Skip to main content

Diversity of Seed Endophytes: Causes and Implications

  • Chapter
  • First Online:
Plant Relationships

Abstract

The immense importance of microbial symbioses with plants, animals, and other eukaryotes is meeting with ever increasing awareness and interest. Heritable symbionts—those transmitted directly from hosting parents to hosting progeny—are particularly intimate associations with profound ecological, evolutionary, and applied consequences. However, heritable symbioses also tend to be inconspicuous and are often understudied. Heritable fungal symbionts of plants, which we call seed endophytes, have been discovered and rediscovered in a few grass species (family Poaceae) starting well over a century ago, but have been intensively researched only in the last 45 years since their ability to produce antimammalian alkaloids was revealed to cause major toxicoses to livestock. The characterization of those fungal Epichloë species has been followed gradually by documentation of other seed endophytes with bioactive alkaloids, such as those found in locoweeds (family Fabaceae) and morning glories (family Convolvulaceae). As the known species diversity of seed endophytes and their hosts has expanded, so too has our knowledge of their alkaloid diversity, defenses against invertebrates, positive and negative effects on host plants, effects on pathogens and beneficial symbionts (e.g., mycorrhizal fungi), protection from abiotic stresses such as drought, and cascading population, community, and ecosystem consequences. Recent studies have even revealed endophyte contributions to plant diversity, including an Epichloë gene apparently transferred to a host grass in which it confers disease resistance. Here we review the current knowledge of seed-endophyte symbioses with emphasis on their phylogenetic, genetic, and functional diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afkhami ME, Rudgers JA (2008) Symbiosis lost: imperfect vertical transmission of fungal endophytes in grasses. Am Nat 172:405–416

    Article  Google Scholar 

  • Afkhami ME, Rudgers JA (2009) Endophyte-mediated resistance to herbivores depends on herbivore identity in the wild grass Festuca subverticillata. Environ Entomol 38:1086–1095. https://doi.org/10.1603/022.038.0416

    Article  Google Scholar 

  • Afkhami ME, Strauss SY (2016) Native fungal endophytes suppress an exotic dominant and increase plant diversity over small and large spatial scales. Ecology 97:1159–1169. https://doi.org/10.1890/15-1166.1

    Article  Google Scholar 

  • Alhawatema MS, Sanogo S, Baucom DL, Creamer R (2015) A search for the phylogenetic relationship of the ascomycete Rhizoctonia leguminicola using genetic analysis. Mycopathologia 179:381–389. https://doi.org/10.1007/s11046-015-9860-y

    Article  Google Scholar 

  • Ambrose KV, Koppenhofer AM, Belanger FC (2014) Horizontal gene transfer of a bacterial insect toxin gene into the Epichloë fungal symbionts of grasses. Sci Rep 4:5562. https://doi.org/10.1038/srep05562

    Article  CAS  Google Scholar 

  • Ambrose KV, Tian Z, Wang Y, Smith J, Zylstra G, Huang B, Belanger FC (2015) Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloe festucae. Sci Rep 5:10939. https://doi.org/10.1038/srep10939

    Article  Google Scholar 

  • An Z-q, Siegel MR, Hollin W, Tsai H-F, Schmidt D, Schardl CL (1993) Relationships among non-Acremonium sp. fungal endophytes in five grass species. Appl Environ Microbiol 59:1540–1548

    Article  CAS  Google Scholar 

  • Arrieta AM, Iannone LJ, Scervino JM, Vignale MV, Novas MV (2015) A foliar endophyte increases the diversity of phosphorus-solubilizing rhizospheric fungi and mycorrhizal colonization in the wild grass Bromus auleticus. Fungal Ecol 17:146–154. https://doi.org/10.1016/j.funeco.2015.07.001

    Article  Google Scholar 

  • Azevedo MD, Welty RE (1995) A study of the fungal endophyte Acremonium coenophialum in the roots of tall fescue seedlings. Mycologia 87:289–297

