Skip to main content

The Characean Plant

  • Chapter
  • First Online:
The Physiology of Characean Cells

Abstract

The aim of this chapter is to give physiologists a thorough grounding in the morphology, taxonomy and ecology of the characean plant. The morphology of characean plants is depicted and explained, with specific examples of the morphological characteristics of different species or species groups that are used in physiological studies. The details of characean cellular structure in growing plants and in the reproductive organs are reviewed. The history of taxonomy and nomenclature is outlined, along with the most recent approaches to systematics (and what name to use for characean plants in physiological studies), and finally the patterns of characean plant distribution and requirements for growth in natural situations are explained and related to the culture and growth of characean plants for physiological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agardh CA (1824) Systema algarum. Lundae [Lund], Literis Berlingianis [Berling], pp. [i]-xxxvii, [1]-312

    Google Scholar 

  • Allen GO (1951) Notes on charophytes from British Columbia. Proc Linn Soc London 162:148–152

    Google Scholar 

  • Andrews M (1987) Phosphate uptake by the component parts of Chara hispida. Br Phycol J 22:49–53

    Google Scholar 

  • Andrews M, Davidson IR, Andrews ME, Raven JA (1984a) Growth of Chara hispida. I. Apical growth and basal decay. J Ecol 72:873–884

    Google Scholar 

  • Andrews M, McInroy S, Raven J (1984b) Culture of Chara hispida. Br Phycol J 19:277–280

    Google Scholar 

  • Anthoni U, Christophersen C, ØgÃ¥rd Madsen J, Wium-Andersen S, Jacobsen N (1980) Biologically active sulphur compounds from the green alga Chara globularis. Phytochemistry 19:1228–1229

    CAS  Google Scholar 

  • Appelgren K, Matilla J (2005) Variation in vegetation communities in shallow bays of the northern Baltic Sea. Aquat Bot 83:1–13

    Google Scholar 

  • Asaeda T, Rajapakse L, Sanderson B (2007) Morphological and reproductive acclimations to to growth of two charophyte species in shallow and deep water. Aquat Bot 86:393–401

    Google Scholar 

  • Ascherson P (1878) Och einige Bemerkungen über die orientalischen Schismus-Formen und über Pflanzen der kleinen Oase. Österreichische Botanische Zeitschrift 28:254–257

    Google Scholar 

  • Bharathan S, Sundralingam VS (1984) Developmental morphology of Lamprothamnium papulosum (Wallr.) J.Groves and Lamprothamnium succinctum (A.Br.) R.D.Wood. J Indian Bot Soc 63:97–107

    Google Scholar 

  • Blindow I (1988) Phosphorus toxicity in Chara. Aquat Bot 32:393–395

    Google Scholar 

  • Blindow I (1992) Decline of charophytes during eutrophication: comparison with angiosperms. Freshwater Biol 28:9–14

    Google Scholar 

  • Blindow I (2000) Distribution of charophytes along the Swedish coast in relation to salinity and eutrophication. Int Rev Hydrobiol 85:707–717

    Google Scholar 

  • Blindow I, Hargeby A, Andersson G (2002) Seasonal changes in mechanisms maintaining clear water in a shallow lake containing abundant Chara vegetation. Aquat Bot 72:315–334

    Google Scholar 

  • Blume M, Blindow I, Dahlke S (2009) Oospore variation in closely related Chara taxa. J Phycol 45:995–1002

    Google Scholar 

  • Boegle MG, Schneider S, Mannschreck B, Melzer A (2007) Differentiation of Chara intermedia and C. baltica compared to C. hispida based on morphology and amplified fragment length polymorphism. Hydrobiologia 586:155–166

    CAS  Google Scholar 

  • Bonis A, Lepart J (1994) Vertical structure of seed banks and the impact of depth of burial on recruitment in two temporary marshes. Vegetatio 112:127–139

    Google Scholar 

  • Bonis A, Grillas P (2002) Deposition, germination and spatio-temporal patterns of charophyte propagule banks: a review. Aquat Bot 72:235–348

