Skip to main content

2 Excavata: Acrasiomycota; Amoebozoa: Dictyosteliomycota, Myxomycota

  • Chapter
  • First Online:
Systematics and Evolution

Part of the book series: The Mycota ((MYCOTA,volume 7A))

Abstract

The organisms commonly referred to as slime molds belong to three different taxonomic groups, the two largest of which (the dictyostelids and myxomycetes) are closely related members of the supergroup Amoebozoa. Members of the third, and much smaller, group (traditionally known as acrasids but more appropriately referred to as sorocarpic amoebae) belong to the supergroup Excavata. Both dictyostelids and myxomycetes are common to abundant organisms in terrestrial ecosystems. Dictyostelids are most commonly associated with the microhabitat represented by the surface humus layers of soil, whereas the ecological distribution of myxomycetes encompasses a wide range of microhabitats. Myxomycetes, with about 900 described species, are the better known group, and they are more easily collected and studied. Dictyostelids, with approximately 150 species, more than half of which have been described rather recently, are isolated in laboratory culture from samples collected in the field. Only recently have the techniques of modern molecular biology been applied to the study of these two groups in an effort to develop a more complete understanding of their biology, ecology, and phylogeny. Because they have been so poorly studied, little is known about the global distribution and ecology of the acrasids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bonser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn LH, Mann DG, McCourt RM, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    PubMed  Google Scholar 

  • Alexopoulos CJ (1963) The myxomycetes II. Bot Rev 29:1–78

    Google Scholar 

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology, 4th edn. Wiley, New York, NY

    Google Scholar 

  • Baldauf SL, Doolittle WF (1997) Origin and evolution of the slime molds (Mycetozoa). Proc Natl Acad Sci 94:12007–12012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baldauf SL, Roger AJ, Wenk-Siefert J, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977

    CAS  PubMed  Google Scholar 

  • Bapteste E, Brinkmann H, Lee JA, Moore DV, Sensen CW, Gordon P, Duruflé L, Gaasterland T, Lopez P, Müller M, Philippe H (2002) The analysis of 100 genes support the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci U S A 99:1414–1419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baudalf SL (2008) An overview of the phylogeny and diversity of eukaryotes. J Syst Evol 46:263–273

    Google Scholar 

  • Blackwell M, Gilbertson RL (1980) Sonoran desert myxomycetes. Mycotaxon 11:139–149

    Google Scholar 

  • Brown MW, Spiegel FW, Silberman JD (2009) Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evol 26:2699–2709

    CAS  PubMed  Google Scholar 

  • Brown MW, Silberman JD, Spiegel FW (2010) A morphologically simple species of Acrasis (Heterolobosea, Excavata), Acrasis helenhemmesae n. sp. J Eukaryot Microbiol 57:346–353

    CAS  PubMed  Google Scholar 

  • Brown MW, Silberman JD, Spiegel FW (2011) “Slime molds” among the Tubulinea (Amoebozoa): molecular systematics and taxonomy of Copromyxa. Protist 162:277–287

    PubMed  Google Scholar 

  • Cavender JC (1973) Geographical distribution of Acrasiae. Mycologia 65:1044–1054

    Google Scholar 

  • Cavender JC (1978) Cellular slime molds in tundra and forest soils of Alaska including a new species, Dictyostelium septentrionalis. Can J Bot 56:1326–1332

    Google Scholar 

  • Cavender JC (1990) Phylum dictyostelida. In: Margulis L, Corliss CO, Melkonian M, Chapman DJ (eds) Handbook of proctotista. Jones and Bartlett, Boston, MA, pp 88–101

    Google Scholar 

  • Cavender JC, Raper KB (1965a) The Acrasieae in nature. I. Isolation. Am J Bot 52:294–296

    CAS  PubMed  Google Scholar 

  • Cavender JC, Raper KB (1965b) The Acrasieae in nature. II. Forest soil as a primary habitat. Am J Bot 52:297–302

    CAS  PubMed  Google Scholar 

  • Cavender JC, Raper KB (1965c) The Acrasieae in nature. III. Occurrence and distribution in forests of eastern North America. Am J Bot 52:302–308

    CAS  PubMed  Google Scholar 

  • Cavender JC, Vadell EM, Landolt JC, Stephenson SL (2005) New species of small dictyostelids from the Great Smoky Mountains National Park. Mycologia 97:493–512

    PubMed  Google Scholar 

  • Cavender JC, Landolt JC, Ndiritu GG, Stephenson SL (2010) Dictyostelid cellular slime molds of Africa. Mycosphere 1:147–152

    Google Scholar 

  • Cavender JC, Vadell EM, Landolt JC, Winsett KE, Stephenson SL, Rollins AW, Romeralo M (2013) Ten new small dictyostelids from seasonal rain forests of Central America. Mycologia 105(3):610–635

    PubMed  Google Scholar 

  • Chang MT, Raper KB (1981) Mating types and macrocyst formation in Dictyostelium rosarium. J Bacteriol 147:1049–1053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clarholm M (1981) Protozoan grazing of bacteria in soil—impact and importance. Microb Ecol 7:343–350

    CAS  PubMed  Google Scholar 

  • Clark J (2000) The species problem in the myxomycetes. Stapfia 73:39–53

    Google Scholar 

  • Clark J (2008) Reproductive systems and taxonomy in the myxomycetes. Syst Geogr Pt 74:209–216

    Google Scholar 

  • Clark J, Haskins E (2010) Reproductive systems in the myxomycetes: a review. Mycosphere 1:337–353

    Google Scholar 

  • Clark J, Stephenson SL (2000) Biosystematics of the myxomycete Physarum melleum. Nova Hedwigia 71:161–164

    Google Scholar 

  • Collins OR (1980) Apomictic-heterothallic conversion in a myxomycete, Didymium iridis. Mycologia 72:1109–1116

    Google Scholar 

  • Collins OR (1981) Myxomycete genetics, 1960–1981. J Elisha Mitch Sci Soc 97:101–125

    Google Scholar 

  • Cooke MC (1877) The Myxomycetes of Great Britain arranged according to the method of Rostafinski: the characters of all the orders, families and genera, with descriptions of the British species, and original analytical tables, translated from the Polish. Williams and Norgate, London

    Google Scholar 

  • de Bary A (1859) Die Mycetozoen. Ein Beitrag zur Kenntnis der niedersten Thiere. Z Wiss Zool 10:88–175

    Google Scholar 

  • Domke W (1952) Der erste sichere Fund eines Myxomyceten im Baltischen Bernstein (Stemonitis splendens Rost. Fa. Succini fa. Nov. Foss.). Mitteilungen aus dem Gologischen Staatsinstitut in Hamburg 21:154–161

    Google Scholar 

  • Dörfelt H, Schmidt AR, Ullmann P, Wunderlich J (2003) The oldest fossil myxogastroid slime mold. Mycol Res 107:123–126

    PubMed  Google Scholar 

  • Dyková I, Lom J, Dvořáková H, Pecková H, Fiala I (2007) Didymium-like myxogastrids (class Mycetozoa) as endocommensals of sea urchins (Sphaerechinus granularis). Folia Parasitol 54:1–12

    PubMed  Google Scholar 

  • El Hage N, Little C, Clark J, Stephenson SL (2000) Biosystematics of Didymium squamulosum. Mycologia 92:54–64

    Google Scholar 

  • Farr ML (1976) Myxomycetes. Flora Neotropica, Monograph No. 16. The New York Botanical Garden, New York

    Google Scholar 

  • Feest A (1987) The quantitative ecology of soil Mycetozoa. Prog Protistol 2:331–361

    Google Scholar 

  • Feest A, Campbell R (1986) The microbiology of soils under successive wheat crops in relation to take-all disease. FEMS Microbiol Lett 38:99–111

    Google Scholar 

  • Feest A, Madelin MF (1985) A method for the enumeration of myxomycetes in soils and its application to a wide range of soils. FEMS Microbiol Ecol 31:103–109

    Google Scholar 

  • Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. BioSci 54:777–784

    Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryotic species. Science 296:1061–1063

    CAS  PubMed  Google Scholar 

  • Fiore-Donno AM, Berney C, Pawlowski J, Baldauf SL (2005) Higher-order phylogeny of plasmodial slime molds (Myxogastria) based on elongation factor 1-α and small subunit rRNA gene sequences. J Eukaryot Microbiol 52:1–10

    Google Scholar 

  • Fiore-Donno AM, Meyer M, Baldauf SL, Pawlowski J (2008) Evolution of dark-spored Myxomycetes (slime-molds): molecules versus morphology. Mol Phylogenet Evol 46:878–889

    CAS  PubMed  Google Scholar 

  • Fiore-Donno AM, Haskins EF, Pawlowski J, Cavalier-Smith T (2009) Semimorula liquescens is a modified echinostelid myxomycete (Mycetozoa). Mycologia 101:773–776

    PubMed  Google Scholar 

  • Fiore-Donno AM, Nikolaev SI, Nelson M, Pawlowski J, Cavalier-Smith T, Baldauf SL (2010) Deep phylogeny and evolution of slime moulds (Mycetozoa). Protist 161:55–70

    CAS  PubMed  Google Scholar 

  • Fiore-Donno AM, Novozhilov YK, Meyer M, Schnittler M (2011) Genetic structure of two protist species (Myxogastria, Amoebozoa) suggests asexual reproduction in sexual amoebae. PLoS One. doi:10.1371/journal.pone.0022872

    PubMed Central  PubMed  Google Scholar 

  • Gilbert HC, Martin GW (1933) Myxomycetes found on the bark of living trees. Univ Iowa Stud Nat His 15:3–8, 31

    Google Scholar 

  • Graham A (1971) The role of Myxomyceta spores in palynology (with a brief note on the morphology of certain algal zygospores). Rev Palaeobot Palynol 11:89–99

    Google Scholar 

  • Hagiwara H (1976) Distribution of the Dictyosteliaceae (cellular slime molds) in Mt. Ishizuchi, Shikoku. Trans Mycol Soc Jpn 17:226–237

    Google Scholar 

  • Hagiwara H (1989) The taxonomic study of Japanese dictyostelid cellular slime molds. National Science Museum, Tokyo

    Google Scholar 

  • Hammer CH (1984) Dictyostelids in agricultural soils. MS Thesis, Ohio University, Athens

    Google Scholar 

  • Härkönen M (1977) Corticolous myxomycetes in three different habitats in southern Finland. Karstenia 17:19–32

    Google Scholar 

  • Härkönen M (1981) Myxomycetes developed on litter of common Finnish trees in moist chamber cultures. Nord J Bot 1:791–794

    Google Scholar 

  • Horn EG (1971) Food competition among the cellular slime molds. Ecology 52:475–484

    Google Scholar 

  • Hutchinson GE (1951) Copepodology for the ornithologist. Ecology 32:571–577

    Google Scholar 

  • Ing B (1994) The phytosociology of myxomycetes. New Phytol 126:175–201

    Google Scholar 

  • Ing B (1999) The myxomycetes of Britain and Ireland: an identification handbook. Richmond Publishing, Slough

    Google Scholar 

  • Irawan B, Clark JD, Stephenson SL (2000) Biosystematics of the Physarum compressum morphospecies. Mycologia 92:884–893

    CAS  Google Scholar 

  • Kauffman G (1986) Effects of organic matter and moisture content on dictyostelids in agricultural soils. MS Thesis, Ohio University, Athens

    Google Scholar 

  • Kawano S, Kuroiwa T, Anderson RW (1987) A third multialletic mating-type locus in Physarum polycephalum. J Gen Microbiol 133:2539–2546

    CAS  Google Scholar 

  • Keller HW, Brooks TE (1976) Corticolous myxomycetes V: observations on the genus Echinostelium. Mycologia 68:1204–1220

    Google Scholar 

  • Kessin RH (2001) Dictyostelium: evolution, cell biology, and the development of multicellularity. Cambridge University Press, Cambridge

    Google Scholar 

  • Kowalski DT (1967) Observations on the Dianemaceae. Mycologia 59:1075–1084

    Google Scholar 

  • Kowalski DT (1970) The species of Lamproderma. Mycologia 62:621–672

    CAS  PubMed  Google Scholar 

  • Kowalski DT (1971) The genus Lepidoderma. Mycologia 63:490–516

    Google Scholar 

  • Lado C (2001) Nomenmyx. A nomenclatural taxabase of Myxomycetes. Cuadernos de Trabajo Flora Micológica Ibérica 16:1–221