    Article  Google Scholar 

  • Bacetty A, Snook M, Glenn A, Noe J, Nagabhyru P, Bacon C (2009a) Chemotaxis disruption in Pratylenchus scribneri by tall fescue root extracts and alkaloids. J Chem Ecol 35:844–850. https://doi.org/10.1007/s10886-009-9657-x

    Article  CAS  Google Scholar 

  • Bacetty AA, Snook ME, Glenn AE, Noe JP, Hill N, Culbreath A, Timper P, Nagabhyru P, Bacon CW (2009b) Toxicity of endophyte-infected tall fescue alkaloids and grass metabolites on Pratylenchus scribneri. Phytopathology 99:1336–1345. https://doi.org/10.1094/PHYTO-99-12-1336

    Article  CAS  Google Scholar 

  • Ballester A-R, Marcet-Houben M, Levin E, Sela N, Selma-Lázaro C, Carmona L, Wisniewski M, Droby S, González-Candelas L, Gabaldón T (2014) Genome, transcriptome, and functional analyses of Penicillium expansum provide new insights into secondary metabolism and pathogenicity. Mol Plant Microbe Interact 28:232–248. https://doi.org/10.1094/MPMI-09-14-0261-FI

    Article  CAS  Google Scholar 

  • Banfi E, Galasso G, Foggi B, Kopecký D, Ardenghi NMG (2017) From Schedonorus and Micropyropsis to Lolium (Poaceae: Loliinae): new combinations and typifications. Taxon 66:708–717. https://doi.org/10.12705/663.11

    Article  Google Scholar 

  • Bastias DA, Martinez-Ghersa MA, Ballare CL, Gundel PE (2017a) Epichloë fungal endophytes and plant defenses: not just alkaloids. Trends Plant Sci 22:939–948. https://doi.org/10.1016/j.tplants.2017.08.005

    Article  CAS  Google Scholar 

  • Bastias DA, Ueno AC, Machado Assefh CR, Alvarez AE, Young CA, Gundel PE (2017b) Metabolism or behavior: explaining the performance of aphids on alkaloid-producing fungal endophytes in annual ryegrass (Lolium multiflorum). Oecologia 185:245–256. https://doi.org/10.1007/s00442-017-3940-2

    Article  Google Scholar 

  • Bastías DA, Alejandra Martinez-Ghersa M, Newman JA, Card SD, Mace WJ, Gundel PE (2018) The plant hormone salicylic acid interacts with the mechanism of anti-herbivory conferred by fungal endophytes in grasses. Plant Cell Environ 41:395–405. https://doi.org/10.1111/pce.13102

    Article  CAS  Google Scholar 

  • Bastías DA, Martínez-Ghersa MA, Newman JA, Card SD, Mace WJ, Gundel PE (2019) Sipha maydis sensitivity to defences of Lolium multiflorum and its endophytic fungus Epichloë occultans. PeerJ 7:e8257. https://doi.org/10.7717/peerj.8257

  • Bastias DA, Bustos LB, Jauregui R, Barrera A, Acuna-Rodriguez IS, Molina-Montenegro MA, Gundel PE (2021) Epichloë fungal endophytes influence seed-associated bacterial communities. Front Microbiol 12:795354. https://doi.org/10.3389/fmicb.2021.795354

    Article  Google Scholar 

  • Baucom DL, Romero M, Belfon R, Creamer R (2012) Two new species of Undifilum, fungal endophytes of Astragalus (locoweeds) in the United States. Botany 90:866–875. https://doi.org/10.1139/b2012-056

    Article  CAS  Google Scholar 

  • Beaulieu WT, Panaccione DG, Ryan KL, Kaonongbua W, Clay K (2015) Phylogenetic and chemotypic diversity of Periglandula species in eight new morning glory hosts (Convolvulaceae). Mycologia 107:667–678. https://doi.org/10.3852/14-239

    Article  CAS  Google Scholar 

  • Beck PA, Gunter SA, Lusby KS, West CP, Watkins KB, Hubbell DS (2008) Animal performance and economic comparison of novel and toxic endophyte tall fescues to cool-season annuals. J Anim Sci 86:2043–2055. https://doi.org/10.2527/jas.2007-0522

    Article  CAS  Google Scholar 

  • Becker M, Becker Y, Green K, Scott B (2016) The endophytic symbiont Epichloë festucae establishes an epiphyllous net on the surface of Lolium perenne leaves by development of an expressorium, an appressorium-like leaf exit structure. New Phytol 211:240–254. https://doi.org/10.1111/nph.13931

    Article  CAS  Google Scholar 

  • Becker Y, Green KA, Scott B, Becker M (2018) Artificial inoculation of Epichloë festucae into Lolium perenne, and visualisation of endophytic and epiphyllous fungal growth. Bio Protoc. 8:e2990. https://doi.org/10.21769/BioProtoc.2990

    Article  CAS  Google Scholar 

  • Bell-Dereske L, Gao X, Masiello CA, Sinsabaugh RL, Emery SM, Rudgers JA (2017) Plant–fungal symbiosis affects litter decomposition during primary succession. Oikos 126:801–811. https://doi.org/10.1111/oik.03648

    Article  CAS  Google Scholar 

  • Berry D, Takach JE, Schardl CL, Charlton ND, Scott B, Young CA (2015) Disparate independent genetic events disrupt the secondary metabolism gene perA in certain symbiotic Epichloë species. Appl Environ Microbiol 81:2797–2807. https://doi.org/10.1128/AEM.03721-14

    Article  CAS  Google Scholar 

  • Berry D, Mace W, Grage K, Wesche F, Gore S, Schardl CL, Young CA, Dijkwel PP, Leuchtmann A, Bode HB, Scott B (2019) Efficient nonenzymatic cyclization and domain shuffling drive pyrrolopyrazine diversity from truncated variants of a fungal NRPS. Proc Natl Acad Sci U S A 116:25614–25623. https://doi.org/10.1073/pnas.1913080116

    Article  CAS  Google Scholar 

  • Berry D, Lee K, Winter D, Mace W, Becker Y, Nagabhyru P, Treindl AD, Bogantes EV, Young CA, Leuchtmann A, Johnson LJ, Johnson RD, Cox MP, Schardl CL, Scott B (2022) Cross-species transcriptomics identifies core regulatory changes differentiating the asymptomatic asexual and virulent sexual life cycles of grass-symbiotic Epichloë fungi. G3. https://doi.org/10.1093/g3journal/jkac043

  • Bluett SJ, Thom ER, Clark DA, Macdonald KA, Minnee EMK (2005a) Effects of perennial ryegrass infected with either AR1 or wild endophyte on dairy production in the Waikato. N Z J Agric Res 48:197–212

    Article  Google Scholar 

  • Bluett SJ, Thom ER, Clark DA, Waugh CD (2005b) Effects of a novel ryegrass endophyte on pasture production, dairy cow milk production and calf liveweight gain. Aust J Exp Agric 45:11–19

    Article  Google Scholar 

  • Bouton JH, Latch GCM, Hill NS, Hoveland CS, McCann MA, Watson RH, Parish JA, Hawkins LL, Thompson FN (2002) Reinfection of tall fescue cultivars with non-ergot alkaloid-producing endophytes. Agron J 94:567–574

    Google Scholar 

  • Brem D, Leuchtmann A (2003) Molecular evidence for host-adapted races of the fungal endophyte Epichloë bromicola after presumed host shifts. Evolution 57:37–51

    CAS  Google Scholar 

  • Bubica Bustos LM, Ueno AC, Di Leo TD, Crocco CD, Martínez-Ghersa MA, Molina-Montenegro MA, Gundel PE (2020) Maternal exposure to ozone modulates the endophyte-conferred resistance to aphids in Lolium multiflorum plants. Insects 11:1–16. https://doi.org/10.3390/insects11090548