    Google Scholar 

  • Bornette G, Arens M-F (2002) Charophyte communities in cut-off river channels: the role of connectivity. Aquat Bot 73:149–162

    Google Scholar 

  • Boszke P, Bociag K (2008) Morphological variation of oospores in the population of Chara rudis A. Braun in a mesotrophic lake. Pol J Ecol 56:139–147

    Google Scholar 

  • Braun A (1843) Charae Preissianae (adjectis reliquis speciebus e nova Hollandia hucusque cognitis). Linnaea 17:113–119

    Google Scholar 

  • Brock MA, Lane JAK (1983) The aquatic macrophye flora of saline wetlands in Western Australia in relation to salinity and permanence. Hydrobiologia 105:63–76

    Google Scholar 

  • Brown R (1810) Prodromus Florae Noveae Hollandiae et Insulare Van Dieman. Taylor, London

    Google Scholar 

  • Carl De Donterberg C (1960) Una nueva especie de Nitellopsis hallada en la Argentina. Com Mus Argentino Cienc Nat Buenos Aires 1:3–10

    Google Scholar 

  • Casanova MT (1991) An SEM study of developmental variation in oospore wall ornamentation of three Nitella species (Charophyta) in Australia. Phycologia 30:237–242

    Google Scholar 

  • Casanova MT (1993) Charophyte distribution and abundance in temporary and permanent wetlands in Australia. Ph.D., thesis. University of New England, 319 p

    Google Scholar 

  • Casanova MT (1994) Vegetative and reproductive responses of charophytes to water-level fluctuations in permanent and temporary wetlands in Australia. Aust J Mar Fresh Res 45:1409–1419

    Google Scholar 

  • Casanova MT (2003) Charophytes. In: Sainty GR, Jacobs SWL (eds) Waterplants in Australia, 4th edn. Sainty and Associates, Pots Point, NSW, pp 336–353

    Google Scholar 

  • Casanova MT (2005) An overview of Chara in Australia (Characeae, Charophyta). Aust Syst Bot 18:25–39

    Google Scholar 

  • Casanova MT (2007) Charophyceae. In: McCarthy PM, Orchard AE (eds) Algae of Australia: introduction. ABRS Canberra, CSIRO, Mebourne

    Google Scholar 

  • Casanova MT (2009) An overview of Nitella in Australia (Characeae, Charophyta). Aust Syst Bot 22:192–218

    Google Scholar 

  • Casanova MT (2013) Lamprothamnium in Australia. Aust Syst Bot (in press)

    Google Scholar 

  • Casanova MT (in press) A revision of ecorticate species of Chara in Australia (subgenus Charopsis, section Protochara sect. nov.) (Characeae, Charophyceae). Aust Syst Bot

    Google Scholar 

  • Casanova MT (in press) Review of the species concepts Chara fibrosa and C. flaccida (Characeae, Charophyceae). Aust Syst Bot

    Google Scholar 

  • Casanova MT, Burch MD, Brock MA, Bond PM (1999) Does toxic Microcystis aeruginosa affect aquatic plant establishment? Environ Toxicol 14:97–109

    CAS  Google Scholar 

  • Casanova MT, Ough K, Bradburyt S (2011) Morphological variation in an Australian species of Lamprothamnium (Characeae, Charophyceae) in response to different salinities. Charophytes 2:87–92

    Google Scholar 

  • Casanova MT, Brock MA (1990) Germination and establishment of charophytes from the seed bank of an Australian temporary lake. Aquat Bot 36:247–254

    Google Scholar 

  • Casanova MT, Brock MA (1996) Can oospore germination patterns explain charophyte distribution in permanent and temporary wetlands? Aquat Bot 54:297–312

    Google Scholar 

  • Casanova MT, Brock MA (1999a) Life histories of charophytes from permanent and temporary wetlands in eastern Australia. Aust J Bot 47:383–397

    Google Scholar 

  • Casanova MT, Brock MA (1999b) Charophyte occurrence, seed banks and establishment in farm dams in New South Wales. Aust J Bot 47:437–444

    Google Scholar 

  • Casanova MT, Nicol JM (2009) Chara canescens (Characeae, Charophyceae) in the southern Hemisphere. Charophytes 1:55–60

    Google Scholar 

  • Casanova MT, de Winton MD, Karol KG, Clayton JS (2007) Nitella hookeri in New Zealand and Australia: implications for endemism, speciation and biogeography. Charophytes 1:2–18

    Google Scholar 

  • Cirujano S, Cambra J, Sánchez Castillo PM, Meco A, Flor Anau N (2008) Flora ibérica Algas continentales: Carófitos. Real Jardín Botánico, Madrid

    Google Scholar 

  • Clabeaux BL, Bisson MA (2009) Developmental patterns in Chara australis (Characeae, Charophyceae): apical dominance, pH and auxin. Charophytes 1:68–72

    Google Scholar 

  • Corillion R (1957) Les Charophycées de France et d’Europe Occidentale. Bull Soc Sci Bretagne 32:1–259

    CAS  Google Scholar 

  • Crawford S (1981) Successional events following simazine application. Hydrobiologia 77:217–223

    CAS  Google Scholar 

  • Daily FK (1967) Lamprothamnium in America. J Phycol 3:201–207

    Google Scholar 

  • Dale HM (1986) Temperature and light: the determining factors in maximum depth distribution of aquatic macrophytes in Ontario, Canada. Hydrobiologia 133:73–77

    Google Scholar 

  • Davies PE (2001) Algal beds and threatened aquatic fauna in Great Lake: current status, responses to lake level and management. Unpublished Report to HydroTasmania, October 2011

    Google Scholar 

  • de Winton MD, Clayton JS, Wells RDS, Tanner CC, Miller ST (1991) Submerged vegetation of lakes Sumner, Marion, Katrine, Taylor and Sheppard in Cantebury, New Zealand. New Zeal J Mar Fresh 25:145–151

    Google Scholar 

  • de Winton MD, Taumoepeau AT, Clayton JS (2002) Fish effects on charophyte establishment in a shallow, eutrophic New Zealand lake. New Zeal J Mar Fresh 36:815–823

    Google Scholar 

  • de Winton MD, Casanova MT, Clayton JS (2004) Charophyte germination and establishment under low irradiance. Aquat Bot 79:175–187

    Google Scholar 

  • Dugdale TM, de Winton MD, Clayton JS (2001) Burial limits to the emergence of aquatic plant proagules. New Zeal J Mar Fresh 35:147–153

    Google Scholar 

  • Fernández-Aláez M, Fernández-Aláez C, Rodríguez S (2002) Seasonal changes in biomass of charophytes in shallow lakes in the northwest of Spain. Aquat Bot 72:335–348

    Google Scholar 

  • Filarszky N (1937) Idegenfoldi Charafelek hatarozasa—Determinatio Characearum exoticarum. Magyar Tud Ak Budapest 55:476–495

    Google Scholar 

  • Forsberg C (1965) Sterile germination of oospores of Chara and seeds of Najas marina. Physiol Plant 18:128–137

    Google Scholar 

  • Frame P, Sawa T (1975) Comparative anatomy of the Charophyta: II the axial node complex—an approach to the taxonomy of Lamprothamnium. J Phycol 11:202–205

    Google Scholar 

  • Fritsch FE (1948) The structure and reproduction of the algae, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • García A, Casanova MT (2004) Lamprothamnium heraldii sp. nov., the first dioecious representative of the genus. Phycologia 42:622–628

    Google Scholar 

  • Garcia A, Chivas AR (2006) Diversity and ecology of extant and quaternary Australian charophytes (Charales). Cryptpgamie Algologie 27:323–340

    Google Scholar 

  • García A, Jones BG, Chenhall BE, Murray-Wallace CV (2002) Lamprothamnium succinctum (Charophyta, Charales) as an environmental indicator: a Holocene example from Tom Thumbs Lagoon, eastern Australia. Alcheringa 25:507–518

    Google Scholar 

  • Garcia A, Karol KG (2004) A paradigm in the taxonomy of charophytes: the oospore and gyrogonite of Nitellopsis inflata (Fil. et G.O.Allen ex Fil.) = Lamprothamnium inflatum comb. nov. In: Proceedings of the 4th international congress extant fossil charophytes, p 42

