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Abstract: Studies on the vertical distribution of arthropods in temperate forests have revealed the
uneven vertical distribution of communities. Many factors influence these patterns simultaneously.
However, there are still many questions related to the vertical distribution of Coleoptera in deciduous
forests of the temperate zone. The research was carried out within the territory of the Republic of
Mordovia (the center of the European part of Russia). Fermental traps with a bait made of fermenting
beer with sugar were used to collect Coleoptera. The collections were carried out from May to
September 2020 at five sites in a deciduous forest. We set traps at a height of 1.5, 3.5, 7.5 and 12 m
above the ground) on the branches of trees. Ninety-two species were identified at the end of studies
at different heights. The families Nitidulidae (15 species), Cerambycidae (14 species), Elateridae
(7 species), Curculionidae (7 species) and Scarabaeidae (7 species) had the greatest species diversity.
The greatest species diversity was recorded at a height of 1.5 m, while the smallest one was recorded
at a height of 7.5 m. The minimum number of specimens was recorded at a height of 12 m. The
largest differences in the Jaccard similarity index were obtained between samples from a height of
1.5 and 12 m. The Shannon’s diversity index was higher near the ground than in the tree crowns (at
heights of 7.5 and 12 m), and the Simpson index had the opposite tendency. Glischrochilus hortensis
and to a lesser extent Cychramus luteus preferred to live in the lowest layers of deciduous forest
(1.5 m). Cryptarcha strigata was mainly found with relatively high numbers at heights of 3.5 m and
7.5 m. The abundance and occurrence of Protaetia marmorata and Quedius dilatatus were higher in the
uppermost layers of the crowns. The number of saproxylic beetle species at heights of 3.5–12 m was
almost the same, while in the surface layer it decreased. The number of anthophilic beetle species
was also lower at a low altitude. Our data confirm the relevance of sampling in forest ecosystems at
different altitudes while studying arthropod biodiversity.

Keywords: insects; number of species; beer trap; saproxylic beetles; Mordovia State Nature Reserve

1. Introduction

Forests are three-dimensional ecosystems where all organisms are distributed not only
along various horizontal ecological gradients, e.g., [1–3], but also along the vertical gradient
between forest litter and tree crowns [4]. For example, many studies have been conducted
on the vertical stratification of different insect orders. They revealed certain patterns in
their preferences in forest ecosystems, including Lepidoptera [5–7], Hymenoptera [8–11],
Neuroptera [12,13], Diptera [14–16], and others [17,18].

There are certain results on vertical stratification of Coleoptera as well. Some Scolyti-
nae species were associated with traps exposed at a height of 7 to 21 m, while other species
were associated with a height of 1.2 m [19]. The vertical stratification of Chrysomelidae was
more evident in wet habitats than in dry ones [20]. The distribution of cerambycid beetles
also slightly depends on heights [21]. Cerambycidae diversity in Canadian forests was
higher in canopy than in undergrowth, whereas abundance was higher in undergrowth
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than in canopy [22]. The abundance, species richness and biomass of Cetoniinae were
higher in traps set at an height of 10.5 m. The species richness and abundance of Rutelinae
is higher at an height of 4.5, 7.5 and 10.5 m [23]. Saproxylic Coleoptera in the canopy of
deciduous forest in the Czech Republic outnumbered the undergrowth [24]. Studies in
lowland tropical rainforest in North Queensland, Australia have shown that rare species
occur most of the forest, unlike undergrowth [25]. In temperate deciduous forests of Japan,
abundance Coleoptera was more in the canopy than in undergrowth [26]. A higher abun-
dance and species richness of Coleoptera was observed in the understory of beech-fir and
oak forests in France [27].

The use of various types of traps can influence the results of studies [28–31]. However,
the use of traps with various baits and attractants and traps without baits give similar
results. For example, when using traps with α-pinene, ethanol, ipsdienol, and ipsenol, it
turned out that species richness, species diversity, abundance, number of unique species of
Coleoptera were higher in the undergrowth compared to traps under the canopy [32]. The
average catch of Dicerca divaricata in traps with sex attractants was significantly lower in the
undergrowth than in any other trap locations [33]. Catches of Monochamus galloprovincialis
in traps with various attractants located in tree crowns were significantly larger than in
traps located at lower forest strata [34]. The height of traps with different types of baits
significantly affected the catches of some Cerambycidae and Scolytinae species. Some of
them were caught more often in the canopy, and others—in the undergrowth. Touroult and
Dalens [35] studied longhorn and scarab beetles using baited air traps suspended at three
different heights: 3–5 m (undergrowth), 10–15 m and 25–30 m (under canopy). It turned out
that for longhorn beetles, the abundance was greater in the undergrowth, but the diversity
was much higher in the canopy. For scarab beetles, abundance and diversity were the
same in three layers. Using green and purple multiple-funnel traps baited with ethanol or
ethanol + hardwood beetle pheromone blend, Rassati et al. [36] revealed that Cerambycinae
and certain species of Laminae preferred the canopy, whereas no such pattern was found
in Lepturinae (Cerambycidae) species. When using traps with baits located at heights of
0.2–0.3 m and 18–23 m, Miller et al. [37] found certain preferences for many Coleoptera
species. However, it did not apply to all studied species. In our research, we used fermental
traps to study the vertical stratification of Coleoptera.