    Article  Google Scholar 

  • Buckley H, Young CA, Charlton ND, Hendricks WQ, Haley B, Nagabhyru P, Rudgers JA (2019) Leaf endophytes mediate fertilizer effects on plant yield and traits in northern oat grass (Trisetum spicatum). Plant Soil 434:425–440. https://doi.org/10.1007/s11104-018-3848-6

    Article  CAS  Google Scholar 

  • Bultman TL, Bell GD (2003) Interaction between fungal endophytes and environmental stressors influences plant resistance to insects. Oikos 103:182–190

    Article  Google Scholar 

  • Bultman TL, Leuchtmann A (2003) A test of host specialization by insect vectors as a mechanism for reproductive isolation among entomophilous fungal species. Oikos 103:681–687

    Article  Google Scholar 

  • Bultman TL, Leuchtmann A (2008) Biology of the Epichloë-Botanophila interaction: an intriguing association between fungi and insects. Fungal Biol Rev 22:131–138. https://doi.org/10.1016/j.fbr.2009.04.003

    Article  Google Scholar 

  • Bultman TL, McNeill MR, Goldson SL (2003) Isolate-dependent impacts of fungal endophytes in a multitrophic interaction. Oikos 102:491–496

    Article  Google Scholar 

  • Bultman TL, Bell G, Martin WD (2004) A fungal endophyte mediates reversal of wound-induced resistance and constrains tolerance in a grass. Ecology 85:679–685

    Article  Google Scholar 

  • Burns JC, Fisher DS (2006) Intake and digestion of ‘Jesup’ tall fescue hays with a novel fungal endophyte, without an endophyte, or with a wild-type endophyte. Crop Sci 46:216–223

    Article  Google Scholar 

  • Bushman BS, Singh D, Lamp R, Young CA, Charlton ND, Robins JG, Anderson N (2018) Variation among orchardgrass (Dactylis glomerata) germplasm for choke prevalence caused by Epichloë typhina. Plant Dis 103:324–330. https://doi.org/10.1094/PDIS-05-18-0867-RE

    Article  Google Scholar 

  • Cabral D, Cafaro MJ, Saidman B, Lugo M, Reddy PV, White JF Jr (1999) Evidence supporting the occurrence of a new species of endophyte in some South American grasses. Mycologia 91:315–325

    Article  Google Scholar 

  • Campbell MA, Tapper BA, Simpson WR, Johnson RD, Mace W, Ram A, Lukito Y, Dupont PY, Johnson LJ, Scott DB, Ganley ARD, Cox MP (2017) Epichloë hybrida, sp. nov., an emerging model system for investigating fungal allopolyploidy. Mycologia 109:715–729. https://doi.org/10.1080/00275514.2017.1406174

  • Caradus JR, Johnson LJ (2020) Epichloë fungal endophytes—from a biological curiosity in wild grasses to an essential component of resilient high performing ryegrass and fescue pastures. J Fungi 6:1–44. https://doi.org/10.3390/jof6040322

    Article  CAS  Google Scholar 

  • Card SD, Faville MJ, Simpson WR, Johnson RD, Voisey CR, de Bonth ACM, Hume DE (2014) Mutualistic fungal endophytes in the Triticeae – survey and description. FEMS Microbiol Ecol 88:94–106. https://doi.org/10.1111/1574-6941.12273

    Article  CAS  Google Scholar 

  • Card SD, Bastias DA, Caradus JR (2021) Antagonism to plant pathogens by Epichloë fungal endophytes: a review. Plants (Basel) 10. https://doi.org/10.3390/plants10101997

  • Casas C, Gundel PE, Deliens E, Iannone LJ, García Martinez G, Vignale MV, Schnyder H (2022) Loss of fungal symbionts at the arid limit of the distribution range in a native Patagonian grass—resource eco-physiological relations. Funct Ecol 36:583–594. https://doi.org/10.1111/1365-2435.13974

    Article  Google Scholar 

  • Chakrabarti M, Nagabhyru P, Schardl CL, Dinkins RD (2022) Differential gene expression in tall fescue tissues in response to water deficit. Plant Genome 2022:e20199. https://doi.org/10.1002/tpg2.20199