    Google Scholar 

  • Grambast L (1974) Phylogeny of the Charophyta. Taxon 23:463–481

    Google Scholar 

  • Groves J (1916) On the name Lamprothamnus Braun. J Bot 54:336–337

    Google Scholar 

  • Haas J-N (1994) First identification key for charophyte oospores from central Europe. Eur J Phycol 29:227–235

    Google Scholar 

  • Harper JL (1980) Population biology of plants. Academic, London

    Google Scholar 

  • Hamilton DP, Mitchell SF (1996) An empirical model for sediment resuspension in shallow lakes. Hydrobiologia 317:209–220

    Google Scholar 

  • Han F, Li Y (1994) Flora algarum sinicarum aquae dulcis. Tomus 3. Charophyta. Science Press, Beijing

    Google Scholar 

  • Hy F (1890) Sur les caractères généraux de la famille des Characées et sur leur importance taxonomique. Revue de Botanique 8:25–47

    Google Scholar 

  • Imahori K, Iwasa K (1965) Pure culture and chemical regulation of the growth of charophytes. Phycologia 4:127–134

    CAS  Google Scholar 

  • John DM, Moore JA (1987) An SEM study of the oospore wall of some Nitella species (Charales, Chlorophyta) with descriptions of wall ornamentation and an assessment of its taxonomic importance. Phycologia 26:334–355

    Google Scholar 

  • John DM, Champ WST, Moore JA (1982) The changing status of Characeae in four marl lakes in the Irish midlands. J Life Sci R Dubl Soc 4:47–71

    Google Scholar 

  • John DM, Moore JA, Green DR (1990) Preliminary observations on the structure and ornamentation of the oosporangial wall in Chara (Charales, Chlorophyta). Br Phycol J 25:1–24

    Google Scholar 

  • Kairesalo T, Gunnarsson K, St Jónsson G, Jónasson PM (1987) The occurrence and photosynthetic activity of epiphytes on the tips of Nitella opaca Ag. (Charophyceae). Aquat Bot 28:333–340

    Google Scholar 

  • Karling JS (1924) A preliminary account of the influence of light and temperature on the growth and reproduction in Chara fragilis. B Torrey Bot Club 12:469–488

    Google Scholar 

  • Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The closest living relatives of land plants. Science 294:2351–2353

    PubMed  CAS  Google Scholar 

  • Kingsford RT, Porter JL (1994) Waterbirds on an adjacent freshwater lake and salt lake in arid Australia. Biol Conserv 69:219–228

    Google Scholar 

  • Kiss JZ, Staehelin LA (1993) Structural polarity in the Chara rhizoid: a reevaluation. Am J Bot 80:273–282

    PubMed  CAS  Google Scholar 

  • Krause W (1981) Characeen als Bioindikatoren für den Gewässerzustand. Limnologica 13:399–418

    Google Scholar 

  • Krause W (1997) Charales (Charophyceae). Süsswasserflora von Mitteleuropa. Band 18. Gustav Fischer Verlag, Jena

    Google Scholar 

  • KuczyÅ„ska-Kippen N (2007) Habitat choice in rotifer communities of three shallow lakes: impact of macrophyte substratum and season. Hydrobiologia 593:27–37

    Google Scholar 

  • Kufel L, Kufel I (2002) Chara beds acting as nutrient sinks in shallow lakes—a review. Aquat Bot 72:249–260

    Google Scholar 

  • Kufel L, Ozimek T (1991) Can Chara control phosphorus cycling in Lake Luknajno (Poland)? Hydrobiologia 275(276):277–283

    Google Scholar 

  • Leitch AR (1989) Formation and structure of a complex, multilayered wall around the oospore of Chara and Lamprothamnium (Characeae). Br Phycol J 24:229–236

    Google Scholar 

  • Leitch AR, John DM, Moore JA (1990) The oosporangium of the Characeae (Chlorophyta, Charales). Prog Phycol Res 7:214–263

    Google Scholar 

  • Loiseleur Deslongschamps JLA (1810) Notice sur les plantes à ajouter à la flore de France (Flora Gallica) avec quelques corrections et observations, pp. 1–172

    Google Scholar 

  • Littlefield L, Forsberg C (1965) Absorbtion and translocation of phosphorus-32 by Chara globularis Thuill. Physiol Plant 18:291–296

    CAS  Google Scholar 

  • MacDonald MB, Hotchkiss AT (1956) An estipulodic form of Chara australis R.Br. (=Protochara australis Woms. and Ophel). Proc Linn Soc NSW 80(3):274–284

    Google Scholar 

  • Mann H, Proctor VW, Taylor AS (1999) Towards a biogeography of North American charophytes. Aust J Bot 47:445–458

    Google Scholar 

  • McCourt RM, Karol KG, Gueresquin M, Feist M (1996) Phylogeny of extant genera of family Characeae (Division Charophyta) based on rbcL sequences and morphology. Am J Bot 83:125–131

    Google Scholar 

  • McCourt RM, Karol KG, Casanova MT, Feist M (1999) Monophyly of genera and species of Characeae based on rbcL sequences, with special reference to Australian and European Lychnothamnus barbatus (Characeae, Charophyceae). Aust J Bot 47:361–369

    CAS  Google Scholar 

  • McNicol M (1907) The bulbils and proembryo of Lamprothamnus alopecuroides A.Braun. Ann Bot 21:61–70

    Google Scholar 

  • Meiers S, Proctor VW, Chapman RL (1999) Phylogeny and biogeography of Chara (Charophyta) inferred from 18S rDNA sequences. Aust J Bot 47:347–360

    CAS  Google Scholar 

  • Moestrup Ø (1970) The fine structure of mature spermatozoids of Chara corallina, with special reference to microtubules and scales. Planta 93:295–308

    PubMed  CAS  Google Scholar 

  • Noordhuis R, van der Milen DT, van den Berg MS (2002) Response of herbivorous water-birds to the return of Chara in Lake Veluwemeer, The Netherlands. Aquat Bot 72:349–367

    Google Scholar 

  • Nordstedt CFO (1883) Fragmente eiiner Monographie der Characeen. Nach den hinterlassenen Manuskripten A.Braun’s herausgegeben von Dr Otto Nordstedt. Abhandlungen der königlichen Akademie der Wissenschaften zu Berlin 1882:1–211

    Google Scholar 

  • Ophel IL (1947) Notes on the genera Lychnothamnus and Lamprothamnium (Characeae). Trans R Soc South Aust 71:318–323

    Google Scholar 

  • Pakdel FM, Sim L, Beardall J, Davis J (2013) Allelopathic inhibition of microalgae by the freshwater stonewort, Chara australis, and a submerged angiosperm, Potamogeton crispus. Aquat Bot 110:24–30

    Google Scholar 

  • PeÅ‚echaty M, Gabka M, Sugier P, Pukacz A, Ciecierska H, Kolada A, Owsianny PM (2010) Lychnothamnus barbatus in Poland, habitats and associations. Charophytes 2:13–18

    Google Scholar 

  • Pereyra-Ramos E (1981) The ecological role of Characeae in the lake littoral. Ekol Pol 29:167–209

    Google Scholar 

  • Pickett-Heaps JD (1968a) Ultrastructure and differentiation in Chara sp. III. Formation of the antheridium. Aust J Biol Sci 21:255–274

    Google Scholar 

  • Pickett-Heaps JD (1968b) Ultrastructure and differentiation in Chara (fibrosa). IV. Spermatogenesis. Aust J Biol Sci 21:655–690

    Google Scholar 

  • Pickett-Heaps JD (1975) Green algae: structure, reproduction and evolution in selected genera. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Proctor VW (1960) Dormancy and germination of Chara oospores. Phycol News Bull 13:64

    Google Scholar 

  • Proctor VW (1962) Viability of Chara oospores taken from migatory water birds. Ecology 43:528–529

    Google Scholar 

  • Proctor VW (1975) The nature of charophyte species. Phycologia 14:97–113

    Google Scholar 

  • Proctor VW (1980) Historical biogeography of Chara (Charophyta): an appraisal of the Braun-Wood classification plus a falsifiable alternative for future consideration. J Phycol 16:218–233

    Google Scholar 

  • Proctor VW (1999) Charophytivory, playas y papalotes, a local paradigm of global relevance. Aust J Bot 47:399–406

    Google Scholar 

  • Proctor VW, Carl de Donterburg CC, Hotchkiss AT, Imahori K (1967) Conspecificity of some charophytes. J Phycol 3:208–211

    Google Scholar 

  • Ray S, Chatterjee P (1989) Experimental studies on germination of oospores of Chara zeylanica. Adv Appl Phycol 11:271–276

    Google Scholar 

  • Robinson CB (1906) The charae of North America. Bull New York Bot Gard 4:244–308

    Google Scholar 

  • Rodrigo MA, Alonso-Guillén JL (2008) In situ nitrogen uptake rates in two Chara species. Charophytes 1:49–54

    Google Scholar 

  • Rodrigo MA, Alonso-Guillén JL, Soulié-Märsch I (2010) Reconstruction of the former charophyte community out of the fructifications identified in Albufera de València lagoon sediments. Aquat Bot 92:14–22

    Google Scholar 

  • Ross MM (1959) Morphology and physiology of germination of Chara gymnopitys A. Braun. I. Development and morphology of the sporeling. Aust J Bot 7:1–11

    Google Scholar 

  • Sakayama H, Nozaki H, Kasaki H, Hara Y (2002) Taxonomic re-examination of Nitella (Charales, Charophyceae) from Japan based on microscopical studies of oospore wall ornamentation and rbcL gene sequences. Phycologia 41:397–408

    Google Scholar 

  • Scheffer M, Hosper SH, Meijer M-L, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    PubMed  CAS  Google Scholar 

  • Scheffer M, van den Berg M, Breukelaar A, Breukers C, Coops H, Doef R, Meijer ML (1994) Vegetated areas with clear water in turbid shallow lakes. Aquat Bot 49:193–196

    Google Scholar 

  • Schubert H, Blindow I (2003) Charophytes of the Baltic Sea. A.R.G. Gantner Verlag, Ruggell

    Google Scholar 

  • Schwarz A-M, Hawes I, Howard-Williams C (1996) The role of the photosynthesis/light relationship in determining lower depth limits of Characeae in South Island, New Zealand lakes. Fresh Biol 35:69–80

    Google Scholar 

  • Scribailo RW, Alix MS (2010) A checklist of North American Characeae. Charophytes 2:38–52

    Google Scholar 

  • Simons J, Ohm M, Daalder R, Boers P, Rip W (1994) Restoration of Botshol (The Netherlands) by reduction of external nutrient load: recovery of a Characean community, dominated by Chara connivens. Hydrobiologia 275(276):243–253

    Google Scholar 

  • Skurzynski P, Bociag K (2009) The effect of environmental conditions on the germination of Chara rudis oospores (Characeae, Chlorophyta). Charophytes 1:61–67

    Google Scholar 

  • Sokol RC, Stross RG (1992) Phytochrome mediated germination of very sensitive oospores. Plant Physiol 100:1132–1136

    PubMed Central  PubMed  CAS  Google Scholar 

  • Spence DHN (1982) The zonation of plants in freshwater lakes. Adv Ecol Res 12:37–125

    Google Scholar 

  • Starling MB, Chapman VJ, Brown JMA (1974) A contribution to the biology of Nitella hookeri A. Br. in the Rotorua Lakes, New Zealand. I. Inorganic nutritional requirements. Hydrobiologia 45:91–113

    CAS  Google Scholar 

  • Stewart N, Church JM (1992) Stoneworts. The red data book of Britain and Ireland. The Joint Nature Conservation Committee, Peterborough

    Google Scholar 

  • Stross RG, Sokol RC, Schwarz A-M, Howard-Williams C (1995) Lake optics and depth limits for photogenesis and photosynthesis in charophyte meadows. Hydrobiologia 302:11–19

    Google Scholar 

  • Sugier P, Pelechaty M, GÄ…bka M, Owsianny PM, Pukacz A, Ciecierska H, Kolada A (2009) Lychnothamnus barbatus: global history and distribution in Poland. Charophytes 2:19–24

    Google Scholar 

  • Tindall DR, Sawa T, Hotchkiss AT (1965) Nitellopsis bulillifera in North America. J Phycol 1:147–150

    Google Scholar 

  • van den Burg MS, Scheffer M, van Nes EH, Coops H (1999) Dynamics and stability of Chara sp. and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 409:335–342

    Google Scholar 

  • Vant WN, Davies-Colley RJ, Clayton JS, Coffey BT (1986) Macrophyte depth limits in North Island (New Zealand) lakes of differing clarity. Hydrobiologia 137:55–60

    Google Scholar 

  • Vermeer CP, Escher M, Portielje R, de Klein JJM (2003) Nitrogen uptake and translocation in Chara. Aquat Bot 76:245–258

    CAS  Google Scholar 

  • Villena M-J, Romo S (2007) Effects of nutrients, fish, charophytes and algal sediment recruitment on the phytoplankton ecology of a shallow lake. Int Rev Hydrobiol 92:626–639

    Google Scholar 

  • Wallroth FG (1833) Flora Cryptogamica Germaniae 2 Algas et fungos. Schragius [J.L. Schrag], Norimbergae [Nürberg], pp. [i]-lvi, 1-923

    Google Scholar 

  • Wang H, Yu D, Xiao K (2008) The interactive effects o irradiance and photoperiod on Chara vulgaris L.: concerted responses in morphology, physiology and reproduction. Hydrobiologia 610:33–41

    CAS  Google Scholar 

  • Winter U, Kirst GO (1990) Salinity response of a freshwater charophyte, Chara vulgaris. Plant Cell Env 13:123–134

    Google Scholar 

  • Winter U, Meyer MIB, Kirst GO (1987) Seasonal changes of ionic concentrations in the vacuolar sap of Chara vulgaris L. growing in a brackish water lake. Oecologia 74:122–127

    Google Scholar 

  • Winter U, Soulié-Märsche I, Kirst GO (1996) Effects of salinity on turgor pressure and fertility in Tolypella (Characeae). Plant Cell Env 19:869–879

    Google Scholar 

  • Winter U, Kirst GO, Grabowski V, Heinemann U, Plenttner I, Wiese S (1999) Salinity tolerance in Nitellopsis obtusa. Aust J Bot 47:337–346

    Google Scholar 

  • Wium-Andersen S, Anthoni U, Christophersen C, Houen G (1982) Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39:187–190

    Google Scholar 

  • Womersley HBS, Ophel IL (1947) Protochara, a new genus of Characeae from Western Australia. Trans R Soc South Aust 71:311–317

    Google Scholar 

  • Wood RD (1950) Stability and zonation of the Characeae. Ecology 31:642–647

    Google Scholar 

  • Wood RD (1962) New combinations and taxa in the revision of the Characeae. Taxon 11:7–25

    Google Scholar 

  • Wood RD (1964) Guy Oldfield Allen (1883–1963). Rev Algol 3:218–222

    Google Scholar 

  • Wood RD (1965) Monograph of the Characeae. In: Wood RD, Imahori K (eds) A revision of the Characeae, vol 1. Cramer, Weinheim

    Google Scholar 

  • Wood RD (1972) Characeae of Australia. J. Cramer, Lehre

    Google Scholar 

  • Wood RD, Imahori K (1964) Iconograph of the Characeae. In: Wood RD, Imahori K (eds) A revision of the Characeae, vol 2. Cramer, Weinheim

    Google Scholar 

  • Zaneveld JS (1940) The Charophyta of Malaysia and adjacent countries. Blumea 4:1–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beilby, M.J., Casanova, M.T. (2014). The Characean Plant. In: The Physiology of Characean Cells. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40288-3_1

Download citation

Publish with us

Policies and ethics