Skip to main content

Cyanobacteria in Deserts — Life at the Limit?

  • Chapter
The Ecology of Cyanobacteria

Summary

Cyanobacteria are primitive phototrophic prokaryotes whose long evolutionary history dates back to the Proterozoic era. Their ubiquity on the planet and dominance in hot and cold deserts is a measure of their ecophysiological resilience and adaptability. They have been studied extensively as part of exobiological research into the limits of life in the Solar System. Desert cyanobacterial communities tolerate desiccation that results from acute water deficiency. and they accumulate compatible solutes to counteract osmotic stresses which result from freezing and high salinities. They also accumulate trehalose as a water replacement mechanism to maintain the functional integrity of membranes during anhydrobiosis. Cyanobacteria tolerate high and low extremes of temperature. Their capacity for screening excessive solar radiation (PAR and UVb) by synthesis of “sunscreen” biochemicals whilst retaining a capacity for shade-adaptation. makes them eminently suited for colonisation of diverse lithic habitats. They pioneer the development of microphytic soil crusts which stabilise mobile desert soils. They colonise fissures in rocks as chasmolithic colonists and penetrate the fabric of porous, translucent rocks to provide the primary-producing basis of endolithic communities ranging from the hottest deserts to the cold Dry Valleys of Antarctica. They biodegrade these rocks to create soils which they enrich and inoculate. Their ability to survive at the limits of life on the surface of the Earth is now being studied as an analogue for past life on Mars ? the ultimate desert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anagnostidis K and Komarek J (1985) Modem approach to the classification of cyanophytes. I — introduction. Arch Hydrobiol (Suppl) 71: 291–302

    Google Scholar 

  • Anagnostidis K and Komarek J (1988) Modem approach to the classification of cyanophytes. 3-Oscillatoriales. Arch Hydrobiol (Suppl) 80: 327–472

    Google Scholar 

  • Bargagli R, Broady PA and Walton DWH (1996) Preliminary investigation of the thermal biosystem of Mount Rittmann fumaroles (northern Victoria Land, Antarctica). Antarct Sci 8: 121–126

    Google Scholar 

  • Belnap J and Gillette DA (1998) Vulnerability of desert biological soil crusts to wind erosion: the influence of crust development, soil texture and disturbance. J Arid Environ 39: 133–142

    Article  Google Scholar 

  • Billi D, Caiola MG, Paoluzzi L and Ghelardini P (1998) A method for DNA extraction from the desert cyanobacterium Chroococcidiopsis and its application to identification of ftsZ. Appl Environ Microbiol 64: 4053–4056

    CAS  PubMed  Google Scholar 

  • Bonani G, Friedmann EI, Ocampo-Friedmann R, McKay CP and Woelfli W (1988) Preliminary report of radiocarbon dating of cryptoendolithic microorganisms. Polarforsch 58: 199–200

    CAS  Google Scholar 

  • Borcheim KY, Bratbak G and Heldal M (1990) Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl Environ Microbiol 56: 352–356

    Google Scholar 

  • Brack A, Forterre P, Pillinger CT, Horneck G, Schidlowski M and W$nke H (1997) ESA Exobiology Team Study on the Search for Life in the Solar System: Final Report, Internal Report, European Space Centre, Sassenheim, 154pp

    Google Scholar 

  • Braune W and Sanke H (1979) Interferometrische Untersuchungen zur Dynamik von Hydratur und Trockenmassegehalt wahrend der Lichtanhängigen Keimungder Akineten von Anabaena variabilis. Z Allg Mikrobiol 19: 535–546

    CAS  PubMed  Google Scholar 

  • British Antarctic Survey (1997) Listof Protected Areas in Antarctica, Foreign and Commonwealth Office, London, 33 pp

    Google Scholar 

  • Broady PA (1981a) The ecology of chasmolithic algae at coastal locations of Antarctica. Phycologia 20: 259–272

    Google Scholar 

  • Broady PA (1981b) The ecology of sublithic terrestrial algae at the Vestfold Hills, Antarctica. Br Phycol J 16: 231–240

    Google Scholar 

  • Broady PA (1981c) Ecological and taxonomic observations on subaerial epilithic algae from Princess Elizabeth Land and MacRobertson Land, Antarctica. Br Phycol J 16:257–266

    Google Scholar 

  • Broady PA (1984) Taxonomic and ecological investigations of algae on steam-warmedsoil on MtErebus, Ross Island, Antarctica. Phycologia 23:257–271

    Google Scholar 

  • Broady PA (1986) Ecology and taxonomy of the terrestrial algae of the Vestfold Hills. In: Pickard J (ed) Antarctic Oasis: Terrestrial Environments and History of the Vestfold Hills, pp 165–202. Academic Press, Sydney

    Google Scholar 

  • Broady PA (1987) A floristic survey of algae at four locations in northern Victoria Land. NZ Antarct Rec 7:8–19

    Google Scholar 

  • Broady PA (1989a) Broadscale patterns in the distribution of aquatic and terrestrial vegetation at three ice-free regions on Ross Island, Antarctica. Hydrobiologia 172:77–95

    Article  Google Scholar 

  • Broady PA (1989b) Survey of algae and other terrestrial biota at Edward VII Peninsula, Marie Byrd Land. Antarct Sci 1:215–224

    Google Scholar 

  • Broady PA (1993) Soils heatedby volcanism. In: Friedmann EI (ed) Antarctic Microbiology, pp 413–432. Wiley-Liss, New York

    Google Scholar 

  • Broady PA (1996) Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers Conserv 5:1307–1335

    Article  Google Scholar 

  • Broady PA, Garrick R and Anderson G (1984) Culture studies on the morphology of ten strains of Antarctic Oscillatoriaceae(Cyanobacteria). Polar Biol 2:233–244

    Article  Google Scholar 

  • Broady PA, Given D, Greenfield LG and Thompson K (1987) The biota and environment of fumaroleson Mount Melbourne, northern Victoria Land. Polar Biol 7:97–113

    Google Scholar 

  • Brock TD (1975) Effect of water potential on a Micocoleus (Cyanophyceae) from a desert crust. J Phycol 11: 316–320

    Google Scholar 

  • Büdel B and Henssen A (1983) Chroococcidiopsis (Cyanophyceae), a phycobiont in the lichen family Lichenaceae. Pbycologia 22:367–375

    Google Scholar 

  • Büdel B and Wessels DCJ (1991) Rock inhabiting blue-green algae/cyanobacteria from hot arid regions. Alg Stud 64: 385–398

    Google Scholar 

  • Caiola MG, Billi D and Friedmann EI (1996) Effect of dessication on envelopes of the cyanobacterium Chroococcidiopsis sp. (Chroococcales). Eur J Phycol 31: 97–105

    Google Scholar 

  • Cameron RE (1962) Species of Nostoc Vaucher occurring in the Sonoran Desert in Arizona. Am Microsc Soc Trans 82:379–384

    Google Scholar 

  • Cameron RE (1966) Soils sampling parameters for extraterrestrial life detection. J Arizona Acad Sci 4: 3–27

    Google Scholar 

  • Cameron RE (1969a) Colddesert characteristics and problems relevant to other arid lands. In: McGinnies WG and Goldman BF (eds) Arid Lands in Perspective, pp 167–205. American Association of Advanced Science, Washington D.C.

    Google Scholar 

  • Cameron RE (1969b) (ed) Jet Propulsion Laboratory, Technical Report 32–1378: Abundance ofmicroflora in soils of desert regions, California Institute of Technology, Pasadena, 1–16pp

    Google Scholar 

  • Cameron RE (1971a) Antarctic soil microbial and ecological investigations. In: Quam LO and Porter HD (eds) Research in the Antarctic, pp 137–189. American Association for the Advancement of Science, Washington D.C.

    Google Scholar 

  • Cameron RE (1971b) Application oflow-latitude microbial ecology to high-latitude deserts. In: Smiley TL and Zumberge JH (eds) Polar Deserts and Modem Man, pp 71–90. University of Arizona Press, Tucson

    Google Scholar 

  • Cameron RE (1971c) Ecology of Blue-greenalgae in Antarctic soils. In: Desikachary TV (ed) International Symposium on Taxonomy and Biology of Blue-green Algae, Madras, 1970, pp 353–384. Bangalore Press, Madras

    Google Scholar 

  • Cameron RE (1972a) Farthest south algae and associated bacteria. Phycologia 11: 133–139

    Google Scholar 

  • Cameron RE (1972b) Microbialand ecological investigations in Victoria DryValley,Southern Victoria Land, Antarctica. In: Llano GA (ed) Antarctic Terrestrial Biology, pp 195–260. American Geophysical Union, Washington, DC.

    Google Scholar 

  • Cameron RE and Blank GB (1966) (eds) Jet Propulsion Laboratory, Technical Report 32-971: Desert algae: soil crusts and diaphanous substrata as algal habitats, California Institute of Technology, Pasadena, 1–41pp

    Google Scholar 

  • Cameron RE and Devaney JR (1970) Antarctic soil algal crusts. A scanning electron and optical microscopestudy. Trans Am Microsc Soc 80:264–273

    Google Scholar 

  • Cameron RE, Honour RC and Morelli FA (1976) Antarctic microbiology— preparationfor Mars life detection, quarantine, and back contamination. In: Heinrich MR (ed) Extreme Environments; Mechanisms of Microbial Adaptation, pp 57–82. Academic Press, New York

    Google Scholar 

  • Campbell IB and Claridge GGC (1987) Antarctica: Soils, Weathering Processes and Environment, Elsevier, Amsterdam

    Google Scholar 

  • Campbell SE (1979) Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota. Orig Life 9:335–348

    Article  CAS  PubMed  Google Scholar 

  • Carr MH (1996) Water on Mars, Oxford University Press, New York, 229 pp

    Google Scholar 

  • Castenholz RW (1992) Species usage, concept and evolution in the Cyanobacteria (blue-green algae). J Phycol 28:737–745

    Article  Google Scholar 

  • Cooke RU and Smalley IJ (1968) Saltweathering in deserts. Nature 220: 1226–1227

    CAS  Google Scholar 

  • Coulson S, Hodkinson ID, Strathdee A, Bale JS, Block W, Worland MR and Webb NR (1993) Simulated climate change: theinteractionbetween vegetation type and microhabitat temperatures at Ny Ålesund, Svalbard. Polar Biol 13:67–70

    Article  Google Scholar 

  • Crowe LM, Mouradian R, Crowe JH, Jackson SA and Womersley C (1984) Effects of carbohydrates on membrane stability at low water activities. Biochim Biophys Acta 769: 141–150

    CAS  PubMed  Google Scholar 

  • Crowe JH, Hoekstra FA and Crowe LM (1992) Anhydrobiosis. Ann Rev Physiol 54: 579–599

    CAS  Google Scholar 

  • Crowe LM and Crowe JH (1992) Anhydrobiosis: a strategy for survival. Adv space Res 12: 239–247

    CAS  PubMed  Google Scholar 

  • Csonka LN and Hanson DA (1991) Prokaryotic osmoregulation: genetics and physiology. Ann Rev Micro 45: 569–606

    CAS  Google Scholar 

  • Davis SN (1974) Hydrogeologyof arid regions. In: Brown GW (ed) Desert Biology, pp 1–30. Academic Press, New York

    Google Scholar 

  • de Winder B (1990) Ecophysiological strategies of drought tolerant phototrophic micro-organisms in dune soil. PhD Thesis, University of Amsterdam. Amsterdam, The Netherlands

    Google Scholar 

  • de Chazal NM, Smaglinski S and Smith GD (1992) Methods involving light variation forisolation of cyanobacteria: characterization of isolates from central Australia. Appl Environ Microbiol 58:3561–3566

    PubMed  Google Scholar 

  • Downes MT, Hrstich L and Vincent WF (1993) Extraction of chlorophyll and carotenoid pigments from Antarctic benthic mats for analysis by HPLC. J Applied Phycology 5:623–628

    CAS  Google Scholar 

  • Drouet F (1981) Summary of the classification of blue-green algae. Beih Nova Hedwigia 66:133–209

    Google Scholar 

  • Drouet F and Daily WA (1956) Revision of the coccoid Myxophyceae. Butler Univ Stud 10:1–218

    Google Scholar 

  • Edwards HGM and Seaward MRD (1993) Raman microscopy of lichen-substratum interfaces. J Hattori Bot Lab 74:303–316

    Google Scholar 

  • Ehling-Schultz M, Bilger W and Scherer S (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179: 1940–1945

    Google Scholar 

  • Engelskjøn T (1986) Botany of two Antarctic mountain ranges: Gjelsvikfjella and Muhlig-Hofmannfjella, Dronning Maud Land. I. General ecology and development of the Antarctic cold desert cryptogam formation. Polar Res 4:205–224

    Google Scholar 

  • Ernst A, Chen TW and Boger P (1987) Carbohydrate formation in rewetted terrestrial cyanobacteria. Oecologia 72:574–576

    Article  Google Scholar 

  • Finegold L, Singer MA, Federle TW and Vestal JR (1990) Compositionandthermal properties ofmembrane lipids in cryptoendolithic lichenmicrobiota fromAntarctica. Appl Environ Microbiol 56:1191–1194

    CAS  PubMed  Google Scholar 

  • Flaibani A, Olsen Y and Painter T (1989) Polysaccharides in desert reclamation: Compositions of exocellular proteoglycan complexes produced byfilamentous blue-greenalgae and unicellular green edaphic algae. Carbohydrate Res 190:235–248

    Article  CAS  Google Scholar 

  • Friedmann EI (1971) Light and scanning electron microscopy of the endolithic desert habitat. Phycologia 10:411–428

    Google Scholar 

  • Friedmann EI (1972) Ecology of lithophytic algal habitats in Middle Eastern and North American deserts. In: Rodin LE (ed) EcophysiologicalFoundationofEcosystems Productivity in Arid Zones, pp 182–185. Nauka USSR Academy of Sciences, Leningrad

    Google Scholar 

  • Friedmann El (1977) Microorganismsin Antarctic desert rocks from Dry Valleys and Dufek Massif. Antarct J U S 12:26–29

    Google Scholar 

  • Friedmann EI (1978) Melting snow in the Dry Valleys is a source of water for endolithic microorganisms. Antarct J U S 13:162–163

    Google Scholar 

  • Friedmann EI (1980) Endolithic microbial life in hotand cold deserts. Orig Life 10:233–245

    Article  Google Scholar 

  • Friedmann El (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Google Scholar 

  • Friedmann EI (1986) The Antarctic cold desert and the search for traces of life on Mars. Adv space Res 6:265–268

    CAS  PubMed  Google Scholar 

  • Friedmann El (1993) Extreme environments, limits of adaptation and extinction. In: Guerrero R and Pedros-Alio C (eds) Trends in Microbial Ecology, pp 9–12. Spanish Society for Microbiology, Barcelona

    Google Scholar 

  • Friedmann EI, Druk AY and McKay CP (1994) Limits of life and microbial extinction in the Antarctic desert. AntarctJ U S 29: 176–179

    Google Scholar 

  • Friedmann El and Galun M (1974) Desert algae, lichens and fungi. In: Brown GWJ (ed) Desert Biology, pp 165–212. Academic Press, New York

    Google Scholar 

  • Friedmann El, Hua MS and Ocampo-Friedmann R (1988) Cryptoendolithic lichen and cyanobacterialcommunities of the Ross Desert, Antarctica. Polarforsch 58:251–259

    CAS  Google Scholar 

  • Friedmann EI, Kappen L, Meyer MA and Nienow JA (1993) Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol 25:51–69

    CAS  Google Scholar 

  • Friedmann EI and Kibler AP (1980) Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microb Ecol 6:95–108

    Article  CAS  Google Scholar 

  • Friedmann EI and Koriem AM (1989) Life on Mars: how it disappeared (if it was ever there). Adv space Res 9:167–172

    CAS  PubMed  Google Scholar 

  • Friedmann El, La Rock P and Brunson JO (1980) Adenosine triphosphate(ATP), chlorophyll, and organic nitrogen in endolithic microbial communities and adjacent soils in the Dry Valleys of S. VictoriaLand. Antarct J U S 15:164–166

    Google Scholar 

  • Friedmann El, Lipkin Y and Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–196

    Google Scholar 

  • Friedmann El, McKay CP and Nienow JA (1987) The cryptoendolithic microbialenvironment in the Ross Desert of Antarctica: Satellite-transmittedcontinuous nanoclimate data, 1984 to 1986. Polar Biol 7:273–287

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI and Ocampo R (1976) Endolithic blue-green algae in the Dry Valleys. Primary producers in the Antarctic desert ecosystem. Science 193:1247–1249

    Google Scholar 

  • Friedmann El and Ocampo-Friedmann R (1984) Endolithic microorganisms in extreme dry environments: Analysis of a lithobiontic microbial habitat. In: Klug MJ and Reddy CA (eds) Current Perspectives in Microbiology, pp 177–185. Amer Soc Microbiol., Washington.

    Google Scholar 

  • Friedmann EI and Ocampo-Friedmann R (1995) A primitive cyanobacteriumaspioneermicroorganism for terraforming Mars. Adv space Res 15:143–246

    Google Scholar 

  • Friedmann El and Weed R (1987) Microbial trace-fossil formation,biogenous, and abiotic weathering in the Antarctic cold desert. Science 236:703–705

    CAS  PubMed  Google Scholar 

  • Fuller WH (1974) Desert soils. In: Brown GW, Jr (ed) Desert Biology, pp 31–101. Academic Press, New York

    Google Scholar 

  • Garcia-Pichel F (1998) Solar ultraviolet and the evolutionary history of cyanobacteria. Orig Life Evol Biosph 28: 321–347

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F and Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 32: 774–782

    Article  Google Scholar 

  • Garcia-Pichel F and Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409

    Article  CAS  Google Scholar 

  • Garcia-Pichel F and Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-likecompounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59:163–169

    CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, WingardC E and Castenholz RW (1993) Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl Environ Microbiol 59:170–176

    CAS  PubMed  Google Scholar 

  • Hunter CN and Mann NH (1992) Genetic manipulation of photosynthetic prokaryotes. In: Mann NH and Carr NG (eds) Photosynthetic prokaryotes, pp 153–179. Plenum Press, New York

    Google Scholar 

  • Jennings DH and Burke RM (1990) Compatible solutes-the mycological dimension and their role as physiological buffering agents. New Phytol 116:277–283

    CAS  Google Scholar 

  • Johnston CG and Vestal JR (1989) Distribution of inorganic species in two Antarctic cryptoendolithic microbial communities. Geomicrobiol J 7:137–153

    CAS  PubMed  Google Scholar 

  • Johnston CG and Vestal JR (1991) Photosynthetic carbon incorporation and turnover in Antarctic cryptoendolithic microbial communities: are they the slowest-growing communities on earth? Appl Environ Microbiol 57:2308–2311

    CAS  PubMed  Google Scholar 

  • Johnston CG and Vestal JR (1993) Biogeochemistry of oxalate in the Antarctic cryptoendolithic lichen-dominated community. Microb Ecol 25:305–319

    Article  CAS  Google Scholar 

  • Kappen L, Friedmann EI and Garty J (1981) Ecophysiology of lichens in the Dry Valleys of Southern Victoria Land, Antarctica, I. Microclimate of the cryptoendolithic lichen habitat. Flora 171:216–235

    Google Scholar 

  • Karentz D (1994) Ultraviolet tolerance mechanisms in Antarctic marine organisms. In: Weiler CS and Penhale PA (eds) Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, pp. 93–110. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Klein HP (1979) The Viking Mission and the search for life on Mars. Rev Geophys Space Phys 17:1655–1662

    Google Scholar 

  • Lange OL, Kidron GJ, Budel B, Meyer A, Kilian E and Abelovich A (1992) Taxonomic composition and photosynthetic characteristics of the “biological crusts” covering sand dunes in the western Negev Desert. Functional Ecology 6:519–527

    Google Scholar 

  • Lange OL, Meyer A and Biidel B (1994a) Net photosynthesis activation of a desiccated cyanobacterium without liquid water in high air humidity alone. Experiments with Microcoleus sociatus isolated from a desert soil crust. Functional Ecology 852–57

    Google Scholar 

  • Lange OL, Meyer A, Zellner H and Heber U (1994b) Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert. Functional Ecology 8:253–264

    Google Scholar 

  • Mazor G, Kidron GJ, Vonshak A and Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol Ecol 21:121–130

    CAS  Google Scholar 

  • McKay CP (1986) Exobiology and future Mars missions: The search for Mars’ earliest biosphere. Adv Space Res 6:269–285

    CAS  PubMed  Google Scholar 

  • McKay CP (1997) The search for life on Mars. Orig Life Evol Biosph 27:263–289

    Article  CAS  PubMed  Google Scholar 

  • McKay CP and Friedmann EI (1985) The cryptoendolithlic microbial environment in the Antarctic cold desert: Temperature variations in nature. Polar Biol 4:19–25

    Article  CAS  PubMed  Google Scholar 

  • McKay CP, Friedmann EI, Wharton RA and Davies W (1992) History of water on Mars: a biological perspective. Adv space Res 12:(4)231–(4)238

    PubMed  Google Scholar 

  • Miller DM, Jones JH, Tindall DR and Schmid WE (1976) Ion metabolism in a halophilic blue-green alga, Aphanothece halophytica. Arch Mikrob 111:145–149

    CAS  Google Scholar 

  • Miotke F-D (1985) Die Dünen im Victoria Valley, Victoria-Land, Antarktis ein Beitrag zur aolischen Formung im extrem kalten Klima. Polarforsch 55:79–125

    Google Scholar 

  • Montiel PO and Cowan DA (1993) The possible role of soluble carbohydrates and polyols as cryoprotectants in Antarctic plants. In: Heywood RB (ed) University Research in Antarctica, 1989–92. Proceedings of the British Antarctic Survey Antarctic Special Topic Award Scheme Round 2 Symposium, 30 September–1 October 1992, pp 119–125. British Antarctic Survey, Cambridge

    Google Scholar 

  • Nienow JA and Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic Microbiology, pp 343–412. Wiley-Liss, New York

    Google Scholar 

  • Nienow JA, McKay CP and Friedmann EI (1988a) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Mathematical models of the thermal regime. Microb Ecol 16:253–270

    CAS  PubMed  Google Scholar 

  • Nienow JA, McKay CP and Friedmann EI (1988b) Cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in photosynthetically active region. Microb Ecol 16:271–289

    CAS  PubMed  Google Scholar 

  • Ocampo-Friedmann R, Meyer MA, Chen M and Friedmann EI (1988) Temperature response of Antarctic cryptoendolithic photosynthetic microorganisms. Polarforsch 58: 121–124

    CAS  Google Scholar 

  • Olie JJ and Potts M (1986) Purification and biochemical analysis of the cytoplasmic membrane from the desiccation-tolerant cyanobacterium Nostoc commune UTEX 584. Appl Environ Microbiol 52:706–710

    CAS  PubMed  Google Scholar 

  • Painter T (1993) Carbohydrate polymers in desert reclamation-the potential of microalgal biofertilizers. Carbohydrate Polym 20:77–86

    Article  CAS  Google Scholar 

  • Palmer RJJ and Friedmann EI (1990) Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microb Ecol 19:111–118

    Article  PubMed  Google Scholar 

  • Parish TR (1988) Surface winds over the Antarctic continent: a review. Rev Geophys Space Phys 26: 169–180

    Google Scholar 

  • Parker BC and Wharton RA (1985) Physiological Ecology of blue green algal mats (modern stromatolites) in Antarctic oasis lakes. Arch Hydrobiol Alg Stud 38/39: 331–348

    Google Scholar 

  • Parker BC, Ford AB, Allnutt T, Bishop B and Wendt S (1977) Baseline microbiology for soils of the Dufek Massif. Antarct J US 12:24–26

    Google Scholar 

  • Potts M (1994) Desiccation resistance of prokaryotes. Microbiol Revs 58: 755–805

    CAS  Google Scholar 

  • Potts M (1996) The anhydrobiotic cyanobacterial cell. Physiol Plant 97: 788–794

    Article  CAS  Google Scholar 

  • Potts M and Friedmann EI (1981) Effects of water stress on cryptoendolithic Cyanobacteria from hot desert rocks. Arch Mikrobiol 130:267–271

    CAS  Google Scholar 

  • Potts M, Olie JJ, Nickels JS, Parsons J and White DC (1987) Variation in phospholipid ester-linked fatty acids and carotenoids of desiccated Nostoc commune (Cyanobacteria) from different geographic locations. Appl Environ Microbiol 53:4–9

    CAS  PubMed  Google Scholar 

  • Reed RH, Richardson DL, Warr SRC and Stewart WDP (1984) Carbohydrate accumulation and osmotic stress in cyanobacteria. J Gen Microbiol 130: 1–4

    CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M and Stanuer RY (1979) Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. J Gen Microbiol 111: 1–61

    Google Scholar 

  • Russell NC, Edwards HGM and Wynn-Williams DD (1998) FT-Raman spectroscopic analysis of endolithic microbial communities from Beacon sandstone in Victoria Land, Antarctica. Antarct Sci 10: 63–74

    Google Scholar 

  • Ryan PG, Watkins BP, Smith RIL, Dastych H, Eicker A, Foissner W, Heatwole H, Miller WR and Thompson G (1989) Biological survey of Robertskollen, western Dronning Maud Land: area description and preliminary species lists. S Afr J Antarct Res 19: 10–20

    Google Scholar 

  • Sagan C (1972) The Viking Symposium. Icarus 16: 1–227

    Article  Google Scholar 

  • Scherer S, Chen TW and Boger P (1988) A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune. Plant Physiol 88:1055–1057

    CAS  Google Scholar 

  • Scherer S and Zhong ZP (1991) Desiccation independence of terrestrial Nostoc commune ecotypes (Cyanobacteria). Microb Ecol 22:271–283

    Google Scholar 

  • Schopf JW (1993) Microfossils of the early Archean Apex chert: new evidence of the antiquity of life. Science 260: 640–646

    CAS  PubMed  Google Scholar 

  • Schopf JW and Walter MR (1982) Origin and early evolution of cyanobacteria:the geological evidence. In: Carr NG and Whitton BW (eds) The Biology of Cyanobacteria, pp 543–564. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Seaburg KG, Parker BC, Prescott GW and Whitford LA (1979) The Algae of Southern Victoria land.A Taxonomic and Distributional Study, Bibliotheca Phycologia, Vaduz, 169 pp

    Google Scholar 

  • Siebert J, Hirsch P, Hoffmann B, Gliesche CG, Peissl K and Jendrach M (1996) Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace (Asgard Range): diversity, properties and interactions. Biodivers Conserv 5: 1337–1363

    Article  Google Scholar 

  • Smith G, Lynch R, Jacobson G and Barnes C (1990) Cyanobacterial nitrogen fixation in arid soils of central Australia. FEMS Microbiol Ecol 74:79–90

    Article  Google Scholar 

  • Stoker CR and Bullock MA (1997) Organic degradation under simulated Martian conditions. J Geophys Res Planets 102: 10881–10888

    CAS  Google Scholar 

  • Tedrow JCF and Ugolini FC (1966) Antarctic soils. In: Tedrow JCF (ed) Antarctic Soils and Soil Forming Process, pp 161–177. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Tuovila BJ and LaRock PA (1987) Occurrence and preservation of ATP in Antarctic rocks and its implications for biomass determinations. Geomicrobiol J 5:105–118

    CAS  Google Scholar 

  • Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol S11: 13–52

    Google Scholar 

  • Vestal JR (1988a) Biomass of the cryptoendolithic microbiota from the Antarctic desert. Appl Environ Microbiol 54:957–959

    CAS  PubMed  Google Scholar 

  • Vestal JR (1988b) Carbon metabolism in the cryptoendolithic microbiota from the Antarctic desert. Appl Environ Microbiol 54:960–965

    CAS  PubMed  Google Scholar 

  • Vestal JR (1993) Cryptoendolithic communities from hot and cold deserts: speculation on microbial colonization and succession. In: Miles J and Walton DWH (eds) Primary Succession on Land. Special Publication No. 12 of The British Ecological Society, pp 5–16. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Vincent WF (1981) Production strategies in Antarctic inland waters: Phytoplankton eco-physiology in a permanently ice-covered lake. Ecology 62:1215–1224

    Google Scholar 

  • Vincent, WF (1988) Microbial Ecosystems of Antarctica. Cambridge University Press, Cambridge, 304 pp

    Google Scholar 

  • Vincent WF (1996) (ed) Environmental management of a cold desert ecosystem: The McMurdo Dry Valleys. Report of a National Science Foundation Workshop held at Santa Fe, New Mexico, 14–17 March, 1995, Desert Research Institute, University of Nevada, Reno, NV, 57 pp

    Google Scholar 

  • Vincent WF, Howard-Williams C and Broady PA (1993) Microbial communities and processes in Antarctic flowing waters. In: Friedmann EI (ed) Antarctic Microbiology, pp 543–569. Wiley-Liss, New York

    Google Scholar 

  • Vincent WF and James MR (1996) Biodiversity in extreme aquatic environments: lakes, ponds and streams of the Ross Sea sector, Antarctica. Biodivers Conserv 5:1451–1471

    Article  Google Scholar 

  • Walsby AE (1980) The water-relations of gas-vacuolate prokaryotes. Proc Roy Soc Lond B 208:73–102.

    Google Scholar 

  • Warr SRC, Reed RH and Stewart WDP (1988) The compatibility of osmotica in cyanobacteria. Plant Cell Environ 11:137–142

    Google Scholar 

  • Walter MR and Bauld J (1983) The association of sulphate evaporites, stromatolitic carbonates and glacial sediments: examples from the proterozoic of Australia and the Cainozoic of Antarctica. Precambrian Res 21:129–148

    Article  CAS  Google Scholar 

  • Weber B, Wessels DCJ and Budel B (1996) Biology and ecology of cryptoendolithic cyanohacteria of a sandstone plateau in North-Transvaal, South Africa. Alg Stud 83:565–579

    Google Scholar 

  • Weed R and Norton SA (1991) Siliceous crusts, quartz rinds and biotic weathering of sandstones in the cold desert of Antarctica. In: Berthelin J (ed) Diversity of environmental biogeochemistry, pp 327–339. Elsevier, Amsterdam

    Google Scholar 

  • Wessels DCJ and Budel B (1995) Epilithic and cryptoendolithic cyanobacteria of Clarens sandstone cliffs in the Golden Gate Highlands National Park, South Africa. Botanica Acta 108:220–226

    Google Scholar 

  • West NE (1990) Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions. Adv Ecol Res 20: 179–223

    Google Scholar 

  • Wharton RAJ (1993) (ed) McMurdo Dry Valleys: a Cold Desert Ecosystem. Report of a National Science Foundation Workshop held at the Institute of Ecosystem Studies the New York Botanical Garden, Millbrook, New York, 5–7 October 1991, Desert Research Institute, Nevada, 51 pp

    Google Scholar 

  • Wharton RA (1994) Stromatolitic mats in Antarctic lakes. In: Bertrand-Sarfati J and Monty C (eds) Phanerozoic Stromatolites II, pp 53–70. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Whitton BA (1987) Survival and dormancy of blue-green algae. In: Henis Y (ed) Survival and Dormancy of Microorganisms, pp 109–167. Wiley, New York

    Google Scholar 

  • Whitton BA (1992) Diversity, ecology and taxonomy of the cyanobacteria. In: Mann NH and Carr NG (eds) Photosynthetic Prokaryotes, pp 1–51. Plenum Press, New York

    Google Scholar 

  • Wynn-Williams DD (1990) Ecological aspects of Antarctic microbiology. In: Marshall KC (ed) Advances in Microbial Ecology, pp 71–146. Plenum Press, New York

    Google Scholar 

  • Wynn-Williams DD (1991) Aerobiology and colonization in Antarctica — the BIOTAS Programme. Grana 30:380–393

    Google Scholar 

  • Wynn-Williams DD (1994) Potential effects of ultraviolet radiation on Antarctic primary terrestrial colonizers: Cyanobacteria, algae and cryptogams. In: Weiler CS and Penhale PA (eds) Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, pp 243–257. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Wynn-Williams DD (1996) Antarctic microbial diversity: the basis of polar ecosystem processes. Biodivers Conserv 5:1271–1293

    Article  Google Scholar 

  • Wynn-Williams DD (in press) Antartica as a model for ancient Mars. J Brit Interplanetry Soc (Spec. Iss.: Hiscox J (ed) The Search for Life on Mars)

    Google Scholar 

  • Wynn-Williams DD, Russell NC and Edwards HGM (1997) Moisture and habitat structure as regulators for microalgal colonists in diverse Antarctic terrestrial habitats. In: Lyons WB, Howard-Williams C and Hawes I (eds) Ecosystem Processes in Antarctic Ice-free Landscapes. pp 77–88 Balkema, Rotterdam

    Google Scholar 

  • Xiong F, Komenda J, Kopecky J and Nadhal L (1997 in press) Strategies of ultraviolet-B protection in microscopic algae. Physiol Plant

    Google Scholar 

  • Zent AP and McKay CP (1994) The chemical-reactivity of the martian soil and implications for future missions. Icarus 108:146–157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wynn-Williams, D.D. (2000). Cyanobacteria in Deserts — Life at the Limit?. In: Whitton, B.A., Potts, M. (eds) The Ecology of Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/0-306-46855-7_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-46855-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4735-4

  • Online ISBN: 978-0-306-46855-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics