Skip to main content

Abstract

Calcareous peridia are produced by some Myxomycetes during sporulation. At least five basic chemical types of calcareous deposits are recognized which have taxonomic significance at the generic, family or ordinal level. These are: (1) calcium carbonate with calcium phosphate in globular form; (2) crystalline calcium carbonate; (3) globular or cryptocrystalline calcium carbonate; (4) calcium oxalate and; (5) silicates of calcium. Localization of cytoplasmic calcium is similar to that previously described for other species in the Physarales. Calcium is sequestered in mitochondria and vesicles and on vacuolar and cell membranes as seen with TEM, pyroantimonate binding and EDX. Calcium is concentrated near the peridial surface through invaginations of the plasmalemma and may be mobilized from mitochondria and other cytoplasmic sources by vacuoles. Calcium is also associated with a peridial matrix which is apparently seen as fibrillar layers of polysaccharide or mucopolysaccharide in early stages of sporulation. During later stages of sporulation, calcium is sequestered most densely in the external areas of fibrillar polysaccharide. TEM, SEM and HVEM all document the presence of a peridial matrix into which calcium is both deposited and where its final shape is determined. The peridial matrix is a network of fibrous polysaccharide with a mesh of varying pore sizes. Channels and pores opening onto the peridial surface are a regular feature. The pores in the matrix of the fibrillar peridium may influence the final site of deposition of calcareous material. Final morphology of myxomycete peridia and crystalline deposits is influenced in part by the chemical composition of the deposited calcareous material and also by the fibrillar polysaccharide matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ACHENBACH, F., NAIB-MAJANI, W., AND WOHLFARTH-BO’1TERMANN, KE.,1979. Plasmalemma invaginations of Physarum dependent on the nutritional content of the plasmodial environment. Eur. J. Cell Biol., 36: 355–359.

    Google Scholar 

  • ALDRICH, H.C., 1982. Influence of inorganic ions on color of lime in the Myxomycetes. Mycologia, 74: 404411.

    Google Scholar 

  • BECHTEL, D.B. AND HORNER, H.T., 1975. Calcium excretion and deposition during sporogenesis in Physarella oblonga calcification. Calc. Tiss. Res., 18: 195–213.

    Google Scholar 

  • BROOKS, T.E., KELLER, H.W. AND CHASSAIN, M., 1977. Corticolous Myxomycetes VI: A new species of Diderma. Mycologia, 69: 179–184.

    Google Scholar 

  • CHARVAT, I., ROSS, I.K., AND CRONSHAW, J., 1973. Ultrastructure of the plasmodial slime mold Perichaena vennicularis II. Formation of the peridium. Protoplasma, 78: 1–19.

    Google Scholar 

  • CHEUNG, L., HENNEY, H.R., AND CLARK, W.H., 1974. Ultrastructure of pure cultures of Physarum fiavicomum 1. Conversion of a plasmodium to microplasmodia and microsclerotia, and the process of slime secretion. Cytobios, 9: 193–205.

    Google Scholar 

  • COLLINS, O.R., 1979. Myxomycete biosystematics: some recent developments and future research opportunities. Bot. Rev., 45: 145–201.

    Google Scholar 

  • DANIEL, J.W., AND JARLFORS, U., 1972a. Plamsodial ultrastructure of the Myxomycete Physarum polycephalum. Tissue and Cell, 4: 15–36.

    Google Scholar 

  • DANIEL, J.W., AND JARLFORS, U., 1972b. Light-induced changes in the ultrastructure of a plasmodial Myxomycete. Tissue and Cell, 4: 405–426.

    Google Scholar 

  • DUKE, S.O., VAUGHN, K.C., AND WAUCHOPE, R.D. 1985. Effects of glycosate on uptake, translocation and intracellular localization of metal cations in soybean, (Glycine max) seedlings. Pesticide Biochem. Physiol., 24: 384–394.

    Google Scholar 

  • ETTIENNE, E., 1972. Subcellular localization of calcium repositories in plasmodia of the acellular slime mold, Physarum polycephalum. J. Cell Biol., 54: 179–184.

    Article  PubMed  CAS  Google Scholar 

  • FRIEDMAN, G.M., 1959. Identification of carbonate minerals by staining methods. J. Sed. Petrol., 29: 8797.

    Google Scholar 

  • GAMIER, T.W. AND COLLINS, O.R., 1984. Comparative SEM observations of sporophore characteristics in three species of Didymium ( Myxomycetes, Physarales) Mycologia 76: 650–664.

    Google Scholar 

  • GUSTAFSON, R.A. AND THURSTON, E.L., 1974. Calcium deposition in the myxomycete Didymium squamulosum. Mycologia, 66: 397–412.

    CAS  Google Scholar 

  • HENNEY, M.R., ALEXOPOULOS, C.J. AND SCHEEFL, R.W. 1980. Didymium atrichum A new myxomycete from south-central Texas. Mycotaxon, 11: 150–164.

    Google Scholar 

  • KELLER, H.W., 1970. Didymium saturnus, a new myxomycete occurring on straw stacks. Mycologia, 62: 1061 1066.

    Google Scholar 

  • KESSLER, D., 1982. Plasmodial structure and motility. In Cell Biology of Physarum and Didymium. Vol 1: organisms, nucleus, and cell cycle. pp. 442. (ed. Aldrich, H.C., and Daniel, J.W. ), Academic Press.