2. Materials and Methods
2.1. Study Area

All studies were conducted in the Republic of Mordovia (Temnikov district, Mordovia
State Nature Reserve) (Figures 1 and 2). Mordovia State Nature Reserve is located on the
right bank of the Moksha River and covers an area of 321.62 km2. According to the natural
zoning, the protected area is included in the zone of coniferous-deciduous forests on the
border with the forest-steppe. Forest communities occupy 89.3% of the entire protected
area, representing the largest refugiums for threatened invertebrate species [38,39].

Pinus sylvestris (hereafter—pine) is the main species forming forests. Betula pendula
(hereafter—birch) has the second rank in the forest-covering area. Tilia cordata (hereafter—
linden) forests are situated at the north of the Protected Area. Quercus robur (hereafter—
oak) forests cover small areas in the western part of the Mordovia State Nature Re-
serve. Picea abies (hereafter—spruce) forests are situated mainly in floodplains of rivers
and streams by covering a relatively small area [40]. Forests damaged by wildfire in
2010 are dominated by young small-leaved deciduous trees (Betula pendula, and rarer
Populus tremula, and Alnus glutinosa [41].

The field survey has been carried out in the deciduous forest, consisted of Tilia cordata
(90% of the forest canopy layer) and Quercus robur (10%) with the projective cover of 60%.
Understory layer (projective cover: 70%) is represented by Acer platanoides (Aceraceae)
(projective cover: 65%), Ulmus glabra (Ulmaceae) (10%), Tilia cordata (Malvaceae) (40%),
Euonymus verrucosus (Celastraceae) (solitary plants). Ground layer (projective cover: 85%)
consists of Carex pilosa (Cyperaceae) (projective cover: 70%), Mercurialis perennis (Euphor-
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biaceae) (5%), Glechoma hederacea (Lamiaceae) (2%), Asarum europaeum (Aristolochiaceae)
(1%). Other species have projective cover of less than 1%: Aegopodium podagraria (Apiaceae),
Milium effusum (Poaceae), Stachys sylvatica (Lamiaceae), Aconitum septentrionalis (Ranuncu-
laceae), Viola mirabilis (Violaceae), Polygonatum multiflorum (Liliaceae), Pulmonaria obscura
(Boraginaceae), Geum urbanum (Rosaceae), Lathyrus vernus (Fabaceae), Rabelera holostea
(Caryophyllaceae), Rubus saxatilis (Rosaceae), Equisetum sylvaticus (Equisetaceae), Dry-
opteris filix-mas (Dryopteridaceae), Paris quadrifolia (Liliaceae), Galium odoratum (Rubiaceae),
Anthriscus sylvestris (Apiaceae).
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number 5 (the site numbers are shown in Figure 1).

2.2. Sampling Procedures

Coleoptera was collected from May to September 2020 in the spring-autumn period,
when the activity of insects was the highest. All the places where the material was collected
were solid forests. There were five such parts of deciduous forest in total. Each fragment of
the forest was located more than 1.5 km from each other and was independent of the other
fragment under study (replicate). This distance between points is an attempt to ensure
non-dependence between samples; i.e., these areas were separate forest parts. Therefore,
the sampling points were considered as replicates (n = 5).

Each sampling point had a set of four traps installed at different heights (1.5, 3.5, 7.5
and 12 m above the ground) on the branches of trees. We chose this height difference
in order to facilitate and optimize the manual installation of traps without the need to
climb trees or use special techniques and/or equipment. To avoid a possible edge effect,
traps were installed inside forest areas. The total sampling effort was 172 trap exposures.
There were nine replicates at each height (there were seven repetitions in one locality).
144 expositions were made in four collection localities (nine replicates at four heights),
28 expositions were made in one locality (seven replicates at four heights).

All collections were carried out using traps of our own design. A five-liter plastic
container with a window cut out on one side at a distance of 10 cm from the bottom was
used as a trap [42]. Beer was used as bait. Sugar was added to it for fermentation.

The collected samples were delivered in plastic bags containing 70% alcohol from the
forest to the laboratory, then sorted and conserved in alcohol.