    Google Scholar 

  • Lado C, Mosquera J, Estrada-Torres A, Beltrán-Tejera E, Wrigley de Basanta D (2007) Description and culture of a new succulenticolous Didymium (Myxomycetes). Mycologia 99:602–611

    CAS  PubMed  Google Scholar 

  • Landolt JC, Cavender JC, Stephenson SL, Vadell EM (2008) New species of dictyostelid cellular slime moulds from Australia. Aust Syst Bot 21:50–66

    Google Scholar 

  • Lewis KE, O’Day DH (1977) The sex hormone of Dictyostelium discoideum is volatile. Nature 268:730–731

    Google Scholar 

  • Lister A (1894) A monograph of the Mycetozoa. Printed by order of the trustees, London

    Google Scholar 

  • Lister A (1911) A monograph of the Mycetozoa. British Museum of Natural History, London (revised by G. Lister)

    Google Scholar 

  • Lister A (1925) A monograph of the Mycetozoa. British Museum of Natural History, London (revised by G. Lister)

    Google Scholar 

  • Macbride TH (1899) North American slime-moulds. Macmillan, New York, NY

    Google Scholar 

  • Macbride TH (1922) North American slime-moulds, 2nd edn. Macmillan, New York, NY

    Google Scholar 

  • Macbride TH, Martin GW (1934) The Myxomycetes. Macmillan, New York, NY

    Google Scholar 

  • Madelin MF (1984) Myxomycetes, microorganisms and animals: a model of diversity in animal-microbial interactions. In: Anderson JN, Rayner DA, Walton DWH (eds) Invertebrate-microbial interactions. Cambridge University Press, New York, NY, pp 1–33

    Google Scholar 

  • Martin GW, Alexopoulos CJ (1969) The myxomycetes. University of Iowa Press, Iowa City, IA

    Google Scholar 

  • Martin GW, Alexopoulos CJ, Farr ML (1983) The genera of myxomycetes. University of Iowa Press, Iowa City, IA

    Google Scholar 

  • Massee G (1892) A monography of the Myxogastres. Methuen, London

    Google Scholar 

  • Mayr E (1970) Population, species, and evolution. Belknap Press, Harvard University Press, Cambridge

    Google Scholar 

  • Mitchell DW (1980) A key to the corticolous myxomycetes. The British Mycological Society, Cambridge

    Google Scholar 

  • Mosquera J, Lado C, Beltrán-Tejera E (2000) Morphology and ecology of Didymium subreticulosporum. Mycologia 92:978–983

    Google Scholar 

  • Nannenga-Bremekamp NE (1991) A guide to temperate myxomycetes. Biopress, Bristol

    Google Scholar 

  • O’Day DH, Keszei A (2012) Signalling and sex in the social amoebozoans. Biol Rev Camb Philos Soc 87:313–329. doi:10.1111/j.1469-185X.2011.00200.x

    PubMed  Google Scholar 

  • Olive EW (1901) A preliminary enumeration of the Sorophoreae. Proc Am Acad Arts Sci 37:333–344

    Google Scholar 

  • Olive LS (1970) The Mycetozoa: a revised classification. Bot Rev 36:59–87

    Google Scholar 

  • Olive LS (1975) The Mycetozoans. Academic, New York, NY

    Google Scholar 

  • Olive LS, Stoianovitch C (1979) Observations of the mycetozoan genus Ceratiomyxa: description of a new species. Mycologia 71:546–555

    Google Scholar 

  • Olive LS, Stoinaovitch C (1960) Two new members of the Acrasiales. Bull Torrey Bot Club 87:1–20

    Google Scholar 

  • Page FC, Blanton RL (1985) The Heterolobosea (Sarcodina: Rhizopoda), a new class uniting the Schizopyrenida and the Acrasidae (Acrasida). Protistologica 21:121–132

    Google Scholar 

  • Raper KB (1937) Growth and development of Dictyostelium discoideum with different bacterial associates. J Agr Res 55:289–316

    Google Scholar 

  • Raper KB (1984) The Dictyostelids. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Reinhardt DJ (1975) Natural variants of the cellular slime mold Acrasis rosea. J Protozol 22:309–317

    Google Scholar 

  • Roger AJ, Smith MW, Doolittle RF, Doolittle WF (1996) Evidence for the Heterolobosea from phylogenetic analysis of genes encoding glyceraldehyde-3-phosphate dehydrogenase. J Eukaryot Microbiol 43:475–485

    CAS  PubMed  Google Scholar 

  • Romeralo M, Spiegel FW, Baldauf SL (2010) A fully resolved phylogeny of the social amoebas (Dictyostelia) based on combined SSU and ITS rDNA sequences. Protist 161:539–548

    CAS  PubMed  Google Scholar 

  • Romeralo M, Cavender JC, Landolt JC, Stephenson SL, Baldauf S (2011) The expanding phylogeny of social amoebae defines new major lineages and emerging patterns in morphological evolution. BMC Evol Biol. doi:10.1186/1471-2148-11-84

    PubMed Central  PubMed  Google Scholar 

  • Rosswall T, Paustian K (1984) Cycling of nitrogen in modern agricultural systems. Plant and Soil 76:3–21

    CAS  Google Scholar 

  • Rostafinski JT (1873) Versuch eines Systems der Mycetozoen. Inaugural dissertation, University of Strassberg, Germany

    Google Scholar 

  • Rostafinski JT (1874–1876) Sluzowce (Mycetozoa) monografia. Towarz Nauk Scis Paryzu 5:1–215 (1874); 217–432 (1875); Dodatek [appendix] 8:1–43 (1876)

    Google Scholar 

  • Schaap P, Winckler T, Nelson M, Alvarez-Curto E, Elgie B, Hagiwara H, Cavender JC, Milano-Curto A, Rozen DE, Dingermann T, Mutzel R, Baldauf SL (2006) Molecular phylogeny and evolution of morphology in the social amoebas. Science 314:661–663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnittler M, Mitchell D (2000) Species diversity in myxomycetes based on the morphological species concept—a critical examination. Stapfia 73:55–62

    Google Scholar 

  • Schnittler M, Stephenson SL (2002) Inflorescences of Neotropical herbs as a newly discovered microhabitat for myxomycetes. Mycologia 94:6–20

    PubMed  Google Scholar 

  • Schnittler M, Stephenson SL, Novozhilov YK (2000) Ecology and world distribution of Barbeyella minutissima (Myxomycetes). Mycol Res 104:1518–1523

    Google Scholar 

  • Singh BN (1947) Studies of soil Acrasieae. 1. Distribution of species of Dictyostelium in soils of Great Britain and the effect of bacteria on their development. J Gen Microbiol 1:11–21

    CAS  PubMed  Google Scholar 

  • Spiegel FW, Stephenson SL, Keller HW, Moore DL, Cavender JC (2004) Mycetozoans. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Academic, Amsterdam, pp 547–576

    Google Scholar 

  • Stephenson SL (1988) Distribution and ecology of myxomycetes in temperate forests. I. Patterns of occurrence in the upland forests of southwestern Virginia. Can J Bot 66:2187–2207

    Google Scholar 

  • Stephenson SL (1989) Distribution and ecology of myxomycetes in temperate forests. II. Patterns of occurrence on bark surface of living trees, leaf litter, and dung. Mycologia 81:608–621

    Google Scholar 

  • Stephenson SL (2003) Myxomycetes of New Zealand. Fungal Diversity, Hong Kong

    Google Scholar 

  • Stephenson SL (2011) From morphological to molecular: studies of myxomycetes since the publication of the Martin and Alexopoulos (1969) monograph. Fungal Divers 50:21–34

    Google Scholar 

  • Stephenson SL, Cavender JC (1996) Dictyostelids and myxomycetes. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. CAB International, Oxon, pp 91–101

    Google Scholar 

  • Stephenson SL, Landolt JC (1996) The vertical distribution of dictyostelids and myxomycetes in the soil/litter microhabitat. Nova Hedwigia 62:105–117

    Google Scholar 

  • Stephenson SL, Landolt JC (1998) Dictyostelid cellular slime molds in canopy soils of tropical forests. Biotropica 30:657–661

