Skip to main content

Ecometabolomics Studies of Bryophytes

  • Reference work entry
  • First Online:
Bioactive Compounds in Bryophytes and Pteridophytes

Abstract

Bryophytes are the largest group of non-vascular plants that occur in almost any land ecosystem and have remarkable impact on ecosystem functioning at a global level. Despite that they have evolved an extraordinary chemical diversity, only a few bryophytic species have been studied using metabolomic techniques. Ecometabolomics systematically investigates the composition of metabolic compounds in bryophytes and relates these to organismal and environmental interactions. The application of ecometabolomics to bryophytic organisms can lead to new insights into their molecular biology, can identify novel bioactive natural products, can shed light on the phylogenetic and evolutionary mechanisms bryophytes realize in order to sustain ecological change, or can greatly improve the mechanistic understanding of ecological processes that are mediated by metabolic compounds at various levels. In this chapter, we first describe ecometabolomics and provide an introduction to how it can be performed. We then focus on case studies covering the various research fields of natural product chemistry, chemodiversity, chemotaxonomy/chemophenetics, functional ecology and plant traits, bioindication and biomonitoring, bioactivities, and the molecular biology of bryophytes. Finally, we present the latest advancements in analytic and computational methods to show the tremendous potential of the emerging technology of ecometabolomics for research with bryophytic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(C)CA:

(Canonical) Correspondence Analysis

(N)MDS:

(Non-metric) Multi-Dimensional Scaling

4CL:

4-coumarate CoA ligase

ACP:

Acyl carrier protein

ANOVA:

Analysis of Variances

C:

Net plant carbon

C4H:

Cinnamate 4-hydrolase

CAWG:

Chemical Analysis Working Group

CBGA:

Cannabigerolic acid

CHS:

Chalcone synthase

CoA:

Coenzyme A

DBR:

Double bond reductase

DDA:

Data-dependent acquisition

DIA:

Data-independent acquisition

FAIR:

Findable, Accessible, Interoperable, Reusable

FT-ICR-MS:

Fourier Transform Ion Cyclotron Resonance Mass-Spectrometry

GC:

Gas chromatography

GC/MS:

Gas chromatography coupled to mass-spectrometry

H′:

Shannon diversity index

IPP:

Isopentyl diphosphate delta isomerase

J:

Pielou’s evenness

LC:

Liquid chromatography

LC/MS-MS:

liquid chromatography coupled with tandem mass-spectrometry

m/z:

Mass-to-charge ratio

MEP:

Non-mevalonate

MS:

Mass-spectrometry

MSI:

Metabolomics Standards Initiative

MTPSL:

Microbial terpene synthase-like

MVA:

Mevalonate

N:

Nutrients

NMR:

Nuclear magnetic resonance

PAL:

Phenylalanine ammonia-lyase

PCA:

Principal Component analyses

PDH:

Pyruvate dehydrogenase

PLS:

Partial Least Squares regression

PLSDA:

PLS coupled with Discriminant Analysis

QC:

Quality control

RDA:

ReDundancy Analysis

S:

Compound richness

SOM:

Soil organic matter

STCS:

Stilbene carboxylate synthase

THC:

Tetrahydrocannabinol

TIMS:

Ion-Mobility Mass-Spectrometry

ToF:

Time of flight

U:

Number of unique compounds

VOCs:

Volatile organic compounds

References

  1. Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ (2007) Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001. https://doi.org/10.1093/aob/mcm030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Streitberger M, Schmidt C, Fartmann T (2017) Contrasting response of vascular plant and bryophyte species assemblages to a soil-disturbing ecosystem engineer in calcareous grasslands. Ecol Eng 99:391–399. https://doi.org/10.1016/j.ecoleng.2016.11.037

    Article  Google Scholar 

  3. Markert BA, Breure AM, Zechmeister HG (2003) Bioindicators & biomonitors: principles, concepts and applications, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  4. Roos RE, Zuijlen K, Birkemoe T et al (2019) Contrasting drivers of community-level trait variation for vascular plants, lichens and bryophytes across an elevational gradient. Funct Ecol 33:2430–2446. https://doi.org/10.1111/1365-2435.13454

    Article  Google Scholar 

  5. Vitt DH, House M (2021) Bryophytes as key indicators of ecosystem function and structure of northern peatlands. Bryophyt Divers Evol 43:10.11646/bde.43.1.18

    Article  Google Scholar 

  6. Stanton DE, Coe KK (2021) 500 million years of charted territory: functional ecological traits in bryophytes. Bryophyt Divers Evol 43:10.11646/bde.43.1.17

    Article  Google Scholar 

  7. Bernhardt-Römermann M, Poschlod P, Hentschel J (2018) BryForTrait – a life-history trait database of forest bryophytes. J Veg Sci 29:798–800. https://doi.org/10.1111/jvs.12646

    Article  Google Scholar 

  8. Asakawa Y, Ludwig A, Nagashima F (2013) Chemical constituents of bryophytes. Prog Chem Org Nat Prod 95. https://doi.org/10.1007/978-3-7091-1084-3_1

  9. Ludwiczuk A, Asakawa Y (2019) Bryophytes as a source of bioactive volatile terpenoids – a review. Food Chem Toxicol 132:110649. https://doi.org/10.1016/j.fct.2019.110649

    Article  CAS  PubMed  Google Scholar 

  10. He X, Sun Y, Zhu RL (2013) The oil bodies of liverworts: unique and important organelles in land plants. CRC Crit Rev Plant Sci 32:293–302

    Article  CAS  Google Scholar 

  11. Xie Y, Sun X, Feng Q et al (2019) Comparative physiological and metabolomic analyses reveal mechanisms of aspergillus aculeatus-mediated abiotic stress tolerance in tall fescue. Plant Physiol Biochem 142:342–350. https://doi.org/10.1016/j.plaphy.2019.07.022

    Article  CAS  PubMed  Google Scholar 

  12. Peters K, Worrich A, Weinhold A et al (2018) Current challenges in plant eco-metabolomics. Int J Mol Sci 19:1385–1423. https://doi.org/10.3390/ijms19051385

  13. Rivera R, Garrido N (2019) Metabolomics. In: Oxidants, antioxidants and impact of the oxidative status in male reproduction. Elsevier, pp 277–285, eBook ISBN: 9780128125670

    Google Scholar 

  14. Dührkop K, Nothias LF, Fleischauer M et al (2021) Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol 39:462–471. https://doi.org/10.1038/s41587-020-0740-8

    Article  CAS  PubMed  Google Scholar 

  15. Jarmusch SA (2021) Advancements in capturing and mining mass spectrometry data are transforming natural products research. Nat Prod Rep 38(11):2066–2082. https://doi.org/10.1039/d1np00040c

  16. Roessner U, Dias DA (2013) Metabolomics tools for natural product discovery. Humana Press, Totowa

    Book  Google Scholar 

  17. Wolfender J-L, Rudaz S, Choi YH, Kim HK (2013) Plant metabolomics: from holistic data to relevant biomarkers. Plant Metabolomics 20:1056–1090

    CAS  Google Scholar 

  18. Peters K, Balcke G, Kleinenkuhnen N et al (2021) Untargeted in silico compound classification – a novel metabolomics method to assess the chemodiversity in bryophytes. Int J Mol Sci 22:3251. https://doi.org/10.3390/ijms22063251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hall RD, D’Auria JC, Silva Ferreira AC et al (2022) High-throughput plant phenotyping: a role for metabolomics? Trends Plant Sci:S1360138522000309. https://doi.org/10.1016/j.tplants.2022.02.001

  20. Nagler M, Nägele T, Gilli C et al (2018) Eco-metabolomics and metabolic modeling: making the leap from model systems in the lab to native populations in the field. Front Plant Sci 871:1–13. https://doi.org/10.3389/fpls.2018.01556

    Article  Google Scholar 

  21. Sala-Carvalho WR, Montessi-Amaral FP, Esposito MP et al (2022) Metabolome of Ceratodon purpureus (Hedw.) Brid., a cosmopolitan moss: the influence of seasonality. Planta 255(77). https://doi.org/10.1007/s00425-022-03857-8

  22. Liu S, Fang S, Liu C et al (2021) Transcriptomics integrated with metabolomics reveal the effects of ultraviolet-B radiation on flavonoid biosynthesis in Antarctic Moss. Front Plant Sci 12:788377

    Article  PubMed  PubMed Central  Google Scholar 

  23. Peters K, Gorzolka K, Bruelheide H, Neumann S (2018) Seasonal variation of secondary metabolites in nine different bryophytes. Ecol Evol 8:9105–9117. https://doi.org/10.1002/ece3.4361

    Article  PubMed  PubMed Central  Google Scholar 

  24. Peters K, Treutler H, Döll S et al (2019) Chemical diversity and classification of secondary metabolites in nine bryophyte species. Meta 9:222. https://doi.org/10.3390/metabo9100222

    Article  CAS  Google Scholar 

  25. Fiehn O, Kopka J, Dörmann P et al (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161. https://doi.org/10.1038/81137

    Article  CAS  PubMed  Google Scholar 

  26. Sardans J, Peñuelas J, Rivas-Ubach A (2011) Ecological metabolomics: overview of current developments and future challenges. Chemoecology 21:191–225. https://doi.org/10.1007/s00049-011-0083-5

    Article  CAS  Google Scholar 

  27. Fudyma JD, Lyon J, AminiTabrizi R et al (2019) Untargeted metabolomic profiling of Sphagnum fallax reveals novel antimicrobial metabolites. Plant Direct 3:e00179. https://doi.org/10.1002/pld3.179

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dziwak M, Wroblewska K, Szumny A, Galek R (2022) Modern use of bryophytes as a source of secondary metabolites. Agronomy 12:1456. https://doi.org/10.3390/agronomy12061456

    Article  CAS  Google Scholar 

  29. Uthe H, van Dam NM, Hervé MR, Sorokina M, Peters K, Weinhold A (2021) Chapter Six – A practical guide to implementing metabolomics in plant ecology and biodiversity research, Editor(s): Pierre Pétriacq, Alain Bouchereau, Advances in Botanical Research, Academic Press, Volume 98, Pages 163–203. https://doi.org/10.1016/bs.abr.2020.09.019

  30. Stanstrup J, Broeckling CD, Helmus R et al (2019) The metaRbolomics Toolbox in Bioconductor and beyond. Metabolites 9(10):200–255. https://doi.org/10.3390/metabo9100200

  31. Horai H, Arita M, Kanaya S et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714. https://doi.org/10.1002/jms.1777

    Article  CAS  PubMed  Google Scholar 

  32. Dührkop K, Fleischauer M, Ludwig M et al (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods 16:299–302

    Article  PubMed  Google Scholar 

  33. Ruttkies C, Schymanski EL, Wolf S et al (2016) MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform 8:3. https://doi.org/10.1186/s13321-016-0115-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Allard P-M, Genta-Jouve G, Wolfender J-L (2017) Deep metabolome annotation in natural products research: towards a virtuous cycle in metabolite identification. Curr Opin Chem Biol 36:40–49. https://doi.org/10.1016/j.cbpa.2016.12.022

    Article  CAS  PubMed  Google Scholar 

  35. Wang M, Carver JJ, Phelan VV et al (2016) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 34:828–837. https://doi.org/10.1038/nbt.3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haug K, Cochrane K, Nainala VC et al (2020) MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res 48:D440–D444. https://doi.org/10.1093/nar/gkz1019

    Article  CAS  PubMed  Google Scholar 

  37. Leao TF, Clark CM, Bauermeister A et al (2021) Quick-start infrastructure for untargeted metabolomics analysis in GNPS. Nat Metab 3:880–882. https://doi.org/10.1038/s42255-021-00429-0

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jarmusch AK, Wang M, Aceves CM et al (2020) ReDU: a framework to find and reanalyze public mass spectrometry data. Nat Methods 17:901–904. https://doi.org/10.1038/s41592-020-0916-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spicer RA, Salek R, Steinbeck C (2017) Compliance with minimum information guidelines in public metabolomics repositories. Sci Data 4:170137. https://doi.org/10.1038/sdata.2017.137

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wilkinson MD, Dumontier M, IjJ A et al (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3:160018. https://doi.org/10.1038/sdata.2016.18

    Article  PubMed  PubMed Central  Google Scholar 

  41. Broadhurst D, Goodacre R, Reinke SN et al (2018) Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 14:72. https://doi.org/10.1007/s11306-018-1367-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim S-G, Yon F, Gaquerel E et al (2011) Tissue specific diurnal rhythms of metabolites and their regulation during herbivore attack in a native tobacco, Nicotiana attenuata. PLoS One 6:e26214. https://doi.org/10.1371/journal.pone.0026214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Villas-Bas SG, Roessner U, Hansen MAE et al (2007) Metabolome analysis. Wiley, Hoboken

    Book  Google Scholar 

  44. Díaz-Maroto MC, Pérez-Coello MS, González Viñas MA, Cabezudo MD (2003) Influence of drying on the flavor quality of spearmint (Mentha spicata L.). J Agric Food Chem 51:1265–1269. https://doi.org/10.1021/jf020805l

    Article  CAS  PubMed  Google Scholar 

  45. Sauerschnig C, Doppler M, Bueschl C, Schuhmacher R (2017) Methanol generates numerous artifacts during sample extraction and storage of extracts in metabolomics research. Meta 8:1. https://doi.org/10.3390/metabo8010001

    Article  CAS  Google Scholar 

  46. Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48:155–171. https://doi.org/10.1023/A:1013713905833

    Article  CAS  PubMed  Google Scholar 

  47. Gertsman I, Barshop BA (2018) Promises and pitfalls of untargeted metabolomics. J Inherit Metab Dis 41:355–366. https://doi.org/10.1007/s10545-017-0130-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Davies A (2010) Close-up and macro photography. Focal Press, Burlington

    Google Scholar 

  49. Chu J, Fang S, Xin P, Guo Z, Chen Y (2017) 14 – Quantitative analysis of plant hormones based on LC-MS/MS, Editor(s): Jiayang Li, Chuanyou Li, Steven M. Smith, Hormone Metabolism and Signaling in Plants, Academic Press, Pages 471–537. https://doi.org/10.1016/B978-0-12-811562-6.00014-1.53

  50. Lu Y, Eiriksson FF, Thorsteinsdóttir M, Simonsen HT (2021) Effects of extraction parameters on lipid profiling of mosses using UPLC-ESI-QTOF-MS and multivariate data analysis. Metabolomics 17. https://doi.org/10.1007/s11306-021-01847-7

  51. Papantoniou D, Vergara F, Weinhold A et al (2021) Cascading effects of root microbial symbiosis on the development and metabolome of the insect herbivore Manduca sexta L. Meta 11:731. https://doi.org/10.3390/metabo11110731

    Article  CAS  Google Scholar 

  52. Gachet MS, Schubert A, Calarco S et al (2017) Targeted metabolomics shows plasticity in the evolution of signaling lipids and uncovers old and new endocannabinoids in the plant kingdom. Sci Rep 7:41177. https://doi.org/10.1038/srep41177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Harris DC, Lucy CA (2020) Quantitative chemical analysis, 10th edn. Macmillan learning

    Google Scholar 

  54. Negi K, Asthana AK, Chaturvedi P (2020) GC–MS analysis and antifungal activity of acetone extract of Conocephalum conicum (L) Underw (liverwort) against aflatoxins producing fungi. South Afr J Bot 131:384–390. https://doi.org/10.1016/j.sajb.2020.02.035

    Article  CAS  Google Scholar 

  55. Rivas-Ubach A, Pérez-Trujillo M, Sardans J et al (2013) Ecometabolomics: optimized NMR-based method. Methods Ecol Evol 4:464–473. https://doi.org/10.1111/2041-210X.12028

    Article  Google Scholar 

  56. Haag AM (2016) Mass analyzers and mass spectrometers. In: Mirzaei H, Carrasco M (eds) Modern proteomics – sample preparation, analysis and practical applications. Springer International Publishing, Cham, pp 157–169

    Chapter  Google Scholar 

  57. Willems S, Voytik E, Skowronek P et al (2021) AlphaTims: indexing trapped ion mobility spectrometry–TOF data for fast and easy accession and visualization. Mol Cell Proteomics 20:100149. https://doi.org/10.1016/j.mcpro.2021.100149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuhl C, Tautenhahn R, Böttcher C et al (2012) CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem 84:283–289. https://doi.org/10.1021/ac202450g

    Article  CAS  PubMed  Google Scholar 

  59. Guo J, Huan T (2020) Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography–mass spectrometry based untargeted metabolomics. Anal Chem 92:8072–8080. https://doi.org/10.1021/acs.analchem.9b05135

    Article  CAS  PubMed  Google Scholar 

  60. Kessner D, Chambers M, Burke R et al (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24:2534–2536. https://doi.org/10.1093/bioinformatics/btn323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Katajamaa M, Miettinen J, Orešič M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636. https://doi.org/10.1093/bioinformatics/btk039

    Article  CAS  PubMed  Google Scholar 

  62. Tsugawa H, Cajka T, Kind T et al (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526. https://doi.org/10.1038/nmeth.3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Röst HL, Sachsenberg T, Aiche S et al (2016) OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods 13:741–748. https://doi.org/10.1038/nmeth.3959

    Article  CAS  PubMed  Google Scholar 

  64. Giacomoni F, Le Corguillé G, Monsoor M et al (2014) Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics 31:1493–1495. https://doi.org/10.1093/bioinformatics/btu813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem 84:5035–5039. https://doi.org/10.1021/ac300698c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith CA, Want EJ, O’Maille G et al (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787. https://doi.org/10.1021/ac051437y

    Article  CAS  PubMed  Google Scholar 

  67. Tautenhahn R, Bottcher C, Neumann S (2008) Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9:1–16. https://doi.org/10.1186/1471-2105-9-504

    Article  CAS  Google Scholar 

  68. R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  69. Hoffmann N, Mayer G, Has C, Kopczynski D, Al Machot F, Schwudke D, Ahrends R, Marcus K, Eisenacher M, Turewicz MA (2022) Current Encyclopedia of Bioinformatics Tools, Data Formats and Resources for Mass Spectrometry Lipidomics. Metabolites 12(7):584–611. https://doi.org/10.3390/metabo12070584

  70. Pluskal T, Uehara T, Yanagida M (2012) Highly accurate chemical formula prediction tool utilizing high-resolution mass spectra, MS/MS fragmentation, heuristic rules, and isotope pattern matching. Anal Chem 84:4396–4403. https://doi.org/10.1021/ac3000418

  71. Shahaf N, Rogachev I, Heinig U et al (2016) The WEIZMASS spectral library for high-confidence metabolite identification. Nat Commun 7:12423. https://doi.org/10.1038/ncomms12423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. van der Hooft JJJ, Wandy J, Young F et al (2017) Unsupervised discovery and comparison of structural families across multiple samples in untargeted metabolomics. Anal Chem 89:7569–7577. https://doi.org/10.1021/acs.analchem.7b01391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Djoumbou Feunang Y, Eisner R, Knox C et al (2016) ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform 8:1–20. https://doi.org/10.1186/s13321-016-0174-y

    Article  Google Scholar 

  74. Kim HW, Wang M, Leber CA et al (2021) NPClassifier: a deep neural network-based structural classification tool for natural products. J Nat Prod 84:2795–2807. https://doi.org/10.1021/acs.jnatprod.1c00399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sumner LW, Amberg A, Barrett D et al (2007) Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3:211–221. https://doi.org/10.1007/s11306-007-0082-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pang Z, Zhou G, Ewald J et al (2022) Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat Protoc. https://doi.org/10.1038/s41596-022-00710-w

  77. van den Berg RA, Hoefsloot HCJ, Westerhuis JA et al (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142. https://doi.org/10.1186/1471-2164-7-142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rohart F, Gautier B, Singh A, Lê Cao K-A (2017) mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol 13:e1005752

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ristok C, Poeschl Y, Dudenhöffer JH et al (2019) Plant species richness elicits changes in the metabolome of grassland species via soil biotic legacy. J Ecol 107:2240–2254. https://doi.org/10.1111/1365-2745.13185

    Article  Google Scholar 

  80. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349. https://doi.org/10.2307/1942268

    Article  Google Scholar 

  81. Tan W, Zhou H, Rong S et al (2018) Fusion of multi-focus images via a Gaussian curvature filter and synthetic focusing degree criterion. Appl Opt 57:10092. https://doi.org/10.1364/AO.57.010092

    Article  PubMed  Google Scholar 

  82. Do KT, Wahl S, Raffler J et al (2018) Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies. Metabolomics 14:128. https://doi.org/10.1007/s11306-018-1420-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Haug K, Cochrane K, Nainala VC et al (2019) MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res:gkz1019. https://doi.org/10.1093/nar/gkz1019

  84. Klavina L (2015) A study on bryophyte chemical composition–search for new applications. Agron Res 13:969–978

    Google Scholar 

  85. Rosenstiel TN, Shortlidge EE, Melnychenko AN et al (2012) Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss. Nature 489:431–433. https://doi.org/10.1038/nature11330

    Article  CAS  PubMed  Google Scholar 

  86. Donath TW, Eckstein RL (2010) Effects of bryophytes and grass litter on seedling emergence vary by vertical seed position and seed size. Plant Ecol 207:257–268. https://doi.org/10.1007/s11258-009-9670-8

    Article  Google Scholar 

  87. Michel P, Burritt DJ, Lee WG (2011) Bryophytes display allelopathic interactions with tree species in native forest ecosystems. Oikos 120:1272–1280. https://doi.org/10.1111/j.1600-0706.2010.19148.x

    Article  Google Scholar 

  88. Boch S, Prati D, Fischer M (2016) Gastropods slow down succession and maintain diversity in cryptogam communities. Ecology 97:2184–2191. https://doi.org/10.1002/ecy.1498

    Article  PubMed  Google Scholar 

  89. Rempt M, Pohnert G (2010) Novel Acetylenic Oxylipins from the Moss Dicranum scoparium with antifeeding activity against herbivorous slugs. Angew Chemie Int Ed 49:4755–4758. https://doi.org/10.1002/anie.201000825

    Article  CAS  Google Scholar 

  90. Proctor MCF, Oliver MJ, Wood AJ et al (2007) Desiccation-tolerance in bryophytes: a review. Bryologist 110:595–621. https://doi.org/10.1639/0007-2745(2007)110[595:DIBAR]2.0.CO;2

    Article  CAS  Google Scholar 

  91. Charron AJ, Quatrano RS (2009) Between a rock and a dry place: the water-stressed Moss. Mol Plant 2:478–486. https://doi.org/10.1093/mp/ssp018

    Article  CAS  PubMed  Google Scholar 

  92. Sabovljević MS, Sabovljević AD, Ikram NKK et al (2016) Bryophytes – an emerging source for herbal remedies and chemical production. Plant Genet Resour 14:314–327. https://doi.org/10.1017/S1479262116000320

    Article  CAS  Google Scholar 

  93. Dinakar C, Bartels D (2013) Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome and metabolome analysis. Front Plant Sci 4:482. https://doi.org/10.3389/fpls.2013.00482

  94. Oliver MJ (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 45:788–799. https://doi.org/10.1093/icb/45.5.788

    Article  PubMed  Google Scholar 

  95. Weckwerth W (2011) Green systems biology — from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteome 75:284–305. https://doi.org/10.1016/j.jprot.2011.07.010

    Article  CAS  Google Scholar 

  96. Asner GP, Anderson CB, Martin RE et al (2015) Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy. Nat Geosci 8:567–573. https://doi.org/10.1038/ngeo2443

    Article  CAS  Google Scholar 

  97. Gargallo-Garriga A, Sardans J, Pérez-Trujillo M et al (2015) Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytol 207:591–603. https://doi.org/10.1111/nph.13377

    Article  CAS  PubMed  Google Scholar 

  98. Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243. https://doi.org/10.1016/S0169-5347(00)01861-9

    Article  PubMed  Google Scholar 

  99. Jones HG (2014) Plants and Microclimate – A Quantitative Approach to Environmental Plant Physiology. Third Edition. Cambridge University Press. ISBN 978-0-521-27959-8

    Google Scholar 

  100. Markesteijn L, Poorter L, Paz H et al (2011) Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits: vulnerability to cavitation of tropical dry forest tree species. Plant, Cell Environ 34:137–148. https://doi.org/10.1111/j.1365-3040.2010.02231.x

    Article  PubMed  Google Scholar 

  101. Rivas-Ubach A, Gargallo-Garriga A, Sardans J et al (2014) Drought enhances folivory by shifting foliar metabolomes in textitQuercus ilex trees. New Phytol 202:874–885. https://doi.org/10.1111/nph.12687

    Article  CAS  PubMed  Google Scholar 

  102. Kergunteuil A, Descombes P, Glauser G et al (2018) Plant physical and chemical defence variation along elevation gradients: a functional trait-based approach. Oecologia 187:561–571. https://doi.org/10.1007/s00442-018-4162-y

    Article  PubMed  Google Scholar 

  103. Violle C, Navas M-L, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x

    Article  Google Scholar 

  104. Seel WEF, Hendry GA, Lee JA (1992) Effects of desiccation on some activated oxygen processing enzymes and anti-oxidants in mosses. J Exp Bot 43:1031–1037. https://doi.org/10.1093/jxb/43.8.1031

    Article  CAS  Google Scholar 

  105. Proctor MCF, Tuba Z (2002) Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytol 156:327–349. https://doi.org/10.1046/j.1469-8137.2002.00526.x

    Article  PubMed  Google Scholar 

  106. Davies KM, Jibran R, Zhou Y et al (2020) The evolution of flavonoid biosynthesis: a bryophyte perspective. Front Plant Sci 11:1–21. https://doi.org/10.3389/fpls.2020.00007

    Article  Google Scholar 

  107. Hiraga Y, Ara T, Nagashima Y et al (2020) Metabolome analysis using multiple data mining approaches suggests luteolin biosynthesis in Physcomitrella patens. Plant Biotechnol 37:377–381. https://doi.org/10.5511/plantbiotechnology.20.0525b

    Article  CAS  Google Scholar 

  108. Erxleben A, Gessler A, Vervliet-Scheebaum M, Reski R (2012) Metabolite profiling of the moss Physcomitrella patens reveals evolutionary conservation of osmoprotective substances. Plant Cell Rep 31:427–436. https://doi.org/10.1007/s00299-011-1177-9

    Article  CAS  PubMed  Google Scholar 

  109. Boelen P, de Boer MK, de Bakker NVJ, Rozema J (2006) Outdoor studies on the effects of solar UV-B on bryophytes: overview and methodology. Plant Ecol 182:137–152. https://doi.org/10.1007/s11258-005-9023-1

    Article  Google Scholar 

  110. Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409. 10.1639/05

    Article  Google Scholar 

  111. Mogul R, Vaishampayan P, Bashir M et al (2017) Microbial community and biochemical dynamics of biological soil crusts across a gradient of surface coverage in the Central Mojave Desert. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01974

  112. Weber B, Belnap J, Büdel B et al (2022) What is a biocrust? A refined, contemporary definition for a broadening research community. Biol Rev. https://doi.org/10.1111/brv.12862

  113. Seppelt RD, Downing AJ, Deane-Coe KK et al (2016) Bryophytes within biological soil crusts. In: Weber B, Büdel B, Belnap J (eds) Biological soil crusts: an organizing principle in drylands. Springer International Publishing, Cham, pp 101–120

    Chapter  Google Scholar 

  114. Rousk K, Pedersen PA, Dyrnum K, Michelsen A (2017) The interactive effects of temperature and moisture on nitrogen fixation in two temperate-arctic mosses. Theor Exp Plant Physiol 29:25–36. https://doi.org/10.1007/s40626-016-0079-1

    Article  Google Scholar 

  115. Ye C, Tao Y, Zhang Y et al (2020) Monosaccharide composition of primary cell wall polysaccharides as a developmental level indicator of biological soil crusts. Catena 195:104782. https://doi.org/10.1016/j.catena.2020.104782

    Article  CAS  Google Scholar 

  116. Li J, Li X, Zhang P (2014) Micro-morphology, ultrastructure and chemical composition changes of Bryum argenteum from a desert biological soil crust following one-year desiccation. Bryologist 117:232–240. https://doi.org/10.1639/0007-2745-117.3.232

    Article  Google Scholar 

  117. Baran R, Ivanova NN, Jose N, Garcia-Pichel F, Kyrpides NC, Gugger M, Northen TR (2013) Functional genomics of novel secondary metabolites from diverse cyanobacteria using untargeted metabolomics. Mar Drugs 11(10):3617–31. https://doi.org/10.3390/md11103617

  118. Löhnis F (1926) Nitrogen availability of green manures. Soil Sci 22:253–290

    Article  Google Scholar 

  119. De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531. https://doi.org/10.1111/j.1461-0248.2008.01164.x

    Article  PubMed  Google Scholar 

  120. Walker TN, Garnett MH, Ward SE et al (2016) Vascular plants promote ancient peatland carbon loss with climate warming. Glob Chang Biol 22:1880–1889. https://doi.org/10.1111/gcb.13213

    Article  PubMed  PubMed Central  Google Scholar 

  121. Koranda M, Michelsen A (2021) Mosses reduce soil nitrogen availability in a subarctic birch forest via effects on soil thermal regime and sequestration of deposited nitrogen. J Ecol 109:1424–1438. https://doi.org/10.1111/1365-2745.13567

    Article  CAS  PubMed  Google Scholar 

  122. Adamczyk B, Adamczyk S, Smolander A, Kitunen V, Simon J (2018) Plant Secondary Metabolites–Missing Pieces in the Soil Organic Matter Puzzle of Boreal Forests. Soil Systems 2(1):2–12. https://doi.org/10.3390/soils2010002

  123. Vicherová E, Glinwood R, Hájek T et al (2020) Bryophytes can recognize their neighbours through volatile organic compounds. Sci Rep 10:7405

    Article  PubMed  PubMed Central  Google Scholar 

  124. Koeduka T (2018) Functional evolution of biosynthetic enzymes that produce plant volatiles. Biosci Biotechnol Biochem 82:192–199. https://doi.org/10.1080/09168451.2017.1422968

    Article  CAS  PubMed  Google Scholar 

  125. Holopainen JK (2004) Multiple functions of inducible plant volatiles. Trends Plant Sci 9:529–533. https://doi.org/10.1016/j.tplants.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  126. Rosenkranz M, Chen Y, Zhu P, Vlot AC (2021) Volatile terpenes – mediators of plant-to-plant communication. Plant J 108:617–631. https://doi.org/10.1111/tpj.15453

    Article  CAS  PubMed  Google Scholar 

  127. Asakawa Y (2004) Chemosystematics of the hepaticae. Phytochemistry 65:623–669. https://doi.org/10.1016/j.phytochem.2004.01.003

    Article  CAS  PubMed  Google Scholar 

  128. Asakawa Y, Ludwiczuk A (2018) Chemical constituents of bryophytes: structures and biological activity. J Nat Prod 81:641–660. https://doi.org/10.1021/acs.jnatprod.6b01046

    Article  CAS  PubMed  Google Scholar 

  129. Suire C, Bouvier F, Backhaus RA et al (2000) Cellular localization of isoprenoid biosynthetic enzymes in Marchantia polymorpha. Uncovering a new role of oil bodies. Plant Physiol 124:971–978. https://doi.org/10.1104/pp.124.3.971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tanaka M, Esaki T, Kenmoku H et al (2016) Direct evidence of specific localization of sesquiterpenes and marchantin a in oil body cells of Marchantia polymorpha L. Phytochemistry 130:77–84. https://doi.org/10.1016/j.phytochem.2016.06.008

    Article  CAS  PubMed  Google Scholar 

  131. Flegel M, Becker H (2000) Characterization of the contents of oil bodies from the liverwort Radula complanata. Plant Biol 2:208–210. https://doi.org/10.1055/s-2000-9156

    Article  CAS  Google Scholar 

  132. Meuche D, Huneck S (1966) Inhaltsstoffe der Moose, II. Azulene aus Calypogeia Trichomanis (L.) Corda. Chem Ber 99:2669–2674. https://doi.org/10.1002/cber.19660990836

    Article  CAS  Google Scholar 

  133. Tazaki H, Okihara T, Koshino H et al (1998) An aromadendrane-type sesquiterpenoid from the liverwort Calypogeia azurea. Phytochemistry 48:147–149. https://doi.org/10.1016/S0031-9422(97)00751-6

    Article  CAS  Google Scholar 

  134. Horn A, Pascal A, Lončarević I et al (2021) Natural products from bryophytes: from basic biology to biotechnological applications. CRC Crit Rev Plant Sci 40:191–217. https://doi.org/10.1080/07352689.2021.1911034

    Article  Google Scholar 

  135. Commisso M, Guarino F, Marchi L et al (2021) Bryo-activities: a review on how bryophytes are contributing to the arsenal of natural bioactive compounds against fungi. Plan Theory 10:1–28. https://doi.org/10.3390/plants10020203

    Article  CAS  Google Scholar 

  136. Chen F, Ludwiczuk A, Wei G et al (2018) Terpenoid secondary metabolites in bryophytes: chemical diversity, biosynthesis and biological functions. CRC Crit Rev Plant Sci 37:210–231. https://doi.org/10.1080/07352689.2018.1482397

    Article  Google Scholar 

  137. Wang X, Cao J, Dai X et al (2017) Total flavonoid concentrations of bryophytes from Tianmu Mountain, Zhejiang Province (China): phylogeny and ecological factors. PLoS One 12:2–11. https://doi.org/10.1371/journal.pone.0173003

    Article  CAS  Google Scholar 

  138. Takahashi H, Asakawa Y (2017) Transcriptome analysis of Marchantin biosynthesis from the liverwort Marchantia polymorpha. Nat Prod Commun 12:1269–1272. https://doi.org/10.1177/1934578x1701200831

    Article  CAS  Google Scholar 

  139. Nandy S, Dey A (2020) Bibenzyls and bisbybenzyls of bryophytic origin as promising source of novel therapeutics: pharmacology, synthesis and structure-activity. DARU, J Pharm Sci 28:701–734. https://doi.org/10.1007/s40199-020-00341-0

    Article  CAS  Google Scholar 

  140. Asakawa Y, Nagashima F, Ludwiczuk A (2020) Distribution of Bibenzyls, Prenyl Bibenzyls, Bis-bibenzyls, and Terpenoids in the liverwort genus radula. J Nat Prod 83:756–769. https://doi.org/10.1021/acs.jnatprod.9b01132

    Article  CAS  PubMed  Google Scholar 

  141. Gülck T, Møller BL (2020) Phytocannabinoids: origins and biosynthesis. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2020.05.005

  142. Lu Y, Eiriksson FF, Thorsteinsdóttir M, Simonsen HT (2019) Valuable fatty acids in bryophytes – production, biosynthesis, analysis and applications. Plan Theory 8:1–18. https://doi.org/10.3390/plants8110524

    Article  CAS  Google Scholar 

  143. Asakawa Y, Ludwiczuk A (2013) Bryophytes: liverworts, mosses, and hornworts: extraction and isolation procedures. In: Roessner U, Dias DA (eds) BT – metabolomics tools for natural product discovery: methods and protocols. Humana Press, Totowa, pp 1–20

    Google Scholar 

  144. van Dam NM, van der Meijden E (2011) A role for metabolomics in plant ecology. In: Hall RD (ed) Annual plant reviews, vol 43. Wiley-Blackwell, Oxford, UK, pp 87–107

    Google Scholar 

  145. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432. https://doi.org/10.2307/1934352

    Article  Google Scholar 

  146. Washington HG (1984) Diversity, biotic and similarity indices. Water Res 18:653–694. https://doi.org/10.1016/0043-1354(84)90164-7

    Article  Google Scholar 

  147. Wetzel WC, Whitehead SR (2020) The many dimensions of phytochemical diversity: linking theory to practice. Ecol Lett 23:16–32. https://doi.org/10.1111/ele.13422

    Article  PubMed  Google Scholar 

  148. Azar AWP, Rosleine D, Faizal A (2019) Secondary metabolite profiles in the methanolic extract of Leucobryum javense isolated from tropical montane forest in West Java, Indonesia. AIP Conf Proc 2120:30027. https://doi.org/10.1063/1.5115631

    Article  Google Scholar 

  149. Kohn G, Vandekerkhove O, Hartmann E, Beutelmann P (1988) Acetylenic fatty acids in the ricciaceae (hepaticae). Phytochemistry 27:1049–1051. https://doi.org/10.1016/0031-9422(88)80271-1

    Article  CAS  Google Scholar 

  150. Markham KRJ, Porter L (1975) Evidence of biosynthetic simplicity in the flavonoid chemistry of the ricciaceae. Phytochemistry 14:199–201. https://doi.org/10.1016/0031-9422(75)85037-0

    Article  CAS  Google Scholar 

  151. Blatt-Janmaat K, Neumann S, Schmidt F et al (2022) Impact of in vitro hormone treatments on the bibenzyl production of Radula complanata. Botany. https://doi.org/10.1139/cjb-2022-0048

  152. Drábková LZ, Dobrev PI, Motyka V (2015) Phytohormone profiling across the bryophytes. PLoS One 10:1–19. https://doi.org/10.1371/journal.pone.0125411

    Article  CAS  Google Scholar 

  153. Bowman JL, Kohchi T, Yamato KT et al (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287–304.e15. https://doi.org/10.1016/j.cell.2017.09.030

    Article  CAS  PubMed  Google Scholar 

  154. Bowles AMC, Paps J, Bechtold U (2022) Water-related innovations in land plants evolved by different patterns of gene cooption and novelty. New Phytol:nph.17981. https://doi.org/10.1111/nph.17981

  155. Initiative OTPT (2019) One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:679–685. https://doi.org/10.1038/s41586-019-1693-2

    Article  CAS  Google Scholar 

  156. Saługa M (2020) At the crossroads of botanical collections and molecular genetics laboratory: a preliminary study of obtaining amplifiable DNA from moss herbarium material. PeerJ 8:e9109. https://doi.org/10.7717/peerj.9109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46. https://doi.org/10.1038/nrg3117

    Article  CAS  Google Scholar 

  158. Križman M, Jakše J, Baričevič D et al. (2006) Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta agriculturae Slovenica 87(2):427–433

    Google Scholar 

  159. Jordon-Thaden IE, Chanderbali AS, Gitzendanner MA, Soltis DE (2015) Modified CTAB and TRIzol protocols improve RNA extraction from chemically complex Embryophyta. Appl Plant Sci 3:1400105. https://doi.org/10.3732/apps.1400105

    Article  Google Scholar 

  160. Schlick-Steiner BC, Steiner FM, Seifert B et al (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annu Rev Entomol 55:421–438. https://doi.org/10.1146/annurev-ento-112408-085432

    Article  CAS  PubMed  Google Scholar 

  161. Fox HM (1946) Chemical taxonomy. Nature 157:511. https://doi.org/10.1038/157511a0

    Article  CAS  Google Scholar 

  162. Reynolds T (2007) The evolution of chemosystematics. Phytochemistry 68:2887–2895. https://doi.org/10.1016/j.phytochem.2007.06.027

    Article  CAS  PubMed  Google Scholar 

  163. Zidorn C (2019) Plant chemophenetics − a new term for plant chemosystematics/plant chemotaxonomy in the macro-molecular era. Phytochemistry 163:147–148. https://doi.org/10.1016/j.phytochem.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  164. Brodo IM (1986) Interpreting chemical variation in lichens for systematic purposes. Bryologist 89:132. https://doi.org/10.2307/3242753

    Article  CAS  Google Scholar 

  165. Rogers RW (1989) Chemical variation and the species concept in lichenized ascomycetes. Bot J Linn Soc 101:229–239. https://doi.org/10.1111/j.1095-8339.1989.tb00156.x

    Article  Google Scholar 

  166. Ramawat KG (2019) Biodiversity and chemotaxonomy. Springer International Publishing, Cham

    Book  Google Scholar 

  167. Culberson WL (1969) The use of chemistry in the systematics of the lichens. Taxon 18:152–166. https://doi.org/10.2307/1218673

    Article  Google Scholar 

  168. Lumbsch HT (2002) Analysis of phenolic products in lichens for identification and taxonomy. In: Kranner IC, Beckett RP, Varma AK (eds) Protocols in lichenology. Springer, Berlin/Heidelberg, pp 281–295

    Chapter  Google Scholar 

  169. Li N, Xu C, Li-Beisson Y, Philippar K (2016) Fatty acid and lipid transport in plant cells. Trends Plant Sci 21:145–158. https://doi.org/10.1016/j.tplants.2015.10.011

    Article  CAS  PubMed  Google Scholar 

  170. Kohn G, Demmerle S, Vandekerkhove O et al (1987) Distribution and chemotaxonomic significance of acetylenic fatty acids in mosses of the dicranales. Phytochemistry 26:2271–2275. https://doi.org/10.1016/S0031-9422(00)84699-3

    Article  CAS  Google Scholar 

  171. Ludwiczuk A, Odrzykoski IJ, Asakawa Y (2013) Identification of cryptic species within liverwort Conocephalum conicum based on the volatile components. Phytochemistry 95:234–241. https://doi.org/10.1016/j.phytochem.2013.06.011

    Article  CAS  PubMed  Google Scholar 

  172. Mues R, Zinsmeiter H (1988) The chemotaxonomy of phenolic compounds in bryophytes. J Hattori Bot Lab 141:109–141

    Google Scholar 

  173. Figueiredo AC, Sim-Sim M, Barroso JG et al (2009) Liverwort radula species from Portugal: chemotaxonomical evaluation of volatile composition. Flavour Fragr J 24:316–325. https://doi.org/10.1002/ffj

    Article  CAS  Google Scholar 

  174. Gradstein SR, Matsuda R, Asakawa Y (1985) A chemotaxonomic survey of terpenoids and aromatic compounds in the Lejeuneaceae. Nov Hedwigia Beihefte 80:63–86

    Google Scholar 

  175. Wink M, Waterman PG (1999) Chemotaxonomy in relation to molecular phylogeny of plants. Annual Plant Reviews 2:295–335. https://doi.org/10.1002/9781119312994.apr0017

  176. Stenitzer D, Mócsai R, Zechmeister H, Reski R, Decker EL, Altmann F (2022) O-methylated N-glycans Distinguish Mosses from Vascular Plants. Biomolecules 12(1):136–148. https://doi.org/10.3390/biom12010136

  177. Walker TWN, Alexander JM, Allard P et al (2022) Functional traits 2.0: the power of the metabolome for ecology. J Ecol 110:4–20. https://doi.org/10.1111/1365-2745.13826

    Article  CAS  Google Scholar 

  178. Lee GE, Bechteler J, Pócs T, Schäfer-Verwimp A, Tang HY, Chia PW (2022) Integrative Taxonomy Reveals a New Species of the Genus Lejeunea (Marchantiophya: Lejeuneaceae) from Peninsular Malaysia. Plants 11(13):1642–1654. https://doi.org/10.3390/plants11131642

  179. Landolt E (2010) Flora indicativa: ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen, 2., völlig. Haupt, Bern

    Google Scholar 

  180. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen – in ökologischer, dynamischer und historischer Sicht. 6th Edition. UTB. https://doi.org/10.36198/9783825281045

  181. Simmel J, Ahrens M, Poschlod P (2021) Ellenberg N values of bryophytes in Central Europe*. J Veg Sci 32:e12957. https://doi.org/10.1111/jvs.12957

    Article  Google Scholar 

  182. Hill MO, Preston CD, Bosanquet SDS, Roy DB (2007) BRYOATT: attributes of british and irish mosses, liverworts and hornworts with information on native status, size, life form, life history, geography and habitat. NERC, Huntingdon/Cambridgeshire

    Google Scholar 

  183. During HJ (1992) Ecological classification of bryophytes and lichens. In: Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 1–31

    Google Scholar 

  184. Frisvoll AA (1997) Bryophytes of spruce Forest stands in Central Norway. Lindbergia 22:83–97

    Google Scholar 

  185. Kattge J, DíAz S, Lavorel S et al (2011) TRY – a global database of plant traits. Glob Chang Biol 17:2905–2935. https://doi.org/10.1111/j.1365-2486.2011.02451.x

    Article  PubMed Central  Google Scholar 

  186. Valares Masa C, Alías Gallego J, Chaves Lobón N, Sosa Díaz T (2016) Intra-population variation of secondary metabolites in Cistus ladanifer L. Molecules 21:945. https://doi.org/10.3390/molecules21070945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wright IJ, Reich PB, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827. https://doi.org/10.1038/nature02403

    Article  CAS  PubMed  Google Scholar 

  188. Gauslaa Y, Coxson D (2011) Interspecific and intraspecific variations in water storage in epiphytic old forest foliose lichens. Botany 89:787–798. https://doi.org/10.1139/b11-070

    Article  CAS  Google Scholar 

  189. Ellis CJ, Asplund J, Benesperi R, Branquinho C, Di Nuzzo L, Hurtado P, Martínez I, Matos P, Nascimbene J, Pinho P, Prieto M, Rocha B, Rodríguez-Arribas C, Thüs H, Giordani P (2021) Functional Traits in Lichen Ecology: A Review of Challenge and Opportunity. Microorganisms 9(4):766–793. https://doi.org/10.3390/microorganisms9040766

  190. Fernández-Martínez M, Corbera J, Cano-Rocabayera O et al (2021) Do bryophyte elemental concentrations explain their morphological traits? Plan Theory 10:1581. https://doi.org/10.3390/plants10081581

    Article  CAS  Google Scholar 

  191. Oke TA, Turetsky MR, Weston DJ, Shaw JA (2020) Tradeoffs between phenotypic plasticity and local adaptation influence the ecophysiology of the moss, Sphagnum magellanicum. Oecologia 193:867–877. https://doi.org/10.1007/s00442-020-04735-4

    Article  PubMed  Google Scholar 

  192. Sack L, Buckley TN (2020) Trait multi-functionality in plant stress response. Integr Comp Biol 60:98–112. https://doi.org/10.1093/icb/icz152

    Article  CAS  PubMed  Google Scholar 

  193. Hedenäs L (2012) Morphological and anatomical features associated with epiphytism among the pleurocarpous mosses – one basis for further research on adaptations and their evolution. J Bryol 34:79–100. https://doi.org/10.1179/1743282011Y.0000000049

    Article  Google Scholar 

  194. Zechmeister HG, Grodzińska K, Szarek-Łukaszewska G (2003) Chapter 10 Bryophytes, Editor(s): B.A. Markert, A.M. Breure, H.G. Zechmeister, Trace Metals and other Contaminants in the Environment, Elsevier, Volume 6, Pages 329–375. https://doi.org/10.1016/S0927-5215(03)80140-6

  195. Proctor MCF (1979) Surface wax on the leaves of some mosses. J Bryol 10:531–538. https://doi.org/10.1179/jbr.1979.10.4.531

    Article  Google Scholar 

  196. Proctor MCF (1990) The physiological basis of bryophyte production. Bot J Linn Soc 104:61–77. https://doi.org/10.1111/j.1095-8339.1990.tb02211.x

  197. Brodribb TJ, Carriquí M, Delzon S et al (2020) Advanced vascular function discovered in a widespread moss. Nat Plants 6:273–279. https://doi.org/10.1038/s41477-020-0602-x

    Article  CAS  PubMed  Google Scholar 

  198. Niklas KJ, Cobb ED, Matas AJ (2017) The evolution of hydrophobic cell wall biopolymers: from algae to angiosperms. J Exp Bot 68:5261–5269. https://doi.org/10.1093/jxb/erx215

    Article  CAS  PubMed  Google Scholar 

  199. Mishler BD, Churchill SP (1984) A Cladistic approach to the phylogeny of the “Bryophytes.”. Brittonia 36:406. https://doi.org/10.2307/2806602

    Article  Google Scholar 

  200. Verhoeven JTA, Liefveld WM (1997) The ecological significance of organochemical compounds in sphagnum. Acta Bot Neerl 46:117–130. https://doi.org/10.1111/plb.1997.46.2.117

    Article  CAS  Google Scholar 

  201. Rühling Å, Tyler G (1970) Sorption and retention of heavy metals in the woodland Moss Hylocomium splendens (Hedw.) Br. Et Sch. Oikos 21:92–97. https://doi.org/10.2307/3543844

    Article  Google Scholar 

  202. Herrmann A, Schauer N (2013) Metabolomics-Assisted Plant Breeding, In: The Handbook of Plant Metabolomics (Eds. Weckwerth W, Kahl G). Wiley. https://doi.org/10.1002/9783527669882.ch13

  203. Gilbert OL (1968) Bryophytes as indicators of air pollution in the Tyne Valley. New Phytol 67:15–30. https://doi.org/10.1111/j.1469-8137.1968.tb05450.x

    Article  Google Scholar 

  204. Shi X-M, Song L, Liu W-Y et al (2017) Epiphytic bryophytes as bio-indicators of atmospheric nitrogen deposition in a subtropical montane cloud forest: response patterns, mechanism, and critical load. Environ Pollut 229:932–941. https://doi.org/10.1016/j.envpol.2017.07.077

    Article  CAS  PubMed  Google Scholar 

  205. Song L, Lu H-Z, Xu X-L et al (2016) Organic nitrogen uptake is a significant contributor to nitrogen economy of subtropical epiphytic bryophytes. Sci Rep 6:30408. https://doi.org/10.1038/srep30408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Czerepko J, Gawryś R, Szymczyk R et al (2021) How sensitive are epiphytic and epixylic cryptogams as indicators of forest naturalness? Testing bryophyte and lichen predictive power in stands under different management regimes in the Białowieża forest. Ecol Indic 125:107532. https://doi.org/10.1016/j.ecolind.2021.107532

    Article  Google Scholar 

  207. Koranda M, Kerschbaum S, Wanek W et al (2007) Physiological responses of bryophytes Thuidium tamariscinum and Hylocomium splendens to increased nitrogen deposition. Ann Bot 99:161–169. https://doi.org/10.1093/aob/mcl239

    Article  CAS  PubMed  Google Scholar 

  208. Freund DM, Hegeman AD (2017) Recent advances in stable isotope-enabled mass spectrometry-based plant metabolomics. Curr Opin Biotechnol 43:41–48. https://doi.org/10.1016/j.copbio.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  209. Domenick TM, Gill EL, Vedam-Mai V, Yost RA (2021) Mass spectrometry-based cellular metabolomics: current approaches, applications, and future directions. Anal Chem 93:546–566. https://doi.org/10.1021/acs.analchem.0c04363

    Article  CAS  PubMed  Google Scholar 

  210. González-Riano C, Dudzik D, Garcia A et al (2020) Recent developments along the analytical process for metabolomics workflows. Anal Chem 92:203–226. https://doi.org/10.1021/acs.analchem.9b04553

    Article  CAS  PubMed  Google Scholar 

  211. Maia M, Figueiredo A, Cordeiro C, Sousa Silva M (2021) FT-ICR-MS-based metabolomics: a deep dive into plant metabolism. Mass Spectrom Rev. https://doi.org/10.1002/mas.21731

  212. Shakya K, Chettri MK, Sawidis T (2008) Experimental investigations of five different mosses on accumulation capacities of Cu, Pb and Zn. Toxicol Environ Chem 90:585–601. https://doi.org/10.1080/02772240701609780

    Article  CAS  Google Scholar 

  213. Stanković JD, Sabovljević AD, Sabovljević MS (2018) Bryophytes and heavy metals: a review. Acta Bot Croat 77:109–118. https://doi.org/10.2478/botcro-2018-0014

    Article  Google Scholar 

  214. Gecheva G, Yurukova L (2014) Water pollutant monitoring with aquatic bryophytes: a review. Environ Chem Lett 12:49–61. https://doi.org/10.1007/s10311-013-0429-z

    Article  CAS  Google Scholar 

  215. Delépée R, Pouliquen H, Le Bris H (2004) The bryophyte Fontinalis antipyretica Hedw. bioaccumulates oxytetracycline, flumequine and oxolinic acid in the freshwater environment. Sci Total Environ 322:243–253. https://doi.org/10.1016/j.scitotenv.2003.09.018

    Article  CAS  PubMed  Google Scholar 

  216. Singer SD, Zou J, Weselake RJ (2016) Abiotic factors influence plant storage lipid accumulation and composition. Plant Sci 243:1–9. https://doi.org/10.1016/j.plantsci.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  217. Kageyama A, Ishizaki K, Kohchi T et al (2015) Abscisic acid induces biosynthesis of bisbibenzyls and tolerance to UV-C in the liverwort Marchantia polymorpha. Phytochemistry 117:547–553. https://doi.org/10.1016/j.phytochem.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  218. Glime JM (2006) Bryophytes and herbivory. Cryptogam Bryol 27:191–203

    Google Scholar 

  219. Kanazawa T, Morinaka H, Ebine K et al (2020) The liverwort oil body is formed by redirection of the secretory pathway. Nat Commun 11. https://doi.org/10.1038/s41467-020-19978-1

  220. Romani F, Banić E, Florent SN et al (2020) Oil body formation in Marchantia polymorpha is controlled by MpC1HDZ and serves as a defense against arthropod herbivores. Curr Biol 30:2815–2828.e8. https://doi.org/10.1016/j.cub.2020.05.081

    Article  CAS  PubMed  Google Scholar 

  221. Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450. https://doi.org/10.1146/annurev-arplant-042110-103854

    Article  CAS  PubMed  Google Scholar 

  222. War AR, Paulraj MG, Ahmad T et al (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320. https://doi.org/10.4161/psb.21663

    Article  PubMed  PubMed Central  Google Scholar 

  223. Da CY, Moles A, Bu ZJ et al (2021) Induced defense and its cost in two bryophyte species. Am J Bot 108:777–787. https://doi.org/10.1002/ajb2.1654

    Article  CAS  Google Scholar 

  224. Zhang J, Fu XX, Li RQ et al (2020) The hornwort genome and early land plant evolution. Nat Plants 6:107–118. https://doi.org/10.1038/s41477-019-0588-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Otero-Blanca A, Pérez-Llano Y, Reboledo-Blanco G et al (2021) Physcomitrium patens infection by colletotrichum gloeosporioides: understanding the fungal–bryophyte interaction by microscopy, phenomics and RNA sequencing. J Fungi 7:1–24. https://doi.org/10.3390/jof7080677

    Article  CAS  Google Scholar 

  226. Yoshikawa M, Luo W, Tanaka G et al (2018) Wounding stress induces phenylalanine ammonia lyases, leading to the accumulation of phenylpropanoids in the model liverwort Marchantia polymorpha. Phytochemistry 155:30–36. https://doi.org/10.1016/j.phytochem.2018.07.014

    Article  CAS  PubMed  Google Scholar 

  227. Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 91:1–12. https://doi.org/10.1093/aob/mcg013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Monte I, Franco-Zorrilla JM, García-Casado G et al (2019) A single JAZ repressor controls the Jasmonate pathway in Marchantia polymorpha. Mol Plant 12:185–198. https://doi.org/10.1016/j.molp.2018.12.017

    Article  CAS  PubMed  Google Scholar 

  229. Pryce RJ (1971) Lunularic acid, a common endogenous growth inhibitor of liverworts. Planta 97:354–357. https://doi.org/10.1007/BF00390214

    Article  CAS  PubMed  Google Scholar 

  230. Hussain T, Plunkett B, Ejaz M et al (2018) Identification of putative precursor genes for the biosynthesis of cannabinoid-like compound in Radula marginata. Front Plant Sci 9:537. https://doi.org/10.3389/fpls.2018.00537

    Article  PubMed  PubMed Central  Google Scholar 

  231. Stravs MA, Dührkop K, Böcker S, Zamboni N (2022) MSNovelist: de novo structure generation from mass spectra. Nat Methods. https://doi.org/10.1038/s41592-022-01486-3

  232. da Silva RR, Dorrestein PC, Quinn RA (2015) Illuminating the dark matter in metabolomics. Proc Natl Acad Sci 112:12549–12550. https://doi.org/10.1073/pnas.1516878112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21:256–265. https://doi.org/10.1016/j.tplants.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  234. Sardans J, Gargallo-Garriga A, Urban O et al (2021) Ecometabolomics of plant–herbivore and plant–fungi interactions: a synthesis study. Ecosphere 12:e03736. https://doi.org/10.1002/ecs2.3736

    Article  Google Scholar 

  235. Davey ML, Kauserud H, Ohlson M (2014) Forestry impacts on the hidden fungal biodiversity associated with bryophytes. FEMS Microbiol Ecol 90:313–325. https://doi.org/10.1111/1574-6941.12386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

KP, YP, and HU acknowledge the support of iDiv (funded by the German Research Foundation, DFG-FZT 118, 202548816). KBJ was funded by NSERC via the CGS-MSFSS (Application No. 566822-2021). Further, we like to thank the Leibniz Foundation for supporting this study. Lastly, we like to thank Harald Zechmeister for providing valuable feedback and for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Peters, K., Poeschl, Y., Blatt-Janmaat, K.L., Uthe, H. (2023). Ecometabolomics Studies of Bryophytes. In: Murthy, H.N. (eds) Bioactive Compounds in Bryophytes and Pteridophytes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-23243-5_30

Download citation

Publish with us

Policies and ethics