    Article  CAS  Google Scholar 

  • Charlton ND, Craven KD, Mittal S, Hopkins AA, Young CA (2012a) Epichloë canadensis, a new interspecific epichloid hybrid symbiotic with Canada wildrye (Elymus canadensis). Mycologia 104:1187–1199. https://doi.org/10.3852/11-403

  • Charlton ND, Shoji J-Y, Ghimire SR, Nakashima J, Craven KD (2012b) Deletion of the fungal gene soft disrupts mutualistic symbiosis between the grass endophyte Epichloë festucae and the host plant. Eukaryot Cell 11:1463–1471. https://doi.org/10.1128/ec.00191-12

    Article  CAS  Google Scholar 

  • Charlton ND, Craven KD, Afkhami ME, Hall BA, Ghimire SR, Young CA (2014) Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic Epichloë species of Bromus laevipes. FEMS Microbiol Ecol 90:276–289. https://doi.org/10.1111/1574-6941.12393

    Article  CAS  Google Scholar 

  • Chen L, Li XZ, Li CJ, Swoboda GA, Young CA, Sugawara K, Leuchtmann A, Schardl CL (2015) Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass. Mycologia 107:863–873. https://doi.org/10.3852/15-019

    Article  CAS  Google Scholar 

  • Chen X-P, Ma L-F, Zhan Z-J (2017) A new pyrrolizidine alkaloid from Penicillium expansum. J Chem Res 41:93–94. https://doi.org/10.3184/174751917x14858862342142

    Article  CAS  Google Scholar 

  • Christensen MJ, Leuchtmann A, Rowan DD, Tapper BA (1993) Taxonomy of Acremonium endophytes of tall fescue (Festuca arundinacea), meadow fescue (F. pratensis), and perennial rye-grass (Lolium perenne). Mycol Res 97:1083–1092

    Article  Google Scholar 

  • Christensen MJ, Ball OJP, Bennett RJ, Schardl CL (1997) Fungal and host genotype effects on compatibility and vascular colonization by Epichloë festucae. Mycol Res 101:493–501

    Article  Google Scholar 

  • Christensen MJ, Bennett RJ, Ansari HA, Koga H, Johnson RD, Bryan GT, Simpson WR, Koolaard JP, Nickless EM, Voisey CR (2008) Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet Biol 45:84–93

    Google Scholar 

  • Chujo T, Scott B (2014) Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte–plant symbiosis. Mol Microbiol 92:413–434. https://doi.org/10.1111/mmi.12567

    Article  CAS  Google Scholar 

  • Chujo T, Lukito Y, Eaton CJ, Dupont PY, Johnson LJ, Winter D, Cox MP, Scott B (2019) Complex epigenetic regulation of alkaloid biosynthesis and host interaction by heterochromatin protein I in a fungal endophyte-plant symbiosis. Fungal Genet Biol 125:71–83. https://doi.org/10.1016/j.fgb.2019.02.001

    Article  CAS  Google Scholar 

  • Chung KR, Schardl CL (1997) Vegetative compatibility between and within Epichloë species. Mycologia 89(558–565):976. https://doi.org/10.2307/3760992

    Article  Google Scholar 

  • Chung YA, Miller TEX, Rudgers JA (2015) Fungal symbionts maintain a rare plant population but demographic advantage drives the dominance of a common host. J Ecol 103:967–977. https://doi.org/10.1111/1365-2745.12406

    Article  Google Scholar 

  • Clay K (2009) Defensive mutualism and grass endophytes: Still valid after all these years? In: White JFJ, Torres MS (eds) Defensive mutualism in microbial symbiosis. CRC Press, Boca Raton, London, New York, pp 9–20

    Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744

    Article  CAS  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  Google Scholar 

  • Clay K, Holah J, Rudgers JA (2005) Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proc Natl Acad Sci U S A 102:12465–12470

    Article  CAS  Google Scholar 

  • Cook D, Beaulieu WT, Mott IW, Riet-Correa F, Gardner DR, Grum D, Pfister JA, Clay K, Marcolongo-Pereira C (2013) Production of the alkaloid swainsonine by a fungal endosymbiont of the ascomycete order Chaetothyriales in the host Ipomoea carnea. J Agric Food Chem 61:3797–3803. https://doi.org/10.1021/jf4008423

    Article  CAS  Google Scholar 

  • Cook D, Donzelli BGG, Creamer R, Baucom DL, Gardner DR, Pan J, Moore N, Krasnoff SB, Jaromczyk JW, Schardl CL (2017) Swainsonine biosynthesis genes in diverse symbiotic and pathogenic fungi. G3 7:1791–1797. https://doi.org/10.1534/g3.117.041384

    Article  CAS  Google Scholar 

  • Cook D, Lee ST, Panaccione DG, Leadmon CE, Clay K, Gardner DR (2019) Biodiversity of Convolvulaceous species that contain ergot alkaloids, indole diterpene alkaloids, and swainsonine. Biochem Syst Ecol 86:103921. https://doi.org/10.1016/j.bse.2019.103921

    Article  CAS  Google Scholar 

  • Craven KD, Blankenship JD, Leuchtmann A, Hignight K, Schardl CL (2001) Hybrid fungal endophytes symbiotic with the grass Lolium pratense. Sydowia 53:44–73

    Google Scholar 

  • David AS, Quintana-Ascencio PF, Menges ES, Thapa-Magar KB, Afkhami ME, Searcy CA (2019) Soil microbiomes underlie population persistence of an endangered plant species. Am Nat 194:488–494. https://doi.org/10.1086/704684

    Article  Google Scholar 

  • Decunta FA, Pérez LI, Malinowski DP, Molina-Montenegro MA, Gundel PE (2021) A systematic review on the effects of Epichloë fungal endophytes on drought tolerance in cool-season grasses. Front Plant Sci 12:380. https://doi.org/10.3389/fpls.2021.644731

    Article  Google Scholar 

  • di Menna ME, Finch SC, Popay AJ, Smith BL (2012) A review of the Neotyphodium lolii/Lolium perenne symbiosis and its associated effects on animal and plant health, with particular emphasis on ryegrass staggers. N Z Vet J 60:315–328

    Article  Google Scholar 

  • Ding N, Guo H, Kupper JV, McNear DH (2021) Phosphorus source and Epichloë coenophiala strain interact over time to modify tall fescue rhizosphere microbial community structure and function. Soil Biol Biochem 154:108125. https://doi.org/10.1016/j.soilbio.2020.108125

    Article  CAS  Google Scholar 

  • Dinkins RD, Nagabhyru P, Graham MA, Boykin D, Schardl CL (2017) Transcriptome response of Lolium arundinaceum to its fungal endophyte Epichloë coenophiala. New Phytol 213:324–337. https://doi.org/10.1111/nph.14103

    Article  CAS  Google Scholar 

  • Dinkins RD, Nagabhyru P, Young CA, West CP, Schardl CL (2019) Transcriptome analysis and differential expression in tall fescue harboring different endophyte strains in response to water deficit. Plant Genome 12:180071. https://doi.org/10.3835/plantgenome2018.09.0071

    Article  CAS  Google Scholar 

  • Dupont P-Y, Eaton CJ, Wargent JJ, Fechtner S, Solomon P, Schmid J, Day RC, Scott B, Cox MP (2015) Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytol 208:1227–1240. https://doi.org/10.1111/nph.13614

    Article  CAS  Google Scholar 

  • Durden L, Wang D, Panaccione D, Clay K (2019) Decreased root-knot nematode gall formation in roots of the morning glory Ipomoea tricolor symbiotic with ergot alkaloid-producing fungal Periglandula sp. J Chem Ecol. https://doi.org/10.1007/s10886-019-01109-w

  • Emery SM, Bell-Dereske L, Rudgers JA (2015) Fungal symbiosis and precipitation alter traits and dune building by the ecosystem engineer, Ammophila breviligulata. Ecology 96:927–935. https://doi.org/10.1890/14-1121.1

    Article  Google Scholar 

  • Ewald PW (1987) Transmission modes and evolution of the parasitism-mutualism continuum. Ann N Y Acad Sci 503:295–306

    Article  CAS  Google Scholar 

  • Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42:360–368. https://doi.org/10.1093/icb/42.2.360

    Article  Google Scholar 

  • Fernando K, Reddy P, Hettiarachchige IK, Spangenberg GC, Rochfort SJ, Guthridge KM (2020) Novel antifungal activity of Lolium-associated Epichloë endophytes. Microorganisms 8. https://doi.org/10.3390/microorganisms8060955

  • Finkes LK, Cady AB, Mulroy JC, Clay K, Rudgers JA (2006) Plant-fungus mutualism affects spider composition in successional fields. Ecol Lett 9:344–353

    Article  Google Scholar 

  • Fiorenza JE, Fernández PC, Omacini M (2021) Z-3-Hexenylacetate emissions induced by the endophyte Epichloë occultans at different levels of defoliation during the host plant’s life cycle. Fungal Ecol 49:101015. https://doi.org/10.1016/j.funeco.2020.101015

    Article  Google Scholar 

  • Fletcher L, Sutherland B (2009) Sheep responses to grazing ryegrass with AR37 endophyte. Proc N Z Grassl Assoc 71:127–132

    Google Scholar 

  • Fletcher LR, Finch SC, Sutherland BL, deNicolo G, Mace WJ, van Koten C, Hume DE (2017) The occurrence of ryegrass staggers and heat stress in sheep grazing ryegrass-endophyte associations with diverse alkaloid profiles. N Z Vet J 65:232–241. https://doi.org/10.1080/00480169.2017.1329673

    Article  CAS  Google Scholar 

  • Florea S, Andreeva K, Machado C, Mirabito PM, Schardl CL (2009) Elimination of marker genes from transformed filamentous fungi by unselected transient transfection with a Cre-expressing plasmid. Fungal Genet Biol 46:721–730. https://doi.org/10.1016/j.fgb.2009.06.010

    Article  CAS  Google Scholar 

  • Florea S, Schardl CL, Hollin W (2015) Detection and isolation of Epichloë species, fungal endophytes of grasses. Curr Protoc Microbiol 38:19A.11.11-19A.11.24. https://doi.org/10.1002/9780471729259.mc19a01s38

    Article  Google Scholar 

  • Florea S, Phillips TD, Panaccione DG, Farman ML, Schardl CL (2016) Chromosome-end knockoff strategy to reshape alkaloid profiles of a fungal endophyte. G3 6:2601–2610. https://doi.org/10.1534/g3.116.029686

    Article  CAS  Google Scholar 

  • Florea S, Panaccione DG, Schardl CL (2017) Ergot alkaloids of the family Clavicipitaceae. Phytopathology 107:504–518. https://doi.org/10.1094/phyto-12-16-0435-rvw

    Article  CAS  Google Scholar 

  • Florea S, Jaromczyk J, Schardl CL (2021) Non-transgenic CRISPR-mediated knockout of entire ergot alkaloid gene clusters in slow-growing asexual polyploid fungi. Toxins (Basel) 13:153. https://doi.org/10.3390/toxins13020153

    Article  CAS  Google Scholar 

  • Fuchs B, Krischke M, Mueller MJ, Krauss J (2013) Peramine and lolitrem B from endophyte-grass associations cascade up the food chain. J Chem Ecol 39:1385–1389. https://doi.org/10.1007/s10886-013-0364-2

    Article  CAS  Google Scholar 

  • Fuchs B, Krischke M, Mueller MJ, Krauss J (2017) Herbivore-specific induction of defence metabolites in a grass-endophyte association. Funct Ecol 31:318–324. https://doi.org/10.1111/1365-2435.12755