    Google Scholar 

  • Stephenson SL, Landolt JC (2011) Dictyostelids from aerial “canopy soil” microhabitats. Fungal Ecol 4:191–195

    Google Scholar 

  • Stephenson SL, Shadwick JD (2009) Nivicolous myxomycetes from alpine areas of south-eastern Australia. Aust J Bot 57:116–122

    Google Scholar 

  • Stephenson SL, Stempen H (1994) Myxomycetes: a handbook of slime molds. Timber, Portland, OR

    Google Scholar 

  • Stephenson SL, Landolt JC, Laursen GA (1991) Cellular slime molds in soils of Alaskan tundra. Arctic Alpine Res 23:104–107

    Google Scholar 

  • Stephenson SL, Landolt JC, Moore DL (1999) Protostelids, dictyostelids, and myxomycetes in the litter microhabitat of the Luquillo Experimental Forest, Puerto Rico. Mycol Res 103:209–214

    Google Scholar 

  • Stephenson SL, Schnittler M, Novozhilov YK (2008) Myxomycete diversity and distribution from the fossil record to the present. Biodivers Conserv 17:285–301

    Google Scholar 

  • Swanson AR, Vadell EM, Cavender JC (1999) Global distribution of forest soil dictyostelids. J Biogeogr 26:133–148

    Google Scholar 

  • Swanson AR, Spiegel FW, Cavender JC (2002) Taxonomy, slime molds, and the questions we ask. Mycologia 94:968–979

    PubMed  Google Scholar 

  • Tamayama M (2000) Nivicolous taxa of the myxomycetes in Japan. Stapfia 73:121–129

    Google Scholar 

  • Traub F, Hohl HR, Cavender JC (1981) Cellular slime molds of Switzerland. II. Distribution in forest soils. Am J Bot 68:172–182

    Google Scholar 

  • Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One. doi:10.1371/journal.pone.0002527

    PubMed Central  PubMed  Google Scholar 

  • Vadell EM, Cavender JC (1995) Dictyostelid cellular slime molds from forest soils of the Iguazú Falls and the Jesuitic Missions Ruins of Argentina. In: Lado C, Hernández JC (eds) Abstracts volume of the second international congress on the systematics and ecology of myxomycetes (ICSEM 2), vol 1, p 110

    Google Scholar 

  • Vadell EM, Cavender JC, Romeralo M, Edwards SM, Stephenson SL (2011) New species of dictyostelids from Patagonia and Tierra del Fuego, Argentina. Mycologia 103:101–117

    PubMed  Google Scholar 

  • van Tieghem MP (1880) Sur quelques myxomycetes a plasmode agrege. Bull Soc Fr 27:317–322

    Google Scholar 

  • Waggoner BM, Poinar GO (1992) A fossil myxomycete plasmodium from Eocene-Oligocene amber of the Dominican Republic. J Protozool 39:639–642

    Google Scholar 

  • Winsett KE, Stephenson SL (2010) Global distribution and molecular diversity of Didymium difforme. Mycosphere 2:135–146

    Google Scholar 

  • Wrigley de Basanta D (2000) Acid deposition in Madrid and corticolous myxomycetes. Stapfia 73:113–120

    Google Scholar 

  • Yamamoto Y (1998) The myxomycete biota of Japan. Toyo Shorin, Tokyo

    Google Scholar 

  • Yoon HS, Grant J, Tekle YI, Wu M, Chaon BC, Cole JC, Logsdon JM Jr, Patterson DJ, Bhattacharya D, Katz LA (2008) Broadly sampled multigene trees of eukaryotes. BMC Evol Biol 8:14. doi:10.1186/1471-2148-8-14

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Appreciation is extended to Drs. Matt Brown, James Cavender, Jim Clark, Alan Feest, Anna Maria Fiore-Donno, Ed Haskins, John Landolt, and Maria Romeralo for reviewing portions of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Stephenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stephenson, S.L. (2014). 2 Excavata: Acrasiomycota; Amoebozoa: Dictyosteliomycota, Myxomycota. In: McLaughlin, D., Spatafora, J. (eds) Systematics and Evolution. The Mycota, vol 7A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55318-9_2

Download citation

Publish with us

Policies and ethics