    Google Scholar 

  • KOWALSKI, D.T., 1972. Squamuloderma: a new genus of Myxomycetes. Mycologia, 64: 282–1289.

    Google Scholar 

  • MCCORMICK, J.J., BLOMQUIST, J.C. AND RUSCH, H.P., 1970. Isolation and characterization of an extracellular polysaccharide from Physarum polycephalum. J. Bacteriol., 104: 1110–1118.

    PubMed  CAS  Google Scholar 

  • NELSON, R.K., SCHEETZ, R.W. AND ALEXOPOULOS, C.J., 1977. Elemental composition of Metatrichia vesparium sporangia. Mycotaxon, 5: 65–375.

    Google Scholar 

  • NICHOLLS, T.J., 1972. The effects of starvation and light on intramitochondrial granules in Physarum polycephalum. J. Cell Sci., 10: 1–14.

    PubMed  CAS  Google Scholar 

  • POBEQUIN, T. 1954. Contribution a l’étude des carbonates de calcium, precipitation du calcaire par les végétaux comparison avec le monde animal. Ann. Sci. Nat. Botan. Biol. Végétale Ser. 11, 15: 9–109.

    Google Scholar 

  • RAUB, T.J. AND ALDRICH, H.C., 1982. Sporangia, spherules, and microcysts. In Cell biology of Physarum and Didymium Vol II: differentiation, metabolism and methodology, pp 373 (ed. Aldrich, H.C. and Daniel, J.W. ), New York, Academic Press.

    Google Scholar 

  • REYNOLDS, E.S., 1963. The use of lead citrate at high pH as an electron opaque stain for electron microscopy. J. Cell Bio1. 17: 208–212.

    Article  CAS  Google Scholar 

  • RHEA, R.P. 1966, Electron microscopic observations of the slime mold Physarum polycephalum with specific reference to fibrillar structures. J. Ultrastr. Res., 15: 349–379.

    Google Scholar 

  • SCHOKNECHT, J.D. AND SMALL, E.B., 1972. Scanning electron microscopy of the acellular slime molds (Mycetezoa = Myxomycetes) and the taxonomic significance of surface morphology of spores and accessory structures. Trans. Amer. Microsc. Soc., 91: 380–410.

    Google Scholar 

  • SCHOKNECHT, J.D., 1975. SEM and X-ray microanalysis of calcareous deposits in myxomycete fructifications. Trans. Amer. Microsc. Soc., 94: 216–233.

    Google Scholar 

  • SCHOKNECHT, J.D. AND KELLER, H.W., 1977. Peridial composition of white fructifications in the Trichiales (Perichaena and Dianema). Can. J. Bot., 55: 1807–1819.

    Google Scholar 

  • SHEEN, Si., GAILEY, F.B., MILLER, D.M., ANDERSON, J.D., BARGMANN, Ti., AND CARTER, D.A. 1969. Sol-gel differences in plasmodia of the acellular slime mold, Physarum polycephalum. Bioscience, 19: 1003–1005.

    Google Scholar 

  • SIMON, H. AND HENNEY, H.R., 1970. Chemical composition of slime from three species of Myxomycetes. Fed. Eur. Biochem. Soc. Lett., 7: 80–82.

    Google Scholar 

  • SIMPSON, J.A. AND SPICER, S.S., 1975. Selective subcellular localization of cations with variants of the potassium (pyro) antimonate technique. J. Histochem. Cytochem., 23: 575–598.

    Google Scholar 

  • SLOCUM, R.D. AND ROUX, S., 1982. An improved method for the subcellular localization of calcium using a modification of the antimonate precipitation technique. J. Histochem. Cytochem., 30: 617–620.

    Google Scholar 

  • SPURR, A.R., 1969. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastr. Res., 26: 31–43.

    Google Scholar 

  • WALTON, J., 1979. Lead aspartate an en bloc contrast stain particularly useful for ultrastructural enzymology. J. Histochem. Cytochem., 27: 1337–1342.

    Google Scholar 

  • WHITNEY, K.D. AND ARNOTT, H.J., 1986a. Morphology and development of calcium oxalate deposits in Gilbertella persicaria ( Mucorales ). Mycologia, 78: 42–51.

    Google Scholar 

  • WHITNEY, K.D. AND ARNOTT, H.J., 1986b. Calcium oxalate crystals and basidiocarp dehiscence in Geastrum saccatum. ( Gasteromycetes ). Mycologia, 78: 649–656.

    Google Scholar 

  • WHITNEY, K.D. AND ARNOTT, H.J., 1987. Calcium oxalate crystal morphology and development in Agaricus bisporus. Mycologia, 79: 180–187.

    CAS  Google Scholar 

  • WICK, S.M. AND HEPLER, P.K., 1980. Localization of Ca + + containing antimonate precipitate during mitosis. J. Cell Biol., 86: 500–513.

    Article  PubMed  CAS  Google Scholar 

  • WICK, S.M. AND HEPLER, P.K., 1982. Selective localization of intracellular Ca2+ with potassium antimonate. J. Histochem. Cytochem., 30: 1190–1204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schoknecht, J.D., Keller, H.W. (1989). Peridial Calcification in the Myxomycetes. In: Crick, R.E. (eds) Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6114-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6114-6_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6116-0

  • Online ISBN: 978-1-4757-6114-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics