Skip to main content

Abstract

On the basis of morphological, pathological, host range, anatomical, phylogenetical, and developmental features, and characteristics of the powdery mildew fungus at anamorph, and teleomorph states the major causal organism of crucifer’s powdery mildew has been identified as Erysiphe cruciferarum. Under artificial inoculation conditions three other powdery mildew fungi viz., Golovinomyces cichoracearum, G. orontii, and Oidium neolycopersici are able to complete their anamorph state on a crucifers weed Arabidopsis thaliana. Arabidopsis–powdery mildew host-pathosystem has been used recently as a model system for molecular and genetical studies all over the world. Morphological features of all the four powdery mildew species pathogenic to crucifers’, Brassica species, and Arabidopsis have been described as observed on the host species. Classification, taxonomy, and nomenclature of powdery mildew pathogens of crucifers have been updated on the basis of features on the surfaces of powdery mildew conidia revealed through scanning electron microscopy, and light microscopy at anamorph state where teleomorph state was absent. The four powdery mildew species pathogenic on crucifers have been distinguished on the basis of conidial size, shape, appearance, number of conidia per conidiophore, conidiophores shape, and size, haustoria, hyphal branch angles, conidial germination with respect to temperature, relative humidity, light, and substrate, size of chasmothecia, asci, ascospores, number of ascospores per chasmothecium, and type of appendages. Phylogenetics relationship of crucifers powdery mildew with other powdery mildew species has been determined through sequence analysis of the ITS rDNA, and sequence comparison of DNA encoding the 5.8s, rRNA, and ITS2. The powdery mildew pathogen genomes, and transcriptomes have been determined. Powdery mildew fungi have sizeable genomes, which are about four times larger than those of other ascomycetes. The number of coding genes in the powdery mildew genomes is comparatively low. The structure of powdery mildew family, Erysiphaceae, the position of genes Erysiphe, its sections, and subsections Golovinomyces, key to the recognized genera, and species of the family, and relationship within the family have been exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam L, Somerville SC (1996) Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant J 9:341–356

    Article  CAS  PubMed  Google Scholar 

  • Adam L, Ellwood S, Wilson I, Saenz G, Xiao S, Oliver RP, Turner JG, Somerville S (1999) Comparison of Erysiphe cichoracearum and E. cruciferarum and a survey of 360 Arabidopsis thaliana accessions for resistance to these two powdery mildew pathogens. Mol Plant Microbe Interact 12:1031–1043

    CAS  PubMed  Google Scholar 

  • Arnaud G (1921) Etude sur les champignons parasites. Ann des Epiphy 7:1–115

    Google Scholar 

  • Ashraf S, Yadav B (2009) Studies on the anamorph characters and management of powdery mildew of mustard. Trends Biosci 2(2):79–80

    Google Scholar 

  • Bai YL, Pavan S, Zheng Z, Zappel NF, Reinstadler A, Lotti C, De Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K, Panstruga R (2008) Naturally occurring broad-spectrum powdery mildew resistance in a central American tomato accession is caused by loss of Mlo function. Mol Plant Microbe Interact 21:30–39

    CAS  PubMed  Google Scholar 

  • Blumer S (1933) Die Erysiphaceen Mitteleuropasunter besonderer Beriicksichtigung der Schweiz. Beitr Krypt-Fl Schweiz 7(1):1–483

    Google Scholar 

  • Blumer S (1967) Echte Mehltaupilze (Erysiphaceae). G Fischer, Jena

    Google Scholar 

  • Boesewinkel HJ (1976) Cleistothecia of powdery mildews in New Zealand. Trans Br Mycol Soc 67:143–146

    Google Scholar 

  • Boesewinkel HJ (1977) Identification of Erysiphaceae by conidial characteristics. Rev Mycol 41:493–507

    Google Scholar 

  • Boesewinkel HJ (1980) The morphology of the imperfect states of powdery mildews (Erysiphaceae). Bot Rev 46:167–224

    Google Scholar 

  • Braun U (1977) Das Erysiphaceen-Keimungsbild als taxonomisches Merkmal und Bestimmungshilfe. Boletus 1(1):3–8

    Google Scholar 

  • Braun U (1978) Beitrag zur Systematik und Nomenklatur der Erysiphales. Feddes Repert 88:655–665

    Google Scholar 

  • Braun U (1980a) Morphological studies in the genus Oidium. Flora 170:77–90

    Google Scholar 

  • Braun U (1980b) The genus Leveillula- a preliminary study. Nova Hedwigia 32:565–583

    Google Scholar 

  • Braun U (1981) Taxonomic studies in the genus Erysiphe I. Generic delimitation and position in the system of the Erysiphaceae. Nova Hedwigia 34:679–719

    Google Scholar 

  • Braun U (1987) A monograph of the Erysiphales (powdery mildews). Beihefte zur Nova Hedwigia 89:1–700. J Cramer Berlin, Germany

    Google Scholar 

  • Braun U (1995) The powdery mildews (Erysiphales) of Europe. VEB G Fischer Verlag, Jena

    Google Scholar 

  • Braun U, Cook RTA (2012) Taxonomic manual of the Erysiphales (powdery mildews), CBS biodiversity series no. 11. CBS-KNAW Fungal Diversity Centre, Utrecht

    Google Scholar 

  • Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC (2010) Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. PNAS 107(1):460–465

    CAS  PubMed  Google Scholar 

  • Chiddarwar PP (1955) A new species of Erysiphe. Curr Sci 24:420–421

    Google Scholar 

  • Choi HO, Choi Y, Kim DS, Hwang IS, Choi DS, Kim NH, Lee DH, Shin HD, Nam J, Hwang BK (2009) First report of powdery mildew caused by Erysiphe cruciferarum on Arabidopsis thaliana in Korea. Plant Pathol J 25(1):86–90

    CAS  Google Scholar 

  • Chona BL, Kapoor JN, Gill HS (1960) Studies on powdery mildews from India-I. Indian Phytopathol 13:72–75

    Google Scholar 

  • Cook RTA, Inman AJ, Billings C (1997) Identification and classification of powdery mildew anamorphs using light and scanning electron microscopy and host range data. Mycol Res 101(8):975–1002

    Google Scholar 

  • De Candolle AP (1805) Flore Francaise 2:272–275

    Google Scholar 

  • De Candolle AP (1815) Flore Francaise 6:104–109

    Google Scholar 

  • De Schweinitz LD (1834) Synopsis fungorum in America. Trans Am Philos Soc 4:269–270

    Google Scholar 

  • Dixon GR (1978) Powdery mildews of vegetable and allied crops. In: Spencer DM (ed) The powdery mildews. Academic, London, pp 495–525

    Google Scholar 

  • Dixon G (1981) Pathogens of Brassicas. In: Vegetable crop diseases. Macmillan, London, pp 116–119

    Google Scholar 

  • Farris JJ (1989) The retention index and the rescaled consistency index. Cladistics 5:417–419

    PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    PubMed  Google Scholar 

  • Fries EM (1829) Systema mycologicum 3:234–247

    Google Scholar 

  • Gollner K, Schweizer P, Bai Y, Panstruga R (2008) Natural genetic resources of Arabidopsis thaliana reveal a high prevalence and unexpected phenotypic plasticity of RPW8-mediated powdery mildew resistance. New Phytol 177:725–742

    PubMed  Google Scholar 

  • Golovin N (1958) Obsor rodov semeistva Erysiphaceae. Sborn. Rabot. Inst Prikl Zool I Fitop 5:101–139

    Google Scholar 

  • Hacquard S, Kracher B, Maekawa T, Vernaldi S, Schulze-Lefert P, Ver Loren van Themaat E (2013) Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. PNAS 110(24):E2219–E2228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall D (1994) Interactions of Arabidopsis with fungal pathogens. Ph.D. thesis. Norwich, University of East Anglia

    Google Scholar 

  • Hirata K (1942) On the shape of the germ tubes of Erysipheae. Bull Chiba Coll Hort 5:34–49

    Google Scholar 

  • Hirata K (1955) On the shape of the germ tubes of Erysipheae (II). Bull Fac Agric Niigata Univ 7:24–36

    Google Scholar 

  • Hirata K (1969) Notes on host range and geographic distribution of the powdery mildew fungi II. Trans Mycol Soc Jpn 10(2):42–72

    Google Scholar 

  • Hirata K (1976) Notes on host range and geographic distribution of the powdery mildew fungi VI. Distribution of the hosts of powdery mildew fungi in the families of angiosperms. Trans Mycol Soc Jpn 17:35–62

    Google Scholar 

  • Hirata K, Kojima M (1962) On the structure and sack of some powdery mildews, with some considerations on the significance of the sack. Trans Mycol Soc Jpn 3:43–46

    Google Scholar 

  • Hirata T, Takamatsu S (1996) Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia from several powdery mildew fungi. Mycoscience 37:283–288

    Google Scholar 

  • Homma Y (1937) Erysiphaceae of Japan. J Fac Agric Hokkaida Univ 38:183–461

    Google Scholar 

  • Ialongo MT (1992) Taxonomic study of some species of the genus Erysiphe. Mycotaxon 44:251–256

    Google Scholar 

  • Jarvis W (1964) Thermal and translocated introduction of endophytic mycelium in two powdery mildews. Nature 203:895

    Google Scholar 

  • Jones H, Whipps JM, Gurr SJ (2001) The tomato powdery mildew fungus Oidium neolycopersici. Mol Plant Pathol 2:303–309

    CAS  PubMed  Google Scholar 

  • Jorgensen JH (1988) Erysiphe graminis, powdery mildew of cereals and grasses. Adv Plant Pathol 6:135–157

    Google Scholar 

  • Junell L (1965) Nomencultural remarks on some species of Erysiphaceae. Trans Br Mycol Soc 48(4):539–548

    Google Scholar 

  • Junell L (1967) Erysiphaceae of Sweden. Symbolae Botanicae Upsalienses 19:1–117

    Google Scholar 

  • Kapoor JW (1965) Two powdery mildews from Sikkim. Indian Phytopathol 18:90–91

    Google Scholar 

  • Katumoto K (1973) Notes on the genera Lanomyces Gaum. and Cystotheca Berk. et Curt. Rep Tottori Mycol Inst 10:437–446

    Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth Bisby’s dictionary of the fungi, 10th edn. CAB International, Wallingford

    Google Scholar 

  • Koch E, Slusarenko AJ (1990) Fungal pathogens of Arabidopsis thaliana (L.) Heyhn. Bot Helv 100:257–268

    Google Scholar 

  • Kuhn H, Kwaaitaal M, Kusch S, Acevedo-Garcia J, Wu H, Panstruga R (2016) Biotrophy at its best: novel findings and unsolved mysteries of the Arabidopsis-powdery mildew pathosystem. Arabidopsis Book 14:e0184. https://doi.org/10.1199/tab.0184

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusch S, Ahmadinejad N, Panstruga R, Kuhn H (2014) In silico analysis of the core signaling proteome from the barley powdery mildew pathogen (Blumeria graminis f.sp. hordei). BMC Genomics 15(1):843

    PubMed  PubMed Central  Google Scholar 

  • Leveille J (1851) Organisation et disposition methodique des especes qui composent le genre Erysiphe. Ann Sci Nat Bot III Ser 15:109–179

    Google Scholar 

  • Linnaeus C (1753) Species plantarum. Tomus I. Impensis Laurentii Salvii, Holmiae

    Google Scholar 

  • Marchal E (1902) De la specialization du parasitisme chez l’Erysiphe graminis. Comptes Rendus 135:210–212

    Google Scholar 

  • Marchal E (1903) De la specialization de la parasitism chez.-I: Erysiphe graminis. Compt Rend Acad: des Sci, Paris 135:210–212. 1067–1068; 136, 1280–1281

    Google Scholar 

  • Meena PD, Mehta N, Rai PK, Saharan GS (2018) Geographical distribution of rapeseed-mustard powdery mildew disease in India. J Mycol Plant Pathol 48(3):284–302

    Google Scholar 

  • Mehta N, Sangwan MS, Saharan GS (2005) Fungal diseases of rapeseed-mustard. In: Saharan GS, Mehta N, Sangwan MS (eds) Diseases of oilseed crops. Indus Publication Co, New Delhi, pp 15–86

    Google Scholar 

  • Merat FV (1821) Nouvelle Flore des Environs de Paris, 2nd, vol I. Paris

    Google Scholar 

  • Micali C, Gollner K, Humphry M, Consonni C, Panstruga R (2008) The powdery mildew disease of Arabidopsis: a paradigm for the interaction between plants and biotrophic fungi. Bio One

    Google Scholar 

  • Micali C, Neumann U, Grunewald D, Panstruga R, O’Connell R (2011) Biogenesis of a specialized plant–fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13:210–226

    CAS  PubMed  Google Scholar 

  • Mohanta TK, Bae H (2015) The diversity of fungal genome. Biol Proced Online 17:8

    PubMed  PubMed Central  Google Scholar 

  • Munro JM, Lennard JH (1982) Variation in the development of Erysiphe cruciferarum Opiz. Ex.L Junnel on two cultivars of Brassica napus. Cruciferae Newslett 7:68–69

    Google Scholar 

  • Nagy GS (1977) Erysiphe monardae sp. nov. Phytopathol Z 88:285–286

    Google Scholar 

  • Neger FW (1901) Beitrage zur Biologie der Erysipheen. Flora 88:333–370

    Google Scholar 

  • Neger FW (1902) Beitrage zur Biologie der Erysipheen. Flora 90:221–272

    Google Scholar 

  • O’Donnell KO (1992) Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete Fusarium sambucinum (Gibberella pulicaris). Curr Genet 22:213–220

    PubMed  Google Scholar 

  • Palla E (1899) Uber die gattung Phyllactinia. Ber. Deustch. Bot Ges 17:64–72

    Google Scholar 

  • Parmelee JA (1977) The fungi of Ontario. II. Erysiphaceae (mildews). Can J Bot 55:1940–1983

    Google Scholar 

  • Persoon CH (1796) Observations mycologicae sur descriptions tan novorum quam notibilium fungorum exhibitae. Part 1:115

    Google Scholar 

  • Persoon CH (1801) Synopsis methodica fungorium, vol I, pp 124

    Google Scholar 

  • Plotnikova JM, Reuber TL, Ausubel FM, Pfister DH (1998) Powdery mildew pathogenesis of Arabidopsis thaliana. Mycol Soc Am 90(6):1009–1016

    Google Scholar 

  • Purnell TJA, Sivanesan (1970) Erysiphe cruciferarum Opiz ex Junell. CMI Descr Pathog Fungi Bact 26:251–260

    Google Scholar 

  • Rayss T (1940) Nouvelle contribution a letude de la mycoflore de Palestine (Deuxième partie). Palestine J Bot Jerusalem Ser 1:313–335

    Google Scholar 

  • Rayss T (1947) Nouvelle contribution a letude de la mycoflore de Palestine (Quartième partie). Palestine J Bot Jerusalem Ser 4(2):59–76

    Google Scholar 

  • Rebentish JF (1804) Prodromus florae neomarchicae, pp 360–361

    Google Scholar 

  • Reed GM (1905) Infection experiments with Erysiphe graminis DC. Trans Wis Acad Sci Arts Lett 15:135–162

    Google Scholar 

  • Reed GM (1907) Infection experiments with the mildew on cucurbits, Erysiphe cichoracearum DC. Trans Wis Acad Sci Arts Lett 15:527–547

    Google Scholar 

  • Reed GM (1908) Infection experiments with Erysiphe cichoracearum DC. Bull Univ Wisconsin Sci Ser 3:337–416

    Google Scholar 

  • Reed GM (1909) The mildews of the cereals. Bull Torrey Bot Club 36:353–388

    Google Scholar 

  • Reed GM (1912) Infection experiments with the powdery mildew of wheat. Phytopathology 2:81–87

    Google Scholar 

  • Saenz GS, Taylor JW (1999) Phylogeny of the Erysiphales (powdery mildews) inferred from internal transcribed spacer ribosomal DNA sequences. Can J Bot 77:150–168

    CAS  Google Scholar 

  • Saenz GS, Taylor JW, Gargas A (1994) 18S rRNA gene sequences and supraordinal classification of the Erysiphales. Mycologia 86:212–216

    CAS  Google Scholar 

  • Saharan GS, Kaushik JC (1981) Occurrence and epidemiology of powdery mildew of Brassica. Indian Phytopathol 35:17–21

    Google Scholar 

  • Saharan GS, Sheoran BS (1988) Conidial germination, germ tube elongation and appressorium formation of Erysiphe cruciferarum. Indian Phytopathol 41(1):157–159

    Google Scholar 

  • Salmon ES (1900) A monograph of the Erysiphaceae. Mem Torrey Bot Club 9:1–292

    Google Scholar 

  • Salmon ES (1903a) Infection powers of ascospores in Erysipheae. J Bot 41(159):204–212

    Google Scholar 

  • Salmon ES (1903b) On specialization of parasitism in the Erysiphaceae. Beihefte zum botanischen Centralblatt 14:261–315

    Google Scholar 

  • Salmon ES (1904a) On specialization of parasitism in the Erysiphaceae. New Phytol 3:109

    Google Scholar 

  • Salmon ES (1904b) Mycological notes. J Bot 42:182–186

    Google Scholar 

  • Salmon ES (1904c) On Erysiphe graminis DC. and its adaptive parasitism within the genus Bromus. Ann Mycol 2:255–267

    Google Scholar 

  • Salmon ES (1905a) Cultural experiments with an Oidium on Euonymus japonicas Linn. f. Ann Mycol 3:1–15

    Google Scholar 

  • Salmon ES (1905b) On the variation shown by the conidial stage of Phyllactinia corylea (Pers.) Karst. Ann Mycol 3:493–505

    Google Scholar 

  • Sankhla HS, Dalela GG, Mathur RL (1967) Occurrence of perithecial stage of E. polygoni on B. campestris var. Sarson and B. juncea. Plant Dis Rep 51:800

    Google Scholar 

  • Sawada K (1927) On the systematic investigation of Erysiphe in Formosa. Formosa Dept Agric Govt Res Inst Rep 24:55

    Google Scholar 

  • Sawada K (1949) Fungi from the north-eastern region of Honshu, Japan (1). Erysiphaceae, Tohuku. Biol Res 1:2–8

    Google Scholar 

  • Sawada K (1951) Researches on fungi in the Tohoku district of Japan (I). Erysiphaceae. Bull Govt Forest Exp Sta No. 50

    Google Scholar 

  • Sawada K (1959) Descriptive catalogue of the Formosan Fungi XI. Spec. Bull Coll Agric Nat Taiwan Univ 10:16–24

    Google Scholar 

  • Shin HD, La YJ (1993) Morphology of edge lines of chained immature conidia on conidiophores in powdery mildew fungi and their taxonomic significance. Mycotaxon 66:445–451

    Google Scholar 

  • Singh B (1984) Epidemiology and control of rapeseed-mustard powdery mildew caused by Erysiphe cruciferarum. M.Sc thesis, CCS HAU, Hisar 61p

    Google Scholar 

  • Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stuber K, Ver Loren van Themaat E, Brown JK, Butcher SA, Gurr SJ, Lebrun MH, Ridout CJ, Schulze-Lefert P, Talbot NJ, Ahmadinejad N, Ametz C, Barton GR, Benjdia M, Bidzinski P, Bindschedler LV, Both M, Brewer MT, Cadle-Davidson L, Cadle-Davidson MM, Collemare J, Cramer R, Frenkel O, Godfrey HJ, Hoede C, King BC, Klages S, Kleemann J, Knoll D, Koti PS, Kreplak J, López-Ruiz FJ, Lu X, Maekawa T, Mahanil S, Micali C, Milgroom MG, Montana G, Noir S, O’Connell RJ, Oberhaensli S, Parlange F, Pedersen C, Quesneville H, Reinhardt R, Rott M, Sacristán S, Schmidt SM, Schon M, Skamnioti P, Sommer H, Stephens A, Takahara H, Thordal-Christensen H, Vigouroux M, Wessling R, Wicker T, Panstruga R (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330(6010):1543–1546

    CAS  PubMed  Google Scholar 

  • Speer EO (1975) Untersuchungen zur morphologie und systematic der Erysiphaceen I. Die Gattung Blumeria Golovin und ihre Typusart Erysiphe graminis DC. Sydowia 27:1–6

    Google Scholar 

  • Steiner JA (1908) Die Specialisation der Alchemillenbewohnenden Sphaerotheca humuli (DC.) Burr. Centrallblatt fur Bakt., Parasitenkunde, und Infextious Krankheiten, Abstr II 21:677–736

    Google Scholar 

  • Stevens FL (1925) Plant disease fungi. The Macmillan Company, New York

    Google Scholar 

  • Swofford DL (1993) Phylogenetic analysis using parsimony (PAUP version 3.1.1). Illinois Natural History Survey, Champaign

    Google Scholar 

  • Tai LF (1946) Further studies on the Erysiphaceae of China. Bull Torrey Bot Club 73(2):108–130

    Google Scholar 

  • Takamatsu S, Kano Y (2001) PCR primers useful for nucleotide sequences of rDNA of the powdery mildew fungi. Mycoscience 42:135–139

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Bio Evol 24:1596–1599

    CAS  Google Scholar 

  • Uloth MB, You MP, Barbetti MJ (2017) Plant age and ambient temperature: significant drivers for powdery mildew (Erysiphe cruciferarum) epidemics on oilseed rape (Brassica napus). Plant Pathol. https://doi.org/10.1111/ppa.12740

    Google Scholar 

  • Vogel J, Somerville S (2000) Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proc Natl Acad Sci 97(4):1897–1902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voglino P (1905) Contribuzione allo studio della Phyllactinia corylea. Nuovo Giornale Bot Italiano 12:313–327

    Google Scholar 

  • Wallroth FW (1819) Naturgeschichte des Mucor Erysiphe L. Berl Ges Nat Freunde Verhandl I:6–45

    Google Scholar 

  • Weltzien HC (1963) Erysiphe betae (Vanha) comb, nov., the powdery mildew of beets. Phytopathol Z 47(2):123–128

    Google Scholar 

  • Wen Y, Wang W, Feng J, Luo MC, Tsuda K, Katagiri F, Bauchan G, Xiao S (2011) Identification and utilization of a sow thistle powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis. J Exp Bot 62:2117–2129

    CAS  PubMed  Google Scholar 

  • Weßling R, Panstruga R (2012) Rapid quantification of plant-powdery mildew interactions by qPCR and conidiospore counts. Plant Methods 8:35

    PubMed  PubMed Central  Google Scholar 

  • Weßling R, Schmidt SM, Micali CO, Knaust F, Reinhardt R, Neumann U, Ver Loren van Themaat E, Panstruga R (2012) Transcriptome analysis of enriched Golovinomyces orontii haustoria by deep 454 pyrosequencing. Fungal Gent Biol 49(6):470–482

    Google Scholar 

  • Weßling R, Epple P, Altmann S, He Y, Yang L, Henz SR, McDonald N, Wiley K, Bader KC, Glaßer C, Mukhtar MS, Haigis S, Ghamsari L, Stephens AE, Ecker JR, Vidal M, Jones JDG, Mayer KFX, Ver Loren van Themaat E, Weigel D, Schulze-Lefert P, Dangl JL, Panstruga R, Braun P (2014) Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16(3):364–375

    PubMed  PubMed Central  Google Scholar 

  • West E (1933) Powdery mildew of crape myrtle caused by Erysiphe lagerstroemiae n. sp. Phytopathology 23(10):814–819

    Google Scholar 

  • Whipps JM, Budge SP, Fenlon JS (1998) Characteristics and host range of tomato powdery mildew. Plant Pathol 47:36–48

    Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Innis MA, Gelfrand DH, Sninsky JJ, White TJ (eds) PCR protocols. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wicker T, Oberhaensli S, Parlange F, Buchmann JP, Shatalina M, Roffler S, Ben-David R, Dolezel J, Simková H, Schulze-Lefert P, Spanu PD, Bruggmann R, Amselem J, Quesneville H, Ver Loren van Themaat E, Paape T, Shimizu KK, Keller B (2013) The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat Genet 45(9):1092–1096

    CAS  PubMed  Google Scholar 

  • Xiao S, Ellwood S, Findlay K, Oliver RP, Turner JG (1997) Characterization of three loci controlling resistance of Arabidopsis thaliana accession Ms-0 to two powdery mildew diseases. Plant J 12(4):757–768

    CAS  PubMed  Google Scholar 

  • Yarwood CE (1963) Predisposition to powdery mildew. Phytopathology 53:1144–1145

    Google Scholar 

  • Yarwood CE (1978) History and taxonomy of powdery mildews. In: Spencer DM (ed) The powdery mildews. Academic, London, pp 1–37

    Google Scholar 

  • Zeller KA (1995) Phylogenetic relatedness within the genus Erysiphe estimated with morphological characteristics. Mycologia 87:525–531

    Google Scholar 

  • Zhang D, Ouyang SH, Wang LL, Cui Y, Wu QH, Liang Y, Wang ZZ, Xie JZ, Zhang DY, Wang Y, Chen YX, Liu ZY (2015) Comparative genetic mapping revealed powdery mildew resistance gene MlWE4 derived from wild emmer is located in same genomic region of Pm36 and Ml3D232 on chromosome 5BL. J Integr Agric 14:603–609

    CAS  Google Scholar 

  • Zheng RY, Chen GQ (1978a) Taxonomic studies on the genus Pleochaeta of China. I. A new species on Salicaceae: Pleochaeta salicicola sp. Nov. Acta Microbiol Sin 18:118–121

    Google Scholar 

  • Zheng RY, Chen GQ (1978b) Taxonomic studies on the genus Pleochaeta of China: II. The imperfect state of Pleochaeta: Streptopodium gen. nov. Acta Microbiol Sin 18:181–188

    Google Scholar 

  • Zheng Y, Chen GQ (1980) Taxonomic studies on the genus Erysiphe of China I. New species and new varieties on Caprifoloaceae. Acta Microbiol Sin 20(1):45–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saharan, G.S., Mehta, N.K., Meena, P.D. (2019). The Pathogen. In: Powdery Mildew Disease of Crucifers: Biology, Ecology and Disease Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-9853-7_3

Download citation

Publish with us

Policies and ethics