. Very compatible with other sown species, especially useful in mixtures. Can be out competed by L. perenne in two-species mixture. Very productive. Evergreen. Peak in growth early in season. Flowers mainly in June. Grows well with a range of legumes, especially Onobrychis viciifolia. Well accepted. Good liveweight gain. High digestibility, with decline through year similar to Lolium perenne. Soluble carbohydrate slightly lower than L. perenne, but greater than Dactylis glomerata and Phleum pratense. Little or no reliable information available No information. 180 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Grass Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Grass Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Festuca rubra Grime, Hodgson & Hunt (1996), Peeters (2004) Small tufted perennial with long creeping rhizomes. Tolerant of very wide range of soil moisture contents with good drought resistance and also very cold tolerant. Subspecies litoralis is salt tolerant. Very good tolerance to all but very frequent cutting or grazing. Very tolerant of trampling which explains its suitability as a sown grass in amenity situations, including some horse grazed areas. Very persistent. No persistent seed bank. Excluded in very high input systems. Moderately competitive, especially with L. perenne except under high N conditions or very frequent cuttings (5-6 per year).Abundance greater in extensive systems than high input intensive systems. Rapid rates of leaf growth in spring compared to Agrostis capillaris provide means of niche differentiation in intermediate productivity pastures (Grime and others 1985). High under most conditions, more so than most species including Lolium perenne unless heavily fertilized. Evergreen. Peak production in summer. Flowers May to July. Poorly accepted by cattle, better acceptability with sheep. Variable liveweight gain, but good relative to other species in higher altitude systems. Native variety (ssp. rubra) is one of the most palatable grasses to horses (O’Beirne-Ranelagh 2005). Low, especially compared to other productive grasses. Faster rate of decline in digestibility compared to L. perenne and other productive grasses (Haggar 1976) High N values than L. perenne at same N application rate, but lower mineral contents. No information. Holcus lanatus BFBI: Beddows (1961), Watt (1978), Grime, Hodgson & Hunt (1996), Peeters (2004) Medium sized tufted hairy perennial. Wide pH, moisture, nutrient tolerance, most abundant with cool, moist acid soils. May produced relatively more biomass under elevated CO2 levels than other grasses (Jongen & Jones 1998). Somewhat intolerant of harsh winter frosts and summer drought (Beddows 1961). Persistent seed bank. Declines with heavy grazing, though can tolerate cutting and is intolerant of trampling (Beddows 1961). Competitive and widespread in temperate areas. Production greatest on high fertility soils. Higher production than Lolium perenne in most N regimes unless frequently cut. Lower productivity in high N systems. Requires moderate to high fertilization to produce maximum yield, but produces good yield in low fertility systems. Evergreen in mild winters, grows year round if temperature above 5.5 °C (Beddows 1961). Peak in growth earlier in year than L. perenne. Flowers June to July. At leafy stage of growth, well accepted by cattle and sheep, less accepted if allowed to grow older and when stem somewhat lignified. Live weight gain as good as L. perenne if frequently cut, less so if infrequently cut. Can tolerate relatively long periods (>14 days) of low water availability in terms of seedling establishment (Hofmann & Isselstein 2004). Relatively unwettable leaf laminae, so little reduction of intake under wet conditions (Tallowin and others 1991). Similar digestibility to L. perenne if harvested at same stage of growth. May be less digestible if infrequently cut. N, P, K and Mg higher than in L. perenne (Harvey and others 1984). Levels of condensed tannins (0.18% of dry matter) below the moderate levels (24% of dry matter) found to have beneficial effect on protein outflow of sheep rumen and hence live weight gain (Aerts and others 1999). 181 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Grass Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Lolium perenne BFBI: Beddows (1967), Grime, Hodgson & Hunt (1996), Spedding & Diekmahns (1972), Peeters (2004). Tufted perennial with erect shoots. Optimum pH range 5-8, absent from highly acidic soils. Extremes of soil moisture content unfavourable. Intolerant to very cold temperatures – sensitive to frost. Sensitive to diseases such as rust. Production is reduced in drought. Tolerates heavy grazing, but decreases in exclusive cutting regimes. Resistant to trampling; stems and leaves have good tensile strength (Sun & Liddle 1993).If establishment is poor initially it will be replaced by other grasses. Seeds are not highly persistent in the seed bank and vegetative spread is slow. Frequent resowing is often required if the management has resulted in its decline and replacement by less desirable species. Will dominate in a high N input system, but is less abundant at low fertility. Slower leaf appearance rate compared with eg Agrostis spp., Holcus lanatus and Phleum pratense, therefore tillering capacity not so high under all levels of nitrogen input. High levels of production, particularly in high N input systems. Evergreen. Long growing season (March- September in lowland areas). Early flowering, May onwards for early varieties. Two growth peaks – early and late summer. High animal performance on pure swards. Palatability high when young, and retains palatability late into season unlike some other more palatable grasses (eg Cynosurus cristatus, Dactylis glomerata). Wilts slowly which can present some management problems when used for hay production. Highly wettable leaf laminae which can reduce intake under wet conditions (Tallowin and others 1991). High digestibility, remaining so throughout season. High in soluble carbohydrates and proteins. Good mineral content (Frame 1991) with high Na. Highly productive varieties are low in trace elements (O’BeirneRanelagh 2005). No toxicity in ryegrass itself, although the presence of endophytic fungi can produce ryegrass staggers (Mortimer and others 1984). Perennial ryegrass staggers occurs in sheep, cattle, horses and deer. Alkaloids produced by the endophytes found in perennial ryegrass act as neurotoxins, specifically the tremorgen Lolitrem-B. The vasoconstrictor alkaloid ergovaline is also present in the Lolium perenne endophytes affecting circulation. The ergovaline toxin is associated with increased body temperature, alteration in the production of prolactin and digestion. Lambs grazed on L. perenne have beneficial lower ω-6:ω3 fatty acid ratio and greater oxidative stability than stock grazed on pure Medicago sativa or Trifolium pratense, but a lower live weight gain and hence longer time to slaughter (Fraser and others 2004). Tetraploid and hybrid varieties are high in soluble carbohydrates and may lead to laminitis in horses (O’BeirneRanelagh 2005). 182 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Grass Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Grass Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Phleum pratense pratense Spedding & Diekmahns (1972), Grime, Hodgson & Hunt (1996), Peeters (2004). Tall tufted erect perennial with shallow rooting system. Prefers moist soil conditions, of relatively high fertility and of both acidic and basic soils. Very tolerant of cold conditions. Intolerant of trampling. Can be reduced if allowed to be overgrazed in mixed species system. Persistent seed bank. Highly competitive, especially if infrequently defoliated. Less competitive against other grasses and dicots in year of sowing. Compatible with other productive grasses and Trifolium species. High yield in all but initial sowing year. Can be higher yielding than Lolium perenne in a range of cutting regimes. Moderate production in low input systems, higher yield if fertilized. Evergreen. Growing season April- August. Flowers June to July. Growth maximum in spring, with second peak in July. Good species for use in silage and hay making, especially if harvested at optimal time. Well accepted by grazers with a higher acceptability than L. perenne in leafy stage of growth which extends later into season due to later heading time. Can be overgrazed in a mixed sward and reduce in abundance. Crude protein, total digestible nutrient concentration and K greater in fresh grass than hay, with neutral detergent fibre and Ca greater in hay (Singer 2002). Good live weight gain when fed hay cut at a suitable age. Digestibility starts to decline prior to ear emergence. Rate of decline is less than for L. perenne, Dactylis glomerata and Festuca pratensis. Lignin content higher than for L. perenne (due to height of stems requiring support). Mineral contents similar to other productive grasses except for low Na content. No information. Poa pratensis Grime, Hodgson & Hunt (1996), Peeters (2004) Medium sized rhizomatous perennial with deep rooting system. Optimum growth on moderately dry soils but exists on wet to very dry soils. Able to produce deep rhizomes and acquire moisture from depth within soil. Abundant on soils of moderate to high fertility, but exists also on low fertility soils. Salt tolerant. Very resistant to hot, cold and dry conditions. Highly persistent in grazed systems and frequent cutting. May need to be cut higher than normal for productive grasses to maintain population persistence. Tolerant to trampling. A popular choice on horse paddocks and other areas subject to wear and impact. Possibly has a persistent seed bank. Very competitive more than two years after sowing and can produce monospecific stands via rhizomatous spread. Compatible with Trifolium repens even in dense swards (Frame 1990). Very slow growing after sowing, but increases yield with time (possibly as late as into third or fourth year). Good winter biomass production. Good productivity compared to Lolium perenne on dry soils. Evergreeen. Later peak in biomass production than L. perenne, with lower biomass accumulation by mid-summer. Flowers May to July. Well accepted by grazing animals. Live weight gain good, especially in mixtures with more digestible species. Lower digestibility than L. perenne (Bruinenberg and others 2002). Faster rate of decline in digestibility than L. perenne, especially after mid-spring. One of the fastest declines in productive grasses. N content is higher than L. perenne at same N application rate. Mineral content similar to productive grasses but slightly lower than L. perenne. No information. 183 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Grass Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Legume Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Poa trivialis Grime, Hodgson & Hunt (1996), Peeters (2004) Tall tufted stoloniferous fast growing perennial. May be annual in some disturbed situations. Shallow root system. Shows optimum growth on moderately wet soils, and less abundant on dryer soils. Highest growth and abundance on fertile soils. Poor persistence. Sensitive to drought conditions. Maintains abundance if fertility remains relatively high. Short lived individuals, but seed production high. Able to fill gaps in vegetation via seed production. Persistent seed bank (Thompson & Grime 1979; Roberts 1986). Competitive, and has high ability to fill gaps in vegetation from seed production. Compatible with other productive grasses and Trifolium repens and T. pratense. Low to moderate production (Haggar 1976; Frame 1989, 1991). Production by individuals only maintained for 2 years. Evergreen. Most growth produced in spring. Summer and autumn re-growths low particularly on drought-prone sites. Flowers June. Well accepted when grazed before heading occurs. Hay well accepted. Lower in summer and autumn but higher in spring than Lolium perenne. Rate of decline is faster than for L. perenne. N content higher than L. perenne later in year due to slow growth. Lower P, K, Ca and Mg mineral content than L. perenne (Frame 1989). Little or no reliable information available Lathyrus pratensis Grime, Hodgson & Hunt (1996) Perennial climbing forb. Ascends through the sward, supported by tendrils. Reproduction mainly vegetative due to low seed set. Optimum pH between 5 and 7. Occurs in undisturbed grassland habitats. Intolerant to heavy grazing, due to ascending growth form. Restricted to sites where competitive species are repressed by grazing or cutting. Little or no reliable information available. Shoots appear in spring. Flowers May to August and dies back in autumn. Little or no reliable information available Has low cell wall degradability compared to Lolium (Bruinenberg and others 2004). Little or no reliable information available. Lathyrus species are known to contain toxic amino acids (Lathyrogens) but these have not been specifically identified in L. pratensis (Cooper & Johnson 1998). The leaves contain tannins, which prevent bloat in livestock (Bate-Smith 1973). Seeds can be poisonous to horses (O’Beirne-Ranelagh 2005). 184 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Legume Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Lotus corniculatus and pedunculatus BFBI: Jones & Turkington (1986), BCW: Turkington & Franko (1980), Grime, Hodgson & Hunt (1996), Spedding & Diekmahns (1972), Barnes and others (1995), Frame (2005) L. corniculatus grows up to 20cm in height, with flowers over-topping foliage. L. pedunculatus is a more robust plant growing to 60cm. L. corniculatus is widespread on drier infertile grassy areas. L. pedunculatus is primarily found on wet grasslands and mires. Both are better adapted to less fertile situations than Trifolium repens. Can grow on soils of low pH and depleted P status (Sheldrick & Martyn 1992). Both species are common at pHs between 5 and 6, but L corniculatus is also found in more alkaline conditions up to pH 8. Can tolerate poor drainage and some shade. Lotus is susceptible to crown and root rot, particularly in areas of high temperatures and humidity. L. corniculatus regenerates mainly from seed, whereas L. pedunculatus also spreads by stolons. Establishment may be difficult due to slow seedling growth and low vigour. Persistance can be poor beyond a few years of planting. Lifespan of individual plants 2-4 years. If allowed to set seed this may not be a problem. Problems of seed loss due to pod shattering have been reported. Optimal persistance achieved by adoption of light rotational grazing. Both species have a persistent seed bank. Lotus is not very competitive in a mixed swards, but can establish well when less competitive companion species are used (eg Phleum and Festuca pratensis ) Relatively high yielding under low input conditions. Usually grown in combination with grasses. Grass/Lotus mixture compares favourably with grass/Trifolium repens mixtures. L. pedunculatus can be higher yielding than L. corniculatus in some situations. Annual yield recorded as 13.1t/ha in grass mixture and 10.8t/ha grown alone on fertile soils. Yield can be increased by application of P and K on infertile soils. Both species produce new shoots in spring and flower from June to September. Most shoots die back in autumn. Due to its N fixing properties Lotus can be used as a green manure. Silage intake by sheep was higher for Lotus silage than any other legume. Experiments have shown that Lotus is grazed preferentially over Lolium and chosen equally to Trifolium pratense. It is suggested that animals have a preference for 67-75% Lotus in their diet. Ensilability in forage legumes can be difficult because of their low sugar contents and high buffering capacity; wilting to ca. 40 g/kg DM assists fermentation and quality is improved with addition of formic acid or an inoculant. Lotus pedunculatus has lower digestibility than L. corniculatus. Digestibility of L. corniculatus declined as it matured, but the rate of decline was much less than that which occurs for (Lolium perenne)/white clover pasture. Can be fed as pasture, hay or silage and has high nutritive value. Nutritive value is better than or equal to Medicago sativa. Has good levels of Ca and Na, but low P (Barber 1985).The presence of condensed tannins (CT) in both species has important nutritional implications. Unlike M. sativa and Trifolium species (which do not contain CT), Lotus does not cause bloat. CT precipitates soluble proteins, which prevent bloat and also allow a higher rate of protein utilization in the rumen. McNabb and others 1997). Wool production, ewe fecundity, and subsequent survival of lambs increased under a diet of L. corniculatus during the mating season. It is suggested that this may be due to the increased protein utilization of CT (Ramírez-Restrepo and others 2005, Min and others 2003). Forages with high CT are also associated with greater rates of N retention and leaner carcasses. CT inhibits the growth of rumen bacteria (Min and others 2005).The essential acid content of Lotus is optimal for the production of high quality animal products. Condensed tannin levels are higher in L. pedunculatus than L. corniculatus. Lotus contains a cyanogenic glycoside (lotusin). Poisoning has been reported, with milk from the poisoned cattle having a bitter taste and yellow colouration (Cooper & Johnson 1998). L. corniculatus is said to have an anthelminthic effect on sheep (Marley and others 2004) but evidence is inconclusive (Athanasiadou and others 2005). Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. 185 Legume Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Legume Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Medicago lupulina BCW: Turkington & Cavers (1979), Grime, Hodgson & Hunt (1996), Spedding & Diekmahns (1972) Annual/short lived perennial with branched basal shoots. In short grazed turf, fruits are borne close to the ground. . Deep tap roots. Occurs commonly on open grasslands on calcareous soils. Less susceptible to root rot than T. pratense. Most frequent in soils of pH 7 or more. Establishes on poor, shallow soils where other legumes will not grow. Reproduction is by seed only. Consequently, needs to be able to seed occasionally if it is to persist in grassland. Persistent seed bank. Little or no reliable information available. Of no yield value in permanent pastures. Wintergreen. New shoots and seedlings produced mainly in spring. Flowers May to August. Can be grazed by sheep early in the year but is not acceptable for cattle. Weak stems preclude planting it alone. Can be sown with a cereal crop to provide green manure (Barney 1987, Stopes et al). Was found to be the most suitable crop for inter-cropping with maize (Alford 2003). Can withstand frequent cutting. No data. Has a higher sodium content than other legumes. Little or no reliable information available. Medicago sativa Frame (2005) Erect or ascending perennial. Buds formed in crown of stem and leaf axils producing new stems. Deep rooted, especially in deep well aerated soils. Maintains positive water relations due to deep roots, while prolonged waterlogged soils causes damage to roots. Abundance can be reduced if defoliation frequency is too great. Establishment reduced if weeds allowed to compete at early stage of growth. Can naturally decline after 4-6 years of growth. Persistent seed bank. Suffers with competitive grasses, but grown in a mixed sward with Dactylis glomerata, Festuca pratensis, F. arundinaceae and Phleum pratense in Europe. Poor competitor with weeds at early stage of growth, but competitive ability improves when older. Very productive if grown on deep, well-aerated, fertile soils of circum-neutral pH. Evergreen. Flowers August to September. Highly suitable for use as hay or silage, providing sufficient period of time is left between cuts for N stored in roots to be translocated into new shoot material. Can adapt to dry and cold conditions, though number of possible cuts less compared to ideal conditions. If cut too late in season to allow overwinter storage compounds to be produced, new shoot growth in spring is reduced. High amounts of fertilization may be required if productivity is to be maintained, especially for K. Highly digestible but reduces with maturity and increase in stem:leaf ratio. Rich in crude protein, vitamins and minerals. Can cause bloat if material ingested is very fresh and young. Contains oestrogens which reduce conception rates in cattle and sheep if consumed prior to fertilization. 186 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Legume Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Legume Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Onobrychis viciifolia Frame (2005) Tall erect or sub-erect perennial with shoots arising from basal buds on a branched root stock. Branches develop from axillary buds on defoliated stems. Deep tap root with some branches and a fine lateral root network near surface of soil. Grows best on deep well aerated soils of pH 6 and above. Able to persist for many years. Establishment best if direct sown rather than undersown with other crop species, and seeds drilled to 20-30 cm depth into soil. Can prevent weed establishment better if grown with non-aggressive grasses, eg Festuca pratensis and Phleum pratense. Good, but can vary due to growing conditions. Spring to autumn growth, with a single peak in growth. Establishes well due to vigorous seedling growth. Adapted to warm temperate climate. Best suited to cutting rather than grazing due to erect habit. If cut too late in season to allow overwinter storage compounds to be produced, new shoot growth in spring is reduced. Drought tolerant but intolerant of waterlogged soils over prolonged periods. Good digestibility, but reduces with maturity and increase in stem: leaf ratio. Higher content of protein and minerals than grasses, though Ca and Na lower than other legumes. Contains condensed tannins – hence no problem with bloat. Also increases protein protection in rumen and increases amino acid supply to small intestine for absorption by animal. Trifolium dubium Grime, Hodgson & Hunt (1996), Spedding & Diekmahns (1972), Frame (2005). Prostrate to sub-erect deep rooting creeping annual. Found on dry open habitats and grassland with pH above 5. Frost tolerant compared to other Trifolium species. Autumn-germinating annual. Low persistence in the absence of sward disturbance. Persistent seed bank. Not competitive in well fertilized swards. Grows rapidly from seed, but very low yielding in agronomic terms (1t/ha when cut before seeding). Autumn germinating, dying back after flowering in the following summer. Flowers from May to October, although the season will be shortened in drought conditions. Contributes to sward biomass in spring and early summer. Can adopt a low growth form allowing it to survive grazing, but not widely found on pastures. Little or no reliable information available but similarities with other temperate legumes may be expected. Little or no reliable information available similarities with other temperate legumes may be expected. Little or no reliable information available. 187 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Legume Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Trifolium pratense Grime, Hodgson & Hunt (1996), Spedding & Diekmahns (1972), Barnes and others (1995), Frame (2005) Perennial with erect habit, with numerous leafy branches forming a crown. Taproot system with many secondary branches. After second year, taproot disintegrates and surviving plants rely on secondary roots. Can survive in a wide range of soil conditions but optimum pH 5-6 on well drained soils. Deep rooting so can survive drought conditions. Does not respond to the addition of N fertilizer, but can be limited by low P and K levels. Life span of cultivated varieties about 3 years, although wild types may live longer. Persistence is variable when planted as a forage. Yield decreases after second year. Prone to crown rot caused by fungus root rot; Red Clover Necrotic Mosaic Virus (RCNMV) and can be infected by stem eelworm (Ylimäki 1966). A 4-5 year break from its use is advocated when disease has been detected. Persistent seed bank. High seedling growth rate and plasticity under competition and drought conditions, (Hofmann & Isselstein 2004). Interspecific competition affects the nutritional value of T. pratense and grass when grown together - crude protein increases and water-soluble carbohydrates decrease in grasses grown with T. pratense (Opitz von Boberfeld & Biskupek 1995). Compatible with non-competitive species. Equal annual yield to Lolium in the first year of sowing (up to 16t/ha DM). Similar yield to Medicago sativa. Wintergreen. Starts growing in late spring and flowers May to September. Flowering shoots die back in autumn. Main growth period about 3 weeks later than L. perenne, but reaches optimum digestibility at the same time. Used for pasture, hay, silage and soil improvement. Also undersown in an arable crop. It is the optimum species for use as green manure, accumulating high N and dry matter after a year of cutting and mulching (Stopes and others 1996). Hay making can lead to large losses of leafy material. Erect growth and good response to infrequent defoliation make it a suitable crop for silage. Silage yield without N fertilizer is comparable to L. perenne or meadow fescue receiving moderate-high N fertilizer inputs (ie 200 kg N/ha or equivalent from other sources) but would be lower than from grass fertilized to maximum production (Wilkins and Paul 2002). Also, higher intake and lamb performance makes it a valuable feed source (Fitzgerald 1982). Ensiling is more difficult than grass due to low concentrations of soluble carbohydrates, low dry matter and high buffering capacity (Pahlow and others 2002). This can be counteracted by good wilting of cut crop and use of additives (Frame 2000). Hard grazing in winter may encourage growth, but spring grazing may reduce yield and plant survival. Generally suited to an infrequent defoliation regime, two or three cuts per year. Probably not palatable to horses (O’Beirne –Ranelagh 2005). Dry matter digestibility of approximately 75% in spring. Stays digestible longer in the season than M. sativa. Intake by livestock is high, compared with grasses, due to higher rate of digestion. Similar chemical content to other legume species, but generally has high Mg content. All major mineral components of nutritional importance are higher than in grasses. Protein content high but not as high as other forage legumes, but protein degradation in rumen lower leading to higher utilization. Can cause bloat if present at more than 50% in the sward. Contains phytooestrogens which depress ewe reproductive performance (Newton and Betts 1974). Considered to have medicinal properties. Flowers have been used as a tonic and the entire plant is a sedative (de Baïracli Levy 1984). Pigs fed clover rich silage had lower ω-6:ω-3 fatty acid ratio in meat than pigs fed conventional silage Lundström & Jonsäll (2002). 188 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Legume Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Trifolium repens BFBI: Burdon (1983), BCW: Turkington & Burdon (1983), Grime, Hodgson & Hunt (1996), Spedding & Diekmahns (1972), Barnes and others (1995), Frame (2005) Creeping, stoloniferous perennial. Young plants have taproot which dies back as plant spreads and adventitious roots are developed at stolon nodes. Very widespread, occurring on all soil types. Optimum pH range 5-7. Application of N strongly reduces cover, although can confer some benefit when sparingly applied at establishment stage. In mixed swards it is more sensitive to reduced P and K supply than grasses. Susceptible to stem eelworm and root rot. Total yield significantly increased by elevated CO2 levels (Schenk and others 1997). Not drought-tolerant. Successful seed establishment is dependent on P availability at the soil-root interface. Regeneration/persistence is fairly good. Persistent seed bank. Usually grown with companion grasses, Festuca pratensis most compatible and it also grows well with Lolium (Fisher and others 1996) Potential annual yield from a mixed sward of 20t/ha (Frame & Newbould 1984) but is more typically about 10t/ha dry matter, comparable to grass under 200kg N/ha. Wintergreen. Growth starts late spring, and remains leafy throughout season. Slow spring growth means early season grazing demands may not be met. Flowers June to September. Usually grown with grasses as mixed pasture. Also undersown with cereal crops. Has value as both pasture and silage crop as livestock intake is high (Osbourn 1982).Can fix N at rates of up to 280kg/ha in lowlands (Hopkins 1998). Voluntary intake by sheep is considerably higher than for Lolium. Milk yield and liveweight gain is better than Lolium because particle breakdown and passage of feed through the rumen is faster. It also requires less biting and chewing time than grass-only swards do. Long intervals between defoliations increase total herbage production in mixed swards. Tolerates moderately heavy grazing in a mixed sward. Also suitable as a silage crop, especially grown in mixture with grasses. Ensilability improved with wilting to high DM content and use of additives. High digestibility – up to 80% dry matter. Produces young, highly digestible material throughout the growing season, unlike some other legumes which can develop a high proportion of stem. Lower cellulose and lignin and higher available carbohydrate, N, P, Na, Mo and S than other forage legume species. High water content. Contains half the fibre and 50% more protein than Lolium. As intake of T. repens by grazing cows increases so does yield, protein and fat content of milk. It also has higher casein and greater coagulum strength which make it more suitable for cheese-making (Thompson 1984) If fed to lactating ewes, lactation and lamb growth can be increased. But contains phyto-oestrogens which can depress ewe reproductive performance (Newton & Betts 1974). Some strains contain cyanogenetic glycosides which cause cyanide poisoning (Forsyth 1954). Plants in drought conditions have much lower levels of these compounds (Foulds & Grime 1972), and they have been selectively bred out of cultivated varieties. Excessive intake may result in bloat. Other potential problems are photosensitivity and mycotoxicoses (Cooper & Johnson 1998). 189 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Legume Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Legume Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Vicia cracca Grime, Hodgson & Hunt (1996), Aarsen and others (1986) Shortly rhizomatous perennial. Shoots scrambling, supports itself on surrounding vegetation with tendrils. May form small patches when sprawling across grassland. Generally found on dry soils but also occurs in wetter places. Does not occur on soils below pH 4.5 No persistent seed bank. Dependent on tall vegetation for support. No reliable information found. Shoots appear in spring. Flowers June to August, shoots die back in autumn. Rarely found in pasture, as erect growth form makes it intolerant to grazing, but occurs in meadows No reliable information found. No reliable information found. Vetch seed can be poisonous if forming over 10% of the diet for several weeks. Poisoning in horses is very rare and generally non-lethal (O’Beirne –Ranelagh 2005). Vicia sativa Aarsen and others (1986) Sprawling annual forb, can grow upright when supporting vegetation present. Found on well, drained moderately fertile soils pH 6-8. Responds to P fertilization. Intolerant of waterlogging. Strong seedling vigour, but intolerant to drought during early establishment. Persistent seed bank. No reliable information found Moderate yield. Can be as high as 7.8t/ha dry matter (data from Northern Spain). Autumn germinating annual. Main growth period spring to summer. Flowers May to September. Highly acceptable to livestock as grazed or stored forage. Tolerates moderate grazing down to about 4 cm, which preserves axillary buds for regrowth. Can be grown as a monoculture for hay or silage. Ideally grown with cereals for mixed hay/silage which avoids lodging. Can be used a green manure. No reliable information found Valuable source of protein and minerals. Vetch seed can be poisonous if forming over 10% of the diet for several weeks. Poisoning in horses is very rare and generally non-lethal (O’Beirne –Ranelagh 2005). 190 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Achillea millefolium BFBI: Warwick & Black (1982), Grime, Hodgson & Hunt (1996) Semi-rosette forming perennial with far-creeping rhizomes. Deep rooting system common. Found in a range of soil types, including low nutrient status soil. Tolerant to droughted soil conditions. Poor seed bank persistence, though may be better than thought (Warwick & Black 1982). Tolerates grazing by forming a low growth form rather than a tall form when in taller vegetation. Tolerates low soil moisture via deep rooting system. Can spread easily vegetatively via rhizomes, with small fractions produced via soil disturbance producing new daughter plants. Grazing in summer reduces seed production, while defoliation via clipping increased relative leaf growth rate (Hicks & Turkington 2000). Germinates in both spring and summer and can fill gaps. Establishment better if seeds not buried (Chapman & Younger 1994). Poor competitor in tall vegetation where is become excluded. Grows well in disturbed conditions where other dominant plants are detrimentally affected. Greater yield in monoculture than Lolium perenne (Isselstein 1993). Wintergreen. Peak in growth early in growing season. Flowers June to August. Well accepted by sheep, cattle and horses (Foster 1988). Possibly taints milk via chemical producing a bitter taste. Ensilability of biomass moderately good in comparison to L. perenne and Trifolium repens (Isselstein 1993). Not good in hay as it does not dry easily (O’Beirne-Ranelagh 2005). Digestibility reduced from May to June with greater amounts of water soluble carbohydrate, crude protein and crude fat and less acid detergent fibre in spring (Isselstein 1993). Has less in vitro energy and water soluble carbohydrate but greater crude protein in spring than L. perenne (Isselstein 1993), whereas Am has relatively more crude protein and acid detergent fibre with less crude fat, in vitro energy and water soluble carbohydrate in summer (Isselstein 1993). Has good and persistent digestibility (Barber 1985). Has higher P, K, Ca and Mg content than grasses but lower crude protein (Trzasko 1994). Good source of P and Cu (Barber 1985). Contains sesquiterpene lactones, a potential allergen causing adverse skin reactions (Tampion 1977). Has medicinal properties, and has been used as a home remedy for coughs, sealing wounds and cleaning the blood. Contains high amounts of unsaturated amides which may be insecticidal. Cardamine pratensis Grime, Hodgson & Hunt (1996) Semi-rosette perennial with short rhizomes and shallow rooting system, overwintering as a short rosette. Found on moderately nutrient rich soil in wet grasslands and mires. Spreads vegetatively in wet sites, with lower seed set where grazed. New plants arise from leaflets in contact with the soil. In drier sites sexual reproduction more effective than vegetative spread. Seed bank persistent. Mowing of wet meadows increases abundance (Jensen & Meyer 2001). Infrequent in tall vegetation and can be found in the sub-canopy of moderately dense vegetation. Can fill gaps in vegetation via spread of new plants formed from leaves and shoot pieces detached from parent plant. Little or no reliable information available but unlikely to contribute significant herbage even in situations where it is abundant Wintergreen. Early flowering (April to June), with spring peak in biomass. Little or no reliable information available. Little or no reliable information available. Little or no reliable information available. Potential use in treating convulsions, blood disorders and skin diseases (de Baïracli Levy 1984). Contains chemicals poisonous to horses (Briemle & Ruck 2003). 191 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Centaurea nigra Grime, Hodgson & Hunt (1996) Tall semi-rosette forming perennial. Found in moderately to infertile grasslands. Greater seed yield in infrequently mown or burnt than in grazed situations. Greater seedling emergence in situations free of leaf litter (Bosy & Reader 1995).Elevated atmospheric CO2 has a large positive effect on biomass Good seed production which may be retained on the plant for several months and so drop seed over a long time period. Germination mainly in spring though also in autumn. No persistent seed bank. Can reproduce from daughter rosettes separating from rootstock in grazed conditions. Little or no reliable information available Increases yield and cover over time from year of sowing (Fisher and others 1996). Shoots appear in spring. Summer peak in biomass. Flowers June to September. Stems die back after flowering. Accepted by sheep, and to lesser extent by cattle, with wiry stems generally avoided (Marsden-Jones & Turrill 1954). Avoided by horses, though they may take flower heads in autumn and winter (O’Beirne-Ranelagh 2005). Little or no reliable information available Little or no reliable information available Contains serotonin conjugates which have an anti-microbial properties against fifteen pathogenic bacteria (Kumarasamy and others 2003). Cerastium fontanum Grime, Hodgson & Hunt (1996) Small winter-green polycarpic perennial with decumbent stems or ascending if flowering. Can act as a winter annual if growing with low soil moisture content. Roots shallow. Can spread vegetatively due to shoots producing roots on contact with ground. Most common in moderately fertile but undisturbed habitats, though can be common in low fertility sites. Can be very persistent in closely mown vegetation. Sensitive to trampling, though capable of filling gaps created by poaching (Pakeman 2004). Persistent seed bank formed. Poor competitor with taller species, and only remains part of vegetation if not over shadowed and thereby excluded. Low due to subordinate nature within vegetation. Wintergreen. Difficult to determine due to ability to germinate from spring to autumn and complete life-cycle from emergence to flowering and seed set in nine weeks under ideal growing conditions. Flowers April to September. Accepted by cattle. Shade tolerant. Can increase in abundance after hay cut. No reliable information found. No reliable information found. No reliable information found. 192 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Cirsium arvense Moore (1975), Grime, Hodgson & Hunt (1996) Perennial geophyte with deep far reaching lateral roots and numerous adventitious shoots. Leaves protected by spiny outgrowths. Common on fertile and disturbed ground. Very persistent due to ability to produce new plants from small root fragments, with roots reaching several metres into the soil. Seed set can be poor if isolated from other plants. Though being self-fertile, seed production low if not outcrossed. Dispersal distance can be low due to pappus being easily detached. Persistent seed bank formed. Establishment not limited by seed availability (Edwards and others 2005). Cutting increases shoot growth rate and biomass in year of cut, but subsequent cutting reduces biomass in second year (Kluth and others 2003). Application of rust bio-control agent Puccinia punctiformis reduces number and fertility of flower heads (Kluth and others 2003). Locally competitive. Abundance not affected by diversity of plant assemblage within sward (Bezemer and others 2004). Has allelopathic properties and reduces establishment of other plant species which can exist for nine weeks in soil (Kazinczi and others 2001). Little or no reliable information available but can be highly productive in terms of herbage mass on a dry matter per unit area basis, particularly when weed infested areas are left ungrazed or unmown. New biomass produced in spring and summer, flowering from July to September with seeds shed over a long time period due to seeds being retained on dead shoots into the winter. Spiny leaves avoided by grazers. More acceptable to livestock (cattle and goats) when the leaves are young but avoided by sheep and horses. Horses will eat growing flower buds and wilted foliage (O’Beirne-Ranelagh 2005). Rich in minerals. Little or no reliable information available but spiny and waxy epidermal structures and high lignin content in stems would be expected to result in thistles having significantly lower digestibility values than most pasture species. Contains high amounts of K (Lehoczky and others 2003). High protein (up to 30%) and Cu (up to 30mg/Kg). Ca content very high (Barber 1985). Potential for injury to face and mouth of grazing animals, leading to opportunities for infection. Cirsium palustre Grime, Hodgson & Hunt (1996) Tall monocarpic perennial. Stock carrying inflorescence produced when mature, potentially large basal rosette when immature. Leaves spiny. Shallow rooting system. Found in moist grasslands and mire of mildly acidic and fertile soils. Tolerates wet and waterlogged soil conditions. Requires short grassland or open vegetation for seedling establishment. Seed bank persistent. Grows well in disturbed environments. Little or no reliable information available but unlikely to contribute significantly Wintergreen. Potentially develops as basal rosette over a number of years before producing a flowering stock in summer. Flowers from July to September. Little grazed by stock. Little or no reliable information available. Little or no reliable information available. Little or no reliable information available. 193 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Cirsium vulgare BFBI: Klinkhamer & de Jong (1993), Grime, Hodgson & Hunt (1996) Large monocarpic perennial with spiny and hairy leaves and deep tap root. Can live for many years before flowering if productivity low or plant defoliated. Intolerant of waterlogged soils. Propagates exclusively by sexual reproduction, with seeds possibly needing disturbance to become established. Does not form a persistent seed bank. Seedling establishment increased with greater seed availability (Edwards and others 2005). Poor competitor, with reductions in grass abundance greatly increasing productivity. Little or no reliable information available but as for C. arvense can be highly productive in terms of herbage mass on a dry matter per unit area basis, particularly when weed infested areas are left ungrazed or unmown. Its contribution to total sward biomass is seldom as great as that of C. arvense. Wintergreen. New biomass produced in spring and summer. Flowering from July to September, with a great number of seeds produced per flowering spike (up to 8000). Avoided by grazing animals due to spiny leaves, though young leaves are grazed in early spring (Klinkhamer & de Jong 1993). Horses will eat growing flower buds and wilted foliage (O’Beirne-Ranelagh 2005). Rich in minerals. Little or no reliable information available but spiny and waxy epidermal structures and high lignin content in stems would be expected to result in thistles having significantly lower digestibility values than most pasture species. High protein (up to 30%), Cu (up to 30mg/Kg). Ca content very high (Barber 1985). Potential for injury to face and mouth of grazing animals, leading to opportunities for infection. Filipendula ulmaria Grime, Hodgson & Hunt (1996) Tall rhizomatous perennial, with erect stems growing from basal leaf rosette. Grows relatively slowly for a tall, dominant species, but individual leaves persist throughout the growing season. Associated with wet soils, but absent from sites that remain waterlogged all year. Comparatively drought resistant for a wetland plant. Frequent on soils of pH 4.5 and above, of moderate fertility. Regenerates both by vegetative spread and by seed. Forms large persistent seed bank. Forms dense stands which dominate at relatively low shoot densities. Biomass production is relatively low compared to other tall herbaceous species. Leaves develop from over-wintering buds in spring. Flowers June to August. Leaves produced until September, but die back by November. Avoided by horses Horses will eat growing flower buds and wilted foliage (O’Beirne-Ranelagh 2005). Rich in minerals.No other reliable information found. No reliable information found. No reliable information found. No information found. 194 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Galium palustre Grime, Hodgson & Hunt (1996) Tall, scrambling perennial. Exclusively found in wetland. Most commonly found on fertile soils of pH range 5-7. Survival in the sward may depend on ability to laterally spread into small gaps in the vegetation. Detached cuttings root freely. Forms persistent seed bank. Confined to areas where dominant species are restricted. Makes up a very small proportion of the total biomass of the sward in which it is present. Partially evergreen, overwinters as small shoots. Flowers June to July. No reliable information found. No reliable information found. No reliable information found. No reliable information found. Galium saxatile Grime, Hodgson & Hunt (1996) Small polycarpic weakly ascending winter-green perennial with slender tap root and rooted stolons. Limited to infertile acidic soils. Intolerant of drought conditions. Persistent seed bank may develop, though regeneration by seed is infrequent. Intolerant of disturbance. Grows well with Festuca ovina in infertile hill pastures grazed by sheep. Slow growing, with low productivity due to size. Wintergreen. Flowers June to August. Shade tolerant and grows under grass and heath, though intolerant of cover with litter layer. No reliable information found. No reliable information found. No reliable information found. Galium verum Grime, Hodgson & Hunt (1996) Small perennial with slender creeping stock. Deep rooting system. Grows predominantly in surface leached calcareous soils over limestone, though recoded in soils of pH 4 - 8. Poor ability to regenerate into gaps. No persistent seedbank. Can become less abundant if vegetation left ungrazed or undisturbed via competition from taller species. Little or no reliable information available but unlikely to contribute significantly Wintergreen. Mid-summer peak in biomass. Flowers July to August. Grows well on dry sandy soil due to deep root system. Preferentially grazed by goats in Italy during summer. Has good digestibility compared to four other species (grasses, herbs shrubs) from Mediterranean alpine pasture (Marinas and others 2003). High N content with slow decline through summer with average neutral detergent fibre and acid detergent lignin content compared to four Mediterranean alpine pasture species (Marinas and others 2003). Contains average amounts of antioxidant compounds (eg 2,2-diphenyl-1picrylhydrazyl (DPPH) with radical scavenging activities) of seven medicinal plants in Turkey (Mavi and others 2004). Said to possess useful digestive properties for horses (O’Beirne-Ranelagh 2005). 195 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Hypochaeris radicata BFBI: Turkington & Aarrsen (1983), BCW: Aarrsen (1981), Grime Hodgson & Hunt (1996) Rosette forming perennial with erect and stout stock. Deep rooting system. Occurs on dry, infertile soils. Very persistent and can flower and set seed two months after establishment in favourable conditions. Able to resist grazing via leaf habit being closely adpressed to ground. Tolerates mowing due to leaf habit and flowering stem being able to spring back without being damaged by cutting blades. In heavily grazed and mown areas can spread more by vegetative reproduction than sexual, though seed production can be very high if only lightly grazed or cut. Tolerates droughted soil conditions via deep roots. No persistent seed bank. Highly competitive and does not show usual increase in productivity when growing free of competition from grasses (Ho 1964). Said to be allelopathic and also autotoxic with reductions in shoot growth rate of companion grasses (Newman & Rovira 1975). Little or no reliable information available. Overwinters as a small rosette. Peak growth rate in early summer. Flowers mainly in summer, though extends to autumn. Germinates throughout year, but mainly in spring and autumn. Grows on a range of soil types, both acidic and basic. Highly palatable, and preferentially selected by sheep over grasses in New Zealand pastures (Struik1967). Little or no reliable information available. Higher values of mineral nutrients than grasses, especially for Ca and Cu while also high in protein and low in fibre (Coop and others 1953). Associated with outbreaks of the nerve degeneration condition stringhalt in horses where Hypochaeris radicata is abundant (O’Beirne-Ranelagh 2005). Leontodon autumnalis Grime, Hodgson & Hunt (1996) Low growing perennial with a branching root stock and lanceolate pinnatifid leaves. May ascend when growing in taller vegetation to produce relatively undissected leaves. Over winters as a small rosette of pinnatifid leaves. Found in soils of pH > 5. Most common on soils of moderate fertility and moisture content. Able to fill disturbance formed gaps in vegetation. Relatively incapable of reproducing vegetatively, relying on sexual reproduction. Persistent seed bank formed, with seeds germinating in warm conditions relatively free of litter. Seeds germinate mainly in spring, though can occur in autumn. Droughted conditions reduce seed production and establishment. Seed production reduced if grazed during summer. Sown seeds may establish better if pasture is cut on a weekly basis compared to longer cutting periods (Hofmann & Isselstein 2004a). Grows well with grasses if vegetation not allowed to become too tall. When sown into an existing L. perenne sward, relative growth rate and biomass accumulation of La seedlings is significantly reduced by the density of the sward but not by sward height (Hofmann & Isselstein 2004b). Little or no reliable information available. Wintergreen. Peak in shoot biomass in summer, with seed production delayed until late summer and autumn. Flowers June to October. Leaves well accepted by grazing animals, and remain close to ground when grazed. Tolerates grazing, cutting and trampling. Little or no reliable information available. Little or no reliable information available. Little or no reliable information available. 196 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Leontodon hispidus Grime, Hodgson & Hunt (1996) Slow growing rosette forming perennial with branched root stocks. Grows in open and unproductive habitats, especially on dry, calcareous soils. Can be reduced in taller vegetation via shading. Good seed production late in season, and able to fill gaps. Very capable of filling gaps in vegetation after disturbance, with over 40% occurrence in disturbed gaps (Burke & Grime 1996). Summer grazing can reduce seed set, and slow establishment within the sward. No persistent seed bank. Where summer grazing, especially aftermath grazing is removed, can dominate low productivity sites (Kirkham and others 1996). Little or no reliable information available. Overwinters below ground. Peak in new growth in spring, with flowering from late summer to late autumn. Peak in biomass in summer and able to maintain positive water relations at this time via deep roots. Accepted by sheep and able to respond to close grazing due to budding from root stock. Little or no reliable information available. Little or no reliable information available. Contains hypocretenolides (a small group of sesquiterpene lactones with an unusual ring structure found as constituents of a small number of species) which are capable of producing an anti-inflammatory activity response (Zidorn and others 1999). Also contains a range of secondary chemical compounds which may have a negative effect on animal performance. An index of negative potential action (IANP) of phenols in Leontodon hispidus was established, but it was found that the digestibility was high despite a high IANP (Mika and others 1998). Leucanthemum vulgare BFBI: Howarth & Williams (1968), Grime, Hodgson & Hunt (1996) Tall perennial with somewhat woody stems. Rooting system shallow and mostly adventitious. Most abundant if soil fertility is not high and disturbance regime is moderate, such as cutting and light grazing. Leaves can become succulent if drought conditions prevail or in soils of low N status. Succulence also found in maritime individuals. Abundance can be reduced if grazed throughout the year in pastures, with lower seed set in such situations. Capable of spring or autumn germination and forms a persistent seed bank. Capable of filling gaps in disturbed vegetation if seed set is high, eg if ungrazed. Seed production can be reduced if cut at certain times of year due to disruption of flowering though cuts for hay at more appropriate times can aid seed dispersal (Coulson and others 2001). Tolerant of trampling and drought, with seedling establishment high even in relatively dry soils (Oomes & Elberse 1976). Can alter susceptibility to invasion of vegetation by other broadleaved herbs, eg invasion by Taraxacum officinale reduced when Leucanthemum vulgare present (van Ruijnen and others 2003). Maintains a good level of production when sown with a mixture of grasses (Fisher and others 1996). Over-winters as a basal rosette of leaves. Peak in growth in spring to produce high amounts of biomass relatively quickly. Flowers June to August, with seed set in autumn. Said to taint butter (Forsyth 1954). Can reduce number of invading species into a sward (van Ruijnen and others 2003). Little or no reliable information available. May increases mineral nutrient content of vegetation compared to grass only situations (Fisher and others 1996). Little or no reliable information available. 197 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Plantago lanceolata BFBI: Sagar & Harper (1964), BCW: Cavers and others (1980), Grime, Hodgson & Hunt (1996), Stewart (1996) Perennial rosette. Can form prostrate rosettes of broader leaves in closely grazed swards and upright lanceolate leaves in longer swards. Has both shallow and deeper roots which allow it to withstand drought. Most commonly found on soils of pH 5-8. Drought resistant and heat tolerant. Can tolerate low nutrient environment and is found on soils with low P or K levels. Ammonium fertilizers reduce cover of P. lanceolata, but not affected by nitrate application. Forms persistent seed bank. Seed establishes in pastures in summer and autumn when sward has open micro-habitats. Survival depends on these areas remaining open while seedlings establish. Heavy grazing therefore encourages establishment. Emergence is rapid when planted but establishment can be limited by competition. Most successful when slow establishing grasses are planted as companions. Individual plants can live for more than 12 years. Survives better on fields with longer grazing/cutting intervals. When fertility is low, Plantago will compete well with grasses. It can develop more deep roots, allowing it to compete more effectively for nutrients. When fertility is high, competition for light becomes more important and grasses are at a competitive advantage. Can be as productive as grass and clover, and has been quoted as yielding up to 20 t/ha annually. Can be highly productive when first sown, but yield reduces dramatically over the years. Overwinters as a rosette. Maximum leaf growth in spring and early summer. Flowers throughout the growing season, from April to August. Eaten very readily by sheep, who will chisel rosettes right down to the ground. Very palatable to cattle, but less so to horses (O’Beirne-Ranelagh 2005). Prostrate habit on grazed pastures makes it less accessible for cattle but they will preferentially graze it when long enough. Spikes are less acceptable but livestock eat them. Liveweight gain trials show results fom a pure stand of Plantago was equal to that from a pure Lolium sward. Liveweight gains were improved when Plantago was introduced into a mixed pasture. Moderately tolerant of trampling, but not to the extent of Lolium. Presence of antibiotic substances retards fermentation and lowers the energy value of Plantago silage. (Isselstein 1993). Makes good hay but drys slowly. Similar physical breakdown characteristics to Lolium. Requires greater chewing and rumination than Lolium. Digesitibility is similar or lower than Trifolium and Lolium. Plantago has high digestiblility in spite of having high index of negative potential action of phenols (IANP) (Mika and others 1998). Digestibility decreases rapidly with increasing maturity (Barber 1985). Good source of Ca, Cl, P, K, Na, Mg Zn, Cu, Co. Equal or higher than a LoliumTrifolium sward. Animals grazing Plantago retained 4 times as much Ca as they did on a Lolium sward. Mg and Na retention was also higher. Mn levels are poor. Contains aucobin which has a number of medicinal properties, including microbial, laxative and liver protecting. Leaves contain 0.8% mucilage which is used in commercial preparations to control diarrhoea in calves. May have mild anthelminthic effect. 198 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Potentilla reptans No information. Sprawling perennial, with long rooting flowering stems. Found in disturbed grasslands on dry soils Reproduces from runners. Forms persistent seed bank. No information. No information. Partially evergreen. Flowers June to September. No information. No information. No information. No information. Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Primula veris Grime, Hodgson & Hunt (1996) Polycarpic rosette forming perennial with short rhizome. Mainly on moist calcareous soils, occasionally on non-calcareous strata. Long-lived. Intolerant of shade. Population growth rate reduced if grazed in spring or no management applied (Brys and others 2004). Regenerates from seed and through daughter rosettes. Little evidence of a persistent seed bank. Common in species rich but short vegetation. Can form abundant populations in situations where seed availability is high and soils disturbed to create a seed bed. Mid-summer and autumn mowing increase abundance, with greater effect of later mowing due to size of plants at time of germination being lower in autumn (Brys and others 2004). No reliable information found. New leaves formed in late winter and spring, with peak biomass in summer. Flowers in April and May, with seed shed from summer to autumn. Little grazed by stock, possibly due to leaves being adpressed to ground. No reliable information found. No reliable information found. No reliable information found. Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Prunella vulgaris Grime, Hodgson & Hunt (1996) Low growing, stoloniferous, shallow rooted perennial. Grows in soils of pH 5 or more. Shade tolerant. Effective in exploiting N supply, growth will slow or stop when N is limited (Neitzke 1999). Produces more stolons in response to favourable conditions, allowing it to concentrate resources in favourable areas (Macek & Leps 2003). Persists well on heavily grazed pastures where its growth form allows it to withstand grazing and trampling. In favourable conditions, produces more, short, stolons, allowing it to form a patch. Forms persistent seed bank. Is overgrown by larger herbs, so most common on short turf. Little or no reliable information available. Overwinters as rosettes. New shoots emerge in late spring and flowering occurs from june to September. Has a marked summer peak in biomass. Leaves are not attractive to grazers. Little or no reliable information available. Little or no reliable information available. High content of phenolic acids, tannins and tri-terpenes which may confer a range of health benefits (antioxidative, antimicrobial and antiviral) (Psotová and others 2003) Antioxidative effects due to concentration of Rosmarinic acid – 6.1% in Prunella spikes (Lamaison and others 1991).Has been used as wound healer. 199 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Ranunculus acris BFBI: Harper (1957), Grime, Hodgson & Hunt (1996) Upright perennial, much branched and sometimes spreading, but does not root at nodes as R. repens does. Found on soils ranging from pH 5.5 to 7 on less waterlogged soils than R. repens. Frequency increases on overgrazed pastures. Survives well on meadows frequently cropped for hay, as it can grow tall and compete with grasses. It is in flower when hay is cut suggesting that it is not dependent on seed set to persist in meadows. Reproduces from daugther rosettes. Little evidence of persistent seed bank. Found in association with a higher level of grass species than R. bulbosus. Competes with grass and clover in New Zealand, where it is estimated that it has reduced milk revenue significantly (Bourdot and others 2003). Little or no reliable information available. Wintergreen, with little growth in winter. Flowers May-July. Common in haymeadows and horse pastures. The acrid taste makes it unattractive to grazing livestock. Can lead to reduced pasture utilization as animals will avoid it and the surrounding vegetation. Little or no reliable information available. Little or no reliable information available. Contains protoanemonin which has been known to cause poisoning in animals. Compound is neutralised on storage (Cooper & Johnson 1998, Forsyth 1954). Acute Ranunculus poisoning has been recorded in horses (Griess & Rech 1997). Ranunculus repens BFBI: Harper (1957), BCW: Lovett-Doust and others (1990), Grime, Hodgson & Hunt (1996) Perennial, erect plant with creeping stolons. Found on soils ranging from pH 5 to 8. Particularly prevalent on fertile poorly drained soils. Seed production is relatively low, but they persist in the soil. Grows in exclusive patches or interspersed in the sward. Can withstand competition from tall grass species in hay meadows. May deplete minerals, particularly K at the expense of other species. It is suggested that the roots secrete a toxin which caused N deficiency in neighbouring plants. Little or no reliable information available but can frequently be very abundant and contribute a significant proportion of the sward Some growth in winter, but main growth starts in spring. Rapid growth after germination in spring. Flowers May to June. Additional ramets produced from stolon nodes in early summer, these become separated from main plant, in autumn and overwinter as independent rosettes. Stock will eat R. repens, more readily than other Ranunculus species. Relatively low levels of the acrid-tasting ranunculin are present in this species (Cooper & Johnson 1998). Little or no reliable information available. Little or no reliable information available. Contains protoanemonin which can cause poisoning in animals at high levels. Levels in R. repens are very low and no poisonings have been reported. Compound is neutralised on storage (Forsyth 1954). The same chemical can be used as an external poultice for boils and sores. Contains low levels of cardiac glycosides which can cause diarrhoea and stomach pains in cattle. 200 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Rhinanthus minor BFBI: Westbury (2004), Grime, Hodgson & Hunt (1996), Summer annual hemiparasite with shallow roots. Most common in hay meadows. Two forms exist, var. stenophyllus on moist soils with a northern bias and flowers from July – August and var. minor on dry soils in the south which flowers from May - July. Low if overgrazed in summer before seed can be shed. Intolerant of shade and drought. No persistent seed bank produced. Seed requires vernalisation. No reliable information found. Generally low, but appears to depend upon type of host, eg greater if able to parasitize Trifolium repens. Germinates in spring and flowers from May to August, with seed set from midsummer onwards and quickly released. Can reduce vigour of grasses and thereby enable smaller forb species to proliferate. No reliable information found. Higher mineral content than parasitized grasses. Potentially toxic to grazing animals due to glycoside content, but only if sufficiently large amounts are ingested (Cooper & Johnson 1998). Rumex acetosa Grime, Hodgson & Hunt (1996) Perennial with basal leaf rosette and erect sparsely branched stem. Thick rootstock. Found in slightly acidic soils in the pH range 5-7. Has tolerance to high Al levels in the soil (Tolra and others 2005). Sets seed abundantly but they do not persist in the soil. Daughter rosettes also produced from rootstock. Spreads rapidly when grasses are removed but not when all other forb species are removed. Grasses may have a limiting effect on Rumex populations (Putwain & Harper 1970). Little or no reliable information available but can sometimes contribute a significant proportion of the sward’s dry matter production. Wintergreen. Flowers May to June. Can become a bulky component of haymeadow sward when flowering but responds well to grazing, forming compact low-growing rosettes. Digestible when young but decreases rapidly with maturity (Barber 1985). Good protein content when young. Useful source of P and trace elements (Barber 1985). Leaves contain oxalates which can be toxic to livestock if eaten in quantity. Lactating lambs more commonly affected than cows, but can cause acute calcium deficiency or ‘milk fever’ in both (Cooper & Johnson 1998, Forsyth 1954). . Also has medicinal properties. Has been used in the treatment of fevers and skin ulcers (de Baïracli Levy 1984). Anthraquinones in plant can be laxative (Chiej 1984). Other forb Rumex acetosella Species profiles Environmental factors Growth form and habit Regeneration/persistence Grime, Hodgson & Hunt (1996) Most abundant on infertile, peaty soils of pH range 3.5-5.5. Patch-forming perennial with erect stems. Deep rooting. Deep roots allow persistence on dry sandy soils. Spreads vegetatively and can regenerate from root fragments. Also forms a persistent seed bank. Low growth form mean it is easily dominated by large, fast-growing species. No reliable information found. Flowers May to July, shoots die back in autumn, overwinters as small rosette. No reliable information found. No reliable information found. No reliable information found. Contains oxalates which are poisonous to stock. Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health 201 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Rumex crispus and R. obtusifolius BFBI: Cavers & Harper (1964), Grime, Hodgson & Hunt (1996) R. crispus is a polycarpic perennial, though may behave as annual or biennial. R. obtusifolius is also a polycarpic perennial and generally more long lived. Tall erect shoots and stout roots often with a relatively deep tap root. Can produce seeds in first year of growth. Establishes better in non-waterlogged soils. Prefer fertile soils, may be limited by low soil K status (Humphreys and others 1999). Very persistent seed bank. Unaffected by severe drought or frost. Less frequent defoliation, eg that which includes rest periods when grazing stock are removed or from shutting up for hay or silage, favours the development of more persistent plants. Repeated cutting offers a measure of control though plants tend to persist through this. Mature plants tend to break up around the crown of the tap root producing daughter tap-rooted plants. Establishes well in disturbed soils. Competitive in high nutrient status soils, especially for R. obtusifolius. Regrowth of R. obtusifolius is high even with intense competition from grasses, and is not significantly adversely affected by mowing frequency (Niggli and others 1993). R. obtusifolius reduced grass and clover dry matter production in a sown sward more than did R. crispus (Hongo 1989). High dry matter production, especially in high N and K situations with a long growing season (March – November). In experimental situations R. obtusifolius has contributed 38-50% of the total herbage DM harvested in high fertilizer N mown swards that produce a total herbage DM of 10-16 t/ha/year (Hopkins & Johnson, 2003). Both species over-winter as small rosette with new growth in spring. Flowers from May to October, with seeds produced into winter. Generally both these species are avoided by grazers, but leaves that have been well chopped in silage are less likely to be avoided. Shading and competition for water and space, and possible allelopathic effects may reduce grass growth in vicinity of dock plants. However, their presence may reduce soil compaction via action of deep root stocks and root channel development. Comparable to Lolium perenne at first cut early season growth stage, but reduces with subsequent cuts as lignification occurs (Hopkins & Johnson 2003). Condensed tannins that may reduce the risk of bloat in legume-rich diets (Waghorn & Jones, 1989). Can have detrimental effects on animal, eg acute poisoning due to oxalate in R. crispus (Panciera and others 1990). Levels of condensed tannins may alleviate bloat caused by legumes in sheep (Waghorn & Jones 1989). Sanguisorba minor Grime, Hodgson & Hunt (1996) Perennial, with basal leaf rosette and erect stem. Deep tap root. Optimum soil pH range is 5-8 but can be found at pHs down to 4 on surfaceleached limestone soil. Found on both dry and moist infertile soils. Potentially long-lived. Survives tight grazing by sheep and rabbits. Not persistent in tall swards. Seed set low, maybe only 4 seeds per capitulum. Not known whether it forms persistent seed bank. Poor competitor due to low lateral vegetative spread. No reliable information found. Increases biomass slowly from spring through to summer. Flowers June to July, large summer leaves die back in autumn but it remains wintergreen. Subspecies muricata (Gremli) Briq. formerly grown as a fodder plant and now naturalised. No reliable information found. Ca and Mg levels in leaves are high. No reliable information found. 202 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Senecio jacobaea BFBI: Harper & Wood (1957), BCW: Bain. (1991), Grime, Hodgson & Hunt (1996) Erect stem growing from rosette, biennial to perennial. Fairly deep roots. Most frequent on dry soils of pH 7 and above, but will also grow on more acidic soils. Produces abundant seeds but they do not form a persistent seed bank. Can regenerate from root fragments. Colonises open habitats and gaps in grassland. Wind blown seed disperses over considerable distances aided by local turbulence, eg along highways. Little or no reliable information available but can be significant in extreme situations. Seeds germinate in autumn and the following year is spent developing rosette and root system. Flowering occurs in second year, between June and October. Avoided by cattle and horses, but sheep will graze it, apparently with little ill effect. Becomes acceptable when dry which can lead to poisoning when present in hay or if cut/ pulled and left where animals have access to it. Little or no reliable information available. Little or no reliable information available but animal health risks override other feed-value considerations. Contains pyrrolizidine alkaloids which are highly toxic to livestock (Cooper & Johnson 1998). Can be used externally to treat skin disorders (de Baïracli Levy 1984). Taraxacum officinale BFBI: Stewart-Wade and others (2002), Grime, Hodgson & Hunt (1996) Rosette-forming perennial with strong tap root. Found mostly on basic soils, but can tolerate pH levels down to 4.5. Effective colonising species due to early growth and flowering and abundant seed production. Seeds germinate rapidly over a range of temperatures. Seed bank is not persistent but plants can reproduce vegetatively from root fragments (Falkowski and others 1989). Has high requirement for K so may compete for this in the sward. Restriction of K may control its abundance (Tilman and others 1999). Little or no reliable information available but can contribute significantly especially in late spring Wintergreen. Starts growing early in spring, allowing good establishment before grasses have started to grow. Flowers March to October. In pastures, stock will preferentially graze Taraxacum and it can rapidly recover from defoliation and trampling. Useful component of early silage cuts. When cut in May, Taraxacum had a higher dry matter yield than Lolium, but at a later cut (June) it was overtaken. Ensilability is acceptable, with moderate water soluble carbohydrate/ buffering capacity ratio. In same experiment, it had lower net energy value than Lolium (Isselstein 1993). Taraxacum does not have a detrimental effect on forage digestibility when grown with Medicago sativa (Marten and others 1987). Holds its digestibility well throughout the season (Barber 1985). Has high digestibility despite having a high IANP value (index of negative action of phenols) (Mika and others 1998). Micromineral concentration generally higher in Taraxacum than Medicago sativa (Marten and others 1987). Same experiment showed P and K levels to be higher, and Ca and Mg at similar levels to M. sativa. Protein content falls with increasing maturity Taraxacum is said to have medicinal properties. It has been used as a conditioner for racehorses, and for curing complaints and convulsions in young animals (de Baïracli Levy 1984). Has a diuretic effect which could be an issue for housed animals. This property may be lost on ensiling. Causes diarrhoea and a drop in animal performance when proportions of over 30% are grazed in the sward. 203 Appendix 5 (contd.) Summary of agronomic and ecological information by plant species. Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Other forb Species profiles Growth form and habit Environmental factors Regeneration/persistence Competitive ability Productivity Seasonality Utilization/feed value Digestibility Other feed values Animal health Urtica dioica BFBI: Greig-Smith (1948), BCW: Bassett and others (1977), Grime, Hodgson & Hunt (1996) Tall rhizomatous perennial forming dense canopy in summer. Very abundant over pH range 5-8. Can withstand drought but flowering is inhibited (Boot and others 1986). Produces large, persistent seed bank. Highly competitive on nutrient rich soils. Little or no reliable information available but its presence in localised situations (patches on high fertility and disturbed sites) would suggest that it herbage mass per unit area can be very high. Produces young shoots in autumn which overwinter. Flowers May to July and pollen is allergenic. Leaves are relatively short lived. Growth is reduced by repeated cutting. Avoided by cattle, presumable because of stinging hairs. Wilted foliage eaten by horses, and semi-feral ponies will dig up the roots in winter (O’Beirne-Ranelagh 2005). Crude fibre has been reported as 13.7% (Barber 1985) Leaves contain very high levels of N, Ca, Mg, P, Cu and Fe, protein (up to 28%) and fibre. Extremely high calcium content (up to 4.3%) (Barber 1985). As a dry feed additive, it improved the utilization of nutrients and benefited the growth of heifers (Gupta and others 2005). Dried as forage, it is said to have excellent health giving properties, due to its high mineral and protein content. It has been used as an anti-wormer, to increase milk yield and for adding condition to horses (de Baïracli Levy 1984). Not poisonous, but animals have occasionally had extreme reactions to stinging (Cooper and Johnson 1998). Potential as herbal substitute for antibiotic fodder for pigs (Urbanczyk and others 2002). Has powerful antioxidant properties (Gulcin and others 2004, Mavi 2004) Veronica chamaedrys Grime, Hodgson & Hunt (1996) Perennial with shoots prostrate at base with ascending tips. Shallow-rooted. Generally found on soils with pH of more than 6. Absent from sites with soils below pH 4.5. More frequent on infertile soils. Colonises by means of stolons, and can also vegetatively spread by means of detached plant fragments. May form a persistent seed bank. No reliable information found. No reliable information found. Wintergreen. New shoots emerge in early spring. Flowers April to July No reliable information found. No reliable information found. No reliable information found. No reliable information found. 