2.3. Identification and Taxonomic Position of Samples

The classification of the family-group taxa used in this checklist follows predominantly
Bouchard et al. [43]) with subsequent additions [44]. Changes for Coleoptera have been



Diversity 2021, 13, 508 5 of 19

taken into account from the Catalog of Palaearctic [45–51], as well as for Cucujoidea from
the publication of Robertson et al. [52] and for Curculionoidea from the publication of
Alonso-Zarazaga et al. [53]. To clarify the nomenclature, the cited works were used, as well
as the Catalog of Palaearctic Coleoptera [54,55]. The years of description of some species
are specified according to Bousquet [56]. The species identification was carried out by
L.V. Egorov. The samples are kept in the collection of the Mordovia State Nature Reserve
(Pushta, Russia).

2.4. Data Analyses

When analyzing the results, we used only data on the quantitative parameter (number)
of all Coleoptera individuals in traps for exposure time. Exposure time is the period
between hanging a trap and taking samples for analysis (expressed in days). Mean number
(M, expressed in %) was calculated based on the exposures of all traps at a given height.
Occurrence is the ratio of the number of samples in which a species (taxonomic group)
is present to the total number of samples (expressed in %). Saproxylic species were
determined taking into account the approaches adopted by a number of authors [57–59].
The anthophilic species were classified according to our own long-term observations.

To compare species similarity between study plots we used Jaccard index. We did not
take into account insects, which were not identified to species level. Based on the collected
data, we calculated widely used biodiversity indices, namely the Shannon’s Diversity
Index and the Simpson’s diversity index [60,61].

Statistical analyses were carried out using PAST 4.07. The ordination techniques,
using the principal component analysis (PCA), defined the major gradients in the spatial
arrangement of the studied species selected for the analysis. For ecological interpretation
of the ordination axes, groups of the height of bait trap positions were plotted onto the
PCA ordination diagram as supplementary environmental data. We analyzed the species,
which were represented at least 30 individuals during the sampling period.

3. Results

As a result of processing the material, 92 species from 26 Coleoptera families (Table A1)
were identified. A total of 7882 individuals have been studied. Some specimens from
the families Staphylinidae, Nitidulidae, Ptinidae, and Buprestidae could not be identified
to species. Such families as Nitidulidae (15 species), Cerambycidae (14 species), Elateri-
dae (7 species), Curculionidae (7 species) and Scarabaeidae (7 species) had the greatest
species diversity (Figures 3 and 4). Representatives of these five families and the family
Staphylinidae made up a total of 91.1% of all studied specimens.

Cryptarcha strigata (Fabricius, 1787) (a total of 3315 individuals), Glischrochilus hortensis
(Geoffroy, 1785) (891 individuals), Protaetia marmorata (Fabricus, 1792) (821 individuals),
Quedius dilatatus (Fabricius, 1787) (643 individuals), Cychramus luteus (Fabricius, 1787)
(452 individuals), Soronia grisea (Linnaeus, 1758) (361 individuals), and Glischrochilus grandis
(Tournier, 1872) (194 individuals) had the greatest numbers in beer traps.

The following 15 species were found at all studied heights (Dendroxena quadrimaculata
(Scopoli, 1771), Quedius dilatatus, Protaetia marmorata, Cantharis nigricans O.F. Müller, 1776,
Cryptarcha strigata, Cryptarcha undata (G.-A. Olivier, 1790), Cychramus luteus, Glischrochilus
grandis, Glischrochilus hortensis, Glischrochilus quadripunctatus (Linnaeus, 1758), Soronia grisea,
Dinoptera collaris (Linnaeus, 1758), Leptura quadrifasciata Linnaeus, 1758, Leptura thoracica
(Creutzer, 1799), Rhagium mordax (De Geer, 1775), Anisandrus dispar (Fabricius, 1792)).

The greatest species diversity (58 species) was recorded at a height of 1.5 m, the
smallest one (40 species)—at of 7.5 m (Table A1). According to the average number of
specimens, the highest numbers were obtained at heights of 1.5 and 3.5 m (on average of
sampling point, 427 and 428 specimens, respectively). The minimum number of specimens
was caught at a height of 12 m. The relative number of saproxylic beetle species was lower
at low altitude, whereas at other altitudes it increased slightly. At heights of 3.5–12 m,
the number of saproxylic species was almost the same (Table A1). The relative number of
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anthophilic species was also lower at low altitude. However, at other heights it sharply
increased (Table A1).
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The calculated Shannon’s and Simpson’s diversity indices showed the following
results. The maximum values of the Shannon’s diversity index and the minimum values of
the Simpson’s diversity index are typical for a height of 1.5 m. Conversely, the minimum
values of the Shannon’s diversity index and the maximum values of the Simpson’s diversity
index are calculated for a height of 7.5 m. At other heights, intermediate values between
these indicators were obtained (Table 1).

Table 1. The main indicators of Coleoptera individuals collected using beer traps at different heights.

Indicators 1.5 m 3.5 m 7.5 m 12 m

Total of individuals 2133 2140 1904 1705
Mean number of individuals 427 428 381 341

Number of species (excluding unidentified ones) 58 43 40 44
Number of saproxylic species (% of the total number of

species at this height) 70.7 81.4 77.5 81.8

Number of anthophilic species (% of the total number of
species at this height) 29.3 44.1 45.0 45.5

Shannon index 2.14 1.74 1.63 1.76
Simpson index 0.21 0.31 0.34 0.27

The calculation of the Jaccard similarity index revealed that there were certain dif-
ferences among the heights at which Coleoptera were recorded (Figure 5). The greatest
differences were obtained between samples from a height of 1.5 and 12 m. At the same
time, the differences between the heights of 3.5 and 7.5 m were minimal.
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In Figure 6, the spatial arrangement of the selected beetle species demonstrated that
the majority of these taxa have no specific preferences to the height in the forest ecosystem.
However, five species were exceptions. So, Cryptarcha strigata mostly occurred at heights of
3.5 m and 7.5 m with a relatively high abundance. Protaetia marmorata had clear preferences
to the highest layer of the forest community (12 m). Quedius dilatatus also preferred the
highest layers of forest crowns, also occurring at an altitude of 7.5 m. In contrary to the
previous species, Glischrochilus hortensis and in the lesser degree Cychramus luteus had
preferences to inhabit the lowest layers of the forest ecosystem (1.5 m).
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diagram as supplementary environmental variables.

The total occurrence of Coleoptera was higher at a height of 1.5 m and gradually
decreased as the height increased, i.e., the higher the traps were located, the lower the
occurrence of beetles. Cryptarcha strigata, Protaetia marmorata, Glischrochilus hortensis and
Soronia grisea had the highest occurrence rates. Thus, those species whose abundance in
traps was high had the highest occurrence rates. Figure 7 shows the analysis of the main
components based on the occurrence of the species selected for analysis. Cryptarcha strigata
occupies a separate position on the chart due to the highest occurrence value with slightly
higher numbers at an altitude of 3.5 m. Soronia grisea was more often found at an altitude
of 3.5 m. The occurrence of Protaetia marmorata, Quedius dilatatus and Cryptarcha undata was
higher at altitudes of 7.5 m and 12.0 m, whereas Glischrochilus hortensis, on the contrary,
was more common at low altitudes—1.5 and 3.5 m. Differences are insignificant in the
occurrence of other beetle species among heights.
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4. Discussion

This study shows the location of Coleoptera clusters selected using beer traps installed
at different heights in temperate forests of European Russia. Different species of Coleoptera
fall into such traps, but most of them are species that fly to the fermenting bait. Previously,
it was determined that such traps attract a small number of species compared to the total
species diversity that falls into these traps. However, the number of specimens actively
flying to bait is extremely high and usually amounts to more than 90% of the total number
of specimens [62]. In these studies, we have obtained similar results.

Our results show that the abundance and species diversity of Coleoptera is higher
when the trap is set at a height of 1.5 m. The Shannon’s diversity index was the highest
near the ground than in the tree crowns (at heights of 7.5 and 12 m), but there were no
differences in total abundance or species richness between the two layers. Ulyshen and
Hanula [63] obtained similar results. Thus, there is a small species diversity and dominance
of one or more species in the crowns of the tree.

There are some species and families that constantly fall into beer traps. Seven species
(Cryptarcha strigata, Glischrochilus hortensis, Protaetia marmorata, Quedius dilatatus,
Cychramus luteus, Soronia grisea, Glischrochilus grandis) were the most widespread
beetles found in this study. Their total number at all heights exceeded 100 specimens, with
an average occurrence ranging from 23% to 98%. These are species with a wide range
and they occur in a wide variety of forest ecosystems, mainly in deciduous and mixed
forests [64–71].

According to our research, despite the fact that most beetle species are distributed
more or less evenly within the vertical section of the forest, we still identified species
that reliably preferred a certain height. For example, Glischrochilus hortensis and to a
lesser extent Cychramus luteus preferred to live in the lowest layers of the forest ecosystem
(1.5 m). Glischrochilus hortensis adults are found on the fermenting sap of Quercus robur
and under the bark of fallen and dying trees Betula pendula, Populus tremula. Larvae
develop under the bark of dying and damaged B. pendula, P. tremula, Q. robur leaves
and in their fermented juice. They can also occur on fermented berries, mushrooms and
vegetables [72–74]. Cychramus luteus imago are anthophiles and are found on flowers in
summer. Later they switch to feeding on Armillaria mellea mushrooms, where their larvae
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develop [75]. Therefore, we assume that both species prefer the lower ground level of
the forest. Cryptarcha strigata was mainly found at medium altitudes (undergrowth) with
relatively high numbers. Usually imago of this species live near the leaking fermenting juice
of Q. robur, where preimaginal phases develop. They occasionally fall on the leaking juice
of P. tremula [73]. The greatest numbers are obtained in biotopes with the predominance of
these species [71].

Protaetia marmorata had a clear preference for the highest layer of the forest. Larvae
of this species develop in the hollow of dead deciduous trees for 3 years, most often in
oaks [68,71,76]. Quedius dilatatus also preferred the highest layers of forest layers, occurring
as well at an altitude of 7.5 m. It shows a connection with Vespa crabro nests, where its
larvae feed on Diptera larvae in the nest debris [77]. It also occurred in wasp nests living in
natural conditions. Such nests are located on old oak trees, apple trees, and other deciduous
trees. The species was also found on fermenting sap on an oak trunk [78]. Both species of
bark beetles Anisandrus dispar and Xyleborinus saxesenii (Ratzeburg, 1837) were caught in
the largest number at an height of 1.5 m. The ambrosia beetles Scolytinae (Curculionidae)
usually prefer to inhabit the lower parts of the tree crowns, so most of them are trapped at
a height of up to 2 m [79–82].

There is an interesting finding in our study. We have registered a relatively small
species diversity of saproxyl beetles at a height of 1.5 m. Saproxylic beetles usually account
for 30% of all Coleoptera species in forest ecosystems [83,84]. Their species diversity
is usually higher in warmer forest areas with an abundance of dead wood, dead trees,
stumps, coarse wood debris [85–90]. Some authors also associate a significant increase in
the species diversity of saproxylic beetles with an increase in temperature in forest areas
with dead wood, on illuminated edges [87,91,92]. Schroeder et al. [93] found differences
in the composition of Coleoptera living in wood between the understory and canopy of
deciduous forests in Canada. Bouget et al. [27] recorded an increase in abundance and
species richness of the proximal species in the undergrowth of beech-fir and oak forests. In
temperate forests, the proportion of saprophages is higher in the lower tiers of the forest,
but in tropical forests, it increased with an increase in the height of traps. This is due
to greater competition among individual groups of insects in the lower tiers of tropical
forests [4]. However, Vodka and Cizek [24] noticed that the diversity of saproxylic species
was higher in the undergrowth than in the canopy at the edge of the forest, while the
opposite situation was observed in the depths of the forest. Preisser et al. [94] noticed that
86 out of 101 collected insect families were more numerous in traps at ground level than in
traps under the canopy (the authors used two types of traps). Gossner et al. [95] noted an
increase in species richness also at the lower levels of the forest. These differences can be
caused by reactions at the level of species and families, which are caused by differences in
behavior, ability to settle, ecological interactions, microclimate or spatial heterogeneity of
the quality and quantity of food [96–99].

It is possible that a bait with a mixture of fermenting beer and sugar has a certain
effect on the process. Some authors [100–102] point out that for traps like ours, alcoholic
fermentation is a key process for attracting beetles, since in the wild fermented tree sap
attracts them. It is possible that at high altitudes there are more such saproxylic beetle
species that are attracted to our baits than in the near-surface layer of the forest.

There is no well-developed herbaceous cover in the studied forest, what can cause the
decrease in the number of anthophilic beetle species at a height of 1.5 m. A closed grove
of trees and a good undergrowth do not allow sunlight to reach the surface of the earth.
That is why herbaceous plants do not develop well. On the other hand, many flowering
shrubs grow in the undergrowth, where anthophiles find their food. It is also possible that
anthophilic species are lured into traps at adjacent heights (3.5 and 7.5 m). The significant
similarity of species diversity at these heights, calculated by the Jaccard similarity index,
can also prove it.

The vertical profile of the air temperature in the forest canopy depends on the time
of day, season, crown shape and species of the main tree species [103,104]. For example,
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the increased openness of the canopy noticeably changes the undergrowth and grassy
layers. This gradient contributes to the vertical distribution of arthropod species in the
forest canopy. Consequently, the availability of resources, the richness of microhabitat and
abiotic conditions can be considered as critical factors affecting the number of arboreal
arthropods. Thus, the insect species composition of the upper parts of the crowns should
differ from the lower layers of the forest [4,11,105–107]. In our study, it turned out that the
main differences in biodiversity were obtained between heights of 1.5 and 12 m. At the
same time, the differences between the heights of 3.5 and 7.5 m were minimal.

The microclimate of the upper tiers of the forest differs to a certain extent from
the microclimate of the undergrowth. In temperate forests, it has special parameters of
temperature, humidity, light, and interspecific interactions [108–110]. For example, the
surface of the leaves of trees can be much warmer than the air temperature in the upper
part of the crown, because they intercept a large amount of incoming radiation [111–113].
Among other things, the complex three-dimensional structure of tree crowns provides an
ecological space for reducing insect predation [114–116].

On the other hand, the microclimate in the undergrowth is also different from the
crown. For example, the temperature and humidity changes are not so significant. This
buffer effect is present in all forests at different latitudes and is relatively independent of
tree species [117–119]. The contribution of the understory to the functioning of temperate
forests is significant but varies depending on the ecosystem function and ecological context,
and, more importantly, the characteristics of the understory [120].

In the surface layer of temperate forests, the average values of temperature and
humidity depend on the elements of the structure of the stand. The diameter of the tree, the
base area and the variety of sizes affect the amount of scattered light [121]. The shrub layer,
the species composition of tree species, dead wood, fallen trees, the remains of stumps
are especially important. They can lead to an increase in the species diversity of insects
of this tier under certain conditions, such as an increase in the temperature of the near-
surface layer [87,122–126]. In addition, there are species that use microhabitats under the
canopy to find partners or prey. Therefore, vertical migrations of individual species occur
permanently or temporarily from one tier of the forest to another, depending on the season,
the stage of the life cycle and even the time of day [114,127,128]. This means that we still
have little information about the functioning of arthropod communities living in various
tiers of deciduous forests of the temperate zone. To improve the understanding of such
interactions, it is necessary to use different methods of data collection, increase the number
of research areas, and expand the taxonomic composition of the studied communities.

5. Conclusions

Ninety-two species were identified as a result of studies at different heights of decidu-
ous forests in the temperate zone of the European part of Russia. The families Nitidulidae
(15 species), Cerambycidae (14 species), Elateridae (seven species), Curculionidae (seven
species) and Scarabaeidae (seven species) had the greatest species diversity. Seven species
had the maximum number in the traps, and 15 Coleoptera species were common to all the
studied heights. The greatest species diversity was obtained at an altitude of 1.5 m, the
smallest—at an altitude of 7.5 m. The highest abundance values were obtained at altitudes
of 1.5 and 3.5 m. The minimum number of specimens was caught at a height of 12 m. The
largest differences in the Jaccard similarity index were obtained between samples from a
height of 1.5 and 12 m. The Shannon’s diversity index was higher near the ground than
in the tree crowns (at heights of 7.5 and 12 m), and the Simpson’s Diversity index had the
opposite trend. Glischrochilus hortensis and to a lesser extent Cychramus luteus preferred to
live in the lowest layers of deciduous forest (1.5 m). Cryptarcha strigata was mainly found at
altitudes of 3.5 m and 7.5 m with relatively high numbers. The abundance and occurrence
of Protaetia marmorata were higher in the uppermost layers of the crowns. Quedius dilatatus
also preferred the highest parts of the crown, also occurring at an altitude of 7.5 m. The
number of saproxylic beetle species was practically the same at altitudes of 3.5–12 m, while



Diversity 2021, 13, 508 12 of 19

their relative number decreased in the surface layer. The relative number of anthophilic
beetle species was also lower at low height. We think that in order to manage forests to
increase species diversity, it is necessary to try not only to increase the amount of dead
wood for saproxyl species. Of great importance is the improvement of the herbaceous
cover for anthophilic insects.
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Appendix A

Table A1. Species diversity, total (T), mean number (M, %), and occurrence (O, %) of coleoptera individuals collected using
beer traps at different heights.

Species
1.5 m 3.5 m 7.5 m 12 m

T M O T M O T M O T M O

Carabidae
Calosoma inquisitor (Linnaeus, 1758) 9 0.26 4.65
Limodromus assimilis (Paykull, 1790) 5 0.14 2.33 3 0.09 2.33

Histeridae
Hister unicolor Linnaeus, 1758 1 0.03 2.33

Gnathoncus buyssoni Auzat, 1917 1 0.02 2.33 1 0.02 2.33
Margarinotus striola (C.R. Sahlberg,

1819) 12 0.27 11.63

Platysoma lineare Erichson, 1834 2 0.04 4.65
Silphidae

Dendroxena quadrimaculata
(Scopoli, 1771) 1 0.02 2.33 3 0.07 4.65 3 0.07 4.65 8 0.19 11.63

Necrodes littoralis (Linnaeus, 1758) 4 0.09 9.3 1 0.02 2.33
Nicrophorus vespilloides Herbst, 1783 2 0.04 2.33

Oiceoptoma thoracicum (Linnaeus, 1758) 28 0.73 18.6 4 0.1 9.3 1 0.02 2.33
Staphylinidae

Staphylinidae sp. 180 4.2 76.74 86 1.98 65.12 52 1.28 51.16 16 0.38 27.9
Quedius dilatatus (Fabricius, 1787) 39 0.86 20.93 196 4.36 27.91 243 5.72 34.88 165 3.83 27.91

Scarabaeidae
Cetonia aurata (Linnaeus, 1758) 1 0.02 2.33 1 0.02 2.33 3 0.07 2.33

Gnorimus variabilis (Linnaeus, 1758) 1 0.03 2.33
Protaetia fieberi (Kraatz, 1880) 3 0.09 2.33 3 0.08 4.65 18 0.49 13.95

Protaetia marmorata (Fabricus, 1792) 7 0.16 11.63 83 1.99 48.84 223 5.54 58.14 508 12.5 65.12
Protaetia speciosissima (Scopoli, 1786) 1 0.03 2.33

Protaetia metallica (Herbst, 1782) 1 0.03 2.33
Serica brunnea (Linnaeus, 1758) 2 0.04 4.65

Scirtidae
Contacyphon sp. 1 0.02 2.33 1 0.03 2.33 1 0.02 2.33

Microcara testacea (Linnaeus,1767) 1 0.03 2.33
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Table A1. Cont.

Species
1.5 m 3.5 m 7.5 m 12 m

T M O T M O T M O T M O

Elateridae
Ampedus pomorum (Herbst, 1784) 1 0.02 2.33

Athous haemorrhoidalis (Fabricius, 1801) 2 0.06 2.33 1 0.03 2.33 1 0.03 2.33
Athous subfuscus (O.F. Müller, 1764) 1 0.02 2.33

Dalopius marginatus (Linnaeus, 1758) 1 0.02 2.33
Denticollis linearis (Linnaeus, 1758) 1 0.02 2.33 1 0.02 2.33
Elater ferrugineus Linnaeus, 1758 1 0.03 2.33

Melanotus castanipes (Paykull, 1800) 1 0.02 2.33
Buprestidae
Agrilus sp. 1 0.02 2.33

Lampyridae
Lampyris noctiluca (Linnaeus, 1758) 4 0.09 4.65

Cantharidae
Cantharis nigricans O.F. Müller, 1776 3 0.07 6.98 2 0.04 2.33 1 0.03 2.33 3 0.07 6.98

Podabrus alpinus (Paykull, 1798) 1 0.02 2.33
Dermestidae

Globicornis emarginata (Gyllenhal, 1808) 4 0.09 6.98 2 0.05 2.33 6 0.14 6.98
Ptinidae

Dorcatoma robusta A. Strand, 1938 1 0.02 2.33
Xyletinus sp. 1 0.03 2.33
Melyridae

Dasytes fusculus (Illiger, 1801) 1 0.02 2.33
Dasytes niger (Linnaeus, 1760) 8 0.02 2.33 1 0.02 2.33

Malachius bipustulatus (Linnaeus, 1758) 1 0.02 2.33 2 0.04 4.65 1 0.02 2.33
Monotomidae

Rhizophagus fenestralis (Linnaeus, 1758) 3 0.07 6.98 1 0.02 2.33
Rhizophagus picipes

(G.-A. Olivier, 1790) 1 0.03 2.33

Nitidulidae
Cryptarcha strigata (Fabricius, 1787) 665 14.9 97.67 993 22.7 100 993 23.15 97.67 664 15.6 97.67

Cryptarcha undata (G.-A.Olivier, 1790) 9 0.21 16.28 24 0.58 34.88 27 0.65 37.21 37 0.94 39.53
Cychramus luteus (Fabricius, 1787) 307 6.82 55.81 88 1.96 20.93 36 0.84 16.28 21 0.48 13.95

Cychramus variegatus (Herbst, 1792) 5 0.11 9.3 5 0.11 9.3
Cyllodes ater (Herbst, 1792) 1 0.02 2.33 2 0.04 4.65

Epuraea guttata (G.-A. Olivier, 1811) 7 0.15 13.95 5 0.12 11.63 4 0.1 6.98
Epuraea sp. 91 2.2 58.14 40 0.95 41.86 21 0.51 27.91 40 0.9 16.28

Glischrochilus grandis (Tournier, 1872) 78 1.92 37.21 81 1.87 27.91 24 0.58 18.6 11 0.26 11.63
Glischrochilus hortensis (Geoffroy, 1785) 392 8.96 69.76 291 6.51 46.51 127 3.06 32.56 81 1.95 30.23

Glischrochilus quadriguttatus
(Fabricius, 1777) 35 0.79 30.23 18 0.41 23.26 8 0.2 9.3

Glischrochilus quadripunctatus
(Linnaeus, 1758) 39 0.87 30.23 11 0.24 18.6 2 0.04 4.65 2 0.04 4.65

Glischrochilus quadrisignatus (Say, 1835) 1 0.02 2.33 1 0.02 2.33 1 0.02 2.33
Meligethes sp. 1 0.03 2.33

Omosita depressa (Linnaeus, 1758) 1 0.02 2.33 1 0.02 2.33
Omosita discoidea (Fabricius, 1775) 1 0.02 2.33

Soronia grisea (Linnaeus, 1758) 82 1.99 46.51 143 3.57 53.49 84 2.17 39.53 52 1.29 32.56
Soronia punctatissima (Illiger, 1794) 1 0.02 2.33 1 0.02 2.33 1 0.02 2.33

Cucujidae
Cucujus haematodes (Erichson, 1845) 1 0.03 2.33

Pediacus depressus (Herbst, 1797) 4 0.09 6.98 1 0.03 2.33
Coccinellidae

Calvia decemguttata (Linnaeus, 1767) 1 0.02 2.33 1 0.02 2.33 1 0.03 2.33
Chilocorus renipustulatus

(L.G. Scriba, 1791) 1 0.03 2.33

Psyllobora vigintiduopunctata
(Linnaeus, 1758) 1 0.03 2.33
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Table A1. Cont.

Species
1.5 m 3.5 m 7.5 m 12 m

T M O T M O T M O T M O

Melandryidae
Orchesia fasciata (Illiger, 1798) 1 0.02 2.33
Orchesia micans (Panzer, 1793) 1 0.02 2.33

Phloiotrya subtilis (Reitter, 1897) 1 0.02 2.33
Mycetophagidae

Litargus connexus (Geoffroy, 1785) 2 0.05 4.65 2 0.04 4.65
Mycetophagus ater (Reitter, 1879) 1 0.02 2.33 1 0.02 2.33

Mycetophagus piceus (Fabricius, 1777) 1 0.02 2.33
Mycetophagus quadripustulatus

(Linnaeus, 1760) 1 0.02 2.33 1 0.02 2.33

Mordellidae
Mordellochroa abdominalis

(Fabricius, 1775) 1 0.02 2.33

Tomoxia bucephala A. Costa, 1854 1 0.02 2.33
Tenebrionidae

Bolitophagus reticulatus
(Linnaeus, 1767) 1 0.03 2.33

Lagria hirta (Linnaeus, 1758) 1 0.02 2.33 1 0.02 2.33
Pyrochroidae

Schizotus pectinicornis (Linnaeus, 1758) 1 0.03 2.33
Pyrochroa coccinea (Linnaeus, 1760) 1 0.02 2.33

Cerambycidae
Alosterna ingrica (Baeckmann, 1902) 1 0.02 2.33 1 0.02 2.33
Alosterna tabacicolor (De Geer, 1775) 4 0.09 2.33

Anoplodera sexguttata (Fabricius, 1775) 1 0.02 2.33
Dinoptera collaris (Linnaeus, 1758) 1 0.02 2.33 1 0.02 2.33 1 0.02 2.33 1 0.03 2.33

Leptura quadrifasciata Linnaeus, 1758 9 0.2 11.63 6 0.13 9.3 4 0.09 6.98 4 0.09 9.3
Leptura thoracica (Creutzer, 1799) 2 0.04 2.33 7 0.16 4.65 6 0.14 6.98 5 0.12 9.3
Molorchus minor (Linnaeus, 1758) 2 0.04 4.65

Necydalis major Linnaeus, 1758 1 0.02 2.33 1 0.03 2.33 1 0.03 2.33
Nivellia sanguinosa (Gyllenhal, 1827) 3 0.07 6.98
Obrium cantharinum (Linnaeus, 1767) 1 0.03 2.33

Oplosia cinerea (Mulsant, 1839) 1 0.02 2.33
Rhagium mordax (DeGeer, 1775) 42 0.94 23.26 9 0.2 9.3 10 0.22 11.63 23 0.56 18.6

Rhagium sycophanta (Schrank, 1781) 1 0.03 2.33 1 0.02 2.33 2 0.06 2.33
Stenocorus meridianus (Linnaeus, 1758) 2 0.04 4.65 1 0.03 2.33

Orsodacnidae
Orsodacne cerasi (Linnaeus, 1758) 1 0.03 2.33

Anthribidae
Gonotropis dorsalis (Gyllenhal, 1813) 1 0.03 2.33

Curculionidae
Anisandrus dispar (Fabricius, 1792) 19 0.52 9.3 6 0.16 4.65 6 0.16 6.98 4 0.11 4.65

Phyllobius argentatus (Linnaeus, 1758) 4 0.09 6.98 6 0.13 9.3 1 0.02 2.33
Phyllobius jacobsoni Smirnov, 1913 1 0.02 2.33

Phyllobius pomaceus Gyllenhal, 1834 2 0.06 2.33 1 0.03 2.33
Platystomos albinus (Linnaeus, 1758) 1 0.02 2.33

Strophosoma capitatum (DeGeer, 1775) 1 0.02 2.33
Xyleborinus saxesenii (Ratzeburg, 1837) 3 0.09 2.33
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