204 Research information note English Nature Research Reports, No. 697 Review of the diet and micro-habitat values for wildlife and the agronomic potential of selected grassland plant species Report Author: Simon Mortimer, Centre for Agri-Environmental Research, University of Reading, PO Box 237, Earley Gate, Reading, RG6 6AR Date: 2006 Keywords: grassland, diversity, insect, microhabitat, bird, diet Introduction Grasslands cover 5.6 million ha of agricultural land in the UK. The intensification of management practices over the last 50 years has increased productivity, but has had significant impacts of grassland biodiversity. Much work has focussed on the restoration of the remaining species-rich areas of grassland. However, in order to meet the requirements of wide-ranging farmland species, consideration needs to be given to methods of enhancing the diversity of species-poor grasslands dominated by ryegrass. The aim of the project was to review two important aspects of any attempts to increase wildlife on improved, relatively fertile grasslands. These issues are firstly, the value to invertebrates, birds and other vertebrates of particular grassland plants that could be introduced into such swards or maintained in them, and secondly the agronomic potential of such species, so that the fit of these swards into viable farming or equine business can begin to be assessed. What was done A list of grassland plant species considered to be of potential wildlife value and able to establish and persist in fertile grasslands was identified, comprising 14 grasses, 11 legumes and 25 other forb species. In addition, 6 grassland weeds were included in the review. Information was collected on the associations between the selected plant species and insects, including herbivores and pollinators. Data was also gathered on the value of the plant species to bird diets, both directly through the provision of foliage and seeds, and indirectly through the supply of invertebrate food. Information was also gathered from agronomic literature on the feed value of the plant species, any impacts on animal health and their productivity in grazed and mown grassland management systems. In addition, data on the success of establishment of the species in grassland restoration experiments was collected. Results and conclusions Plant species supporting specialist associations with greater than 70 insect species were found among the grass species, the legumes and the other forb species. Most insects forming associations were classified as general shoot feeders, feeding on a range of above-ground plant parts. However, significant numbers of species dependent on the presence of stems or flowers and seed heads were found for the legumes (Fabaceae) and composite forbs (Asteraceae). Cirsium species, including pernicious grassland weed species included in the study supported some of the highest numbers of associated invertebrates. The review of the importance of the plant species for provision of direct (seeds, foliage) diet items for birds showed that large-seeded forb species, ie vetches (Vicia spp.) and smaller-seeded species particularly docks (Rumex spp.), plantain (Plantago spp.) and buttercups (Ranunculus spp.) and the foliage of clover (Trifolium spp.) were important diet items for farmland bird species. The plant species with the highest number of specialist insect associations (Dactylis glomerata, Festuca ovina and Lotus corninculatus) provided one possible measure of the diversity of insect taxa important in bird diets, although different plant species had higher numbers of general insect associations (Taraxacum officinale and Rumex spp.). The review has highlighted a group of grassland species that have diet and microhabitat value for insects and birds and have useful agronomic characteristics in terms of productivity and feed value. This group includes grasses (Dactylis glomerata and Festuca spp.), and legumes (Lotus corniculatus, Trifolium pratense, T. repens and Vicia sativa). Some of these have been established successfully in experiments on the restoration of grassland diversity while others are agriculturally-sown species. Lotus corniculatus and Festuca ovina are probably the most difficult to establish in more fertile swards. Other forbs, such as Achillea millefolium, Centaurea nigra, and Plantago lanceolata are of high value for wildlife and are reasonably easy to establish but have lower values for livestock production. The Cirsium species have high value for wildlife but along with other pernicious grassland weeds are actual management problems rather than of being of benefit for livestock production. Rumex acetosa poses less of a weed problem than R. crispus and R. obtusifolius, if not present in quantity, and is able to grow in fertile grasslands. For a significant element of the diet and microhabitat value of the identified grasses, legumes and other forbs to be realised, it is necessary to allow them to develop stems, flowers and seed heads. Thus, rotational grazing and/or infrequent mowing are the optimum management regimes. However, allowing the development of structural heterogeneity in the sward canopy can compromise the agronomic value of the sward. Research is needed on the relative balance between potential biodiversity gains and agronomic implications of relaxing grazing, mowing and fertilizer inputs in areas of improved grassland. Given the management constraints on the provision of beneficial diet items and microhabitats, along with the high biodiversity value of some of the grassland weed species included in the study, it may be more beneficial to focus management aimed at promoting biodiversity on portions of fields, including field margins, for grasslands used for agricultural production. Research is needed to identify the optimal size, density and landscape positioning of such features. The study identified a large number of insect species for which only limited information on microhabitat requirements is available. Whilst systematically acquiring data on the ecology of insect species may be useful for species of conservation concern, it is clearly impractical for the large number of common or widespread insect species listed in this review. Research might be better focussed on providing management tools that promote spatial and temporal heterogeneity in grassland swards. Such tools might include modified mowing regimes, use of mixed stocking or particular livestock types (including horses), and the use of farm yard manure. Such heterogeneity is likely to lead to diversity in botanical composition, canopy structure and spatial patterning within fields, thus providing a range of microhabitats for associated species of grassland fauna. The review pointed to major gaps in the understanding of the value of grassland plant species beyond conventional livestock production, in particular their potential role in improving the sustainability of pastoral systems and value for enhancing the suitability of species-poor grassland for horse grazing. If the area devoted to livestock grazing declines, identifying opportunities for biodiversity enhancement in non-agricultural grasslands is likely to become increasingly important. There is now increasing interest in the secondary dietary attributes of pasture species in terms of their ability to contribute towards animal health and nutrition and to affect the qualities of meat and dairy products from livestock for human nutrition. There is also a need to identify livestock production systems that can meet the demands imposed by changes in climate. The role of multi-species swards is one promising area. Many forbs and some grasses can utilise lower soil horizons for water, or exploit temporal niches for regeneration, and thereby provide a degree of resilience to drought, or ability to recover from floods, compared to the predominant grassland species which are currently grown. This review has confirmed the high value of legumes for invertebrates and birds. The wider use of grass/legume mixes as forage crops has the potential for multiple benefits, including not only biodiversity benefits but also reduced fertilizer inputs and enhanced soil characteristics. Research is needed on the suitability of novel grass/legume mixes and their potential utility in the face of climate change. The introduction of legumes into established swards is likely to yield similar benefits. In this situation, research is needed on methods to promote the persistence of introduced legume species. English Nature’s viewpoint The review is a vital first stage in understanding how the biodiversity of species-poor grassland can be enhanced. The review reveals some potentially useful plant species that have both biodiversity and agronomic value. English Nature needs to work with farmers, horse owners, policy makers and researchers to come up with practical grassland management prescriptions that achieve these multiple benefits. Further information For the full report or other publications on this subject, please contact the Enquiry Service on 01733 455100/101/102 or email enquiries@english-nature.org.uk For further information about the work of English Nature, please visit our website at: www.english-nature.org.uk English Nature is the Government agency that champions the conservation of wildlife and geology throughout England. This is one of a range of publications published by: External Relations Team English Nature Northminster House Peterborough PE1 1UA www.english-nature.org.uk © English Nature 2002/3 Cover printed on Character Express, post consumer waste paper, ECF. ISSN 0967-876X Cover designed and printed by Status Design & Advertising, 2M, 5M, 5M. You may reproduce as many copies of this report as you like, provided such copies stipulate that copyright remains with English Nature, Northminster House, Peterborough PE1 1UA If this report contains any Ordnance Survey material, then you are responsible for ensuring you have a license from Ordnance Survey to cover such reproduction. Front cover phot ographs: Top lef t : Using a home-made mot h t rap. Pet er Wakely/English Nat ure 17,396 M iddle lef t : Co 2 experiment at Roudsea Wood and M osses NNR, Lancashire. Pet er Wakely/English Nat ure 21,792 Bot t om lef t : Radio t racking a hare on Paw let t Hams, Somerset . Paul Glendell/English Nat ure 23,020 M ain: Ident if ying mot hs caught in a mot h t rap at Ham Wall NNR, Somerset . Paul Glendell/English Nat ure 24,888