    Article  Google Scholar 

  • García Parisi PA, Casas C, Gundel PE, Omacini M (2012) Consequences of grazing on the vertical transmission of a fungal Neotyphodium symbiont in an annual grass population. Austral Ecol 37:620–628. https://doi.org/10.1111/j.1442-9993.2011.02325.x

    Article  Google Scholar 

  • Gibert A, Magda D, Hazard L (2015) Interplay between endophyte prevalence, effects and transmission: insights from a natural grass population. PLoS One 10:e0139919. https://doi.org/10.1371/journal.pone.0139919

    Article  CAS  Google Scholar 

  • Glenn AE, Bacon CW, Price R, Hanlin RT (1996) Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia 88:369–383

    Article  CAS  Google Scholar 

  • Gonthier DJ, Sullivan TJ, Brown KL, Wurtzel B, Lawal R, VandenOever K, Buchan Z, Bultman TL (2008) Stroma-forming endophyte Epichloe glyceriae provides wound-inducible herbivore resistance to its grass host. Oikos 117:629–633

    Article  Google Scholar 

  • Graff P, Gundel PE, Salvat A, Cristos D, Chaneton EJ (2020) Protection offered by leaf fungal endophytes to an invasive species against native herbivores depends on soil nutrients. J Ecol. https://doi.org/10.1111/1365-2745.13371

  • Green KA, Becker Y, Fitzsimons HL, Scott B (2016) An Epichloë festucae homologue of MOB3, a component of the STRIPAK complex, is required for the establishment of a mutualistic symbiotic interaction with Lolium perenne. Mol Plant Pathol 17:1480–1492. https://doi.org/10.1111/mpp.12443

    Article  CAS  Google Scholar 

  • Gundel PE, Batista WB, Texeira M, MartÌnez-Ghersa MA, Omacini M, Ghersa CM (2008) Neotyphodium endophyte infection frequency in annual grass populations: relative importance of mutualism and transmission efficiency. Proc R Soc B 275:897–905

    Google Scholar 

  • Gundel PE, Perez LI, Helander M, Saikkonen K (2013) Symbiotically modified organisms: nontoxic fungal endophytes in grasses. Trends Plant Sci 18:420–427. https://doi.org/10.1016/j.tplants.2013.03.003

    Article  CAS  Google Scholar 

  • Gundel PE, Rudgers JA, Whitney KD (2017) Vertically transmitted symbionts as mechanisms of transgenerational effects. Am J Bot 104:787–792. https://doi.org/10.3732/ajb.1700036

    Article  CAS  Google Scholar 

  • Gundel PE, Seal CE, Biganzoli F, Molina-Montenegro MA, Vázquez-de-Aldana BR, Zabalgogeazcoa I, Bush LP, Martínez-Ghersa MA, Ghersa CM (2018) Occurrence of alkaloids in grass seeds symbiotic with vertically-transmitted Epichloë fungal endophytes and its relationship with antioxidants. Front Ecol Evol 6. https://doi.org/10.3389/fevo.2018.00211

  • Gundel PE, Sun P, Charlton ND, Young CA, Miller TEX, Rudgers JA (2021) Simulated folivory increases vertical transmission of fungal endophytes that deter herbivores and alter tolerance to herbivory in Poa autumnalis. Ann Bot 125:981–991. https://doi.org/10.1093/AOB/MCAA021

    Article  Google Scholar 

  • Guo J, McCulley RL, McNear DH (2015) Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition. Front Plant Sci 6:13. https://doi.org/10.3389/fpls.2015.00183

    Article  Google Scholar 

  • Haarmann T, Lorenz N, Tudzynski P (2008) Use of a nonhomologous end joining deficient strain (Δku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. Fungal Genet Biol 45:35–44

    Article  CAS  Google Scholar 

  • Hahn H, McManus MT, Warnstorff K, Monahan BJ, Young CA, Davies E, Tapper BA, Scott B (2008) Neotyphodium fungal endophytes confer physiological protection to perennial ryegrass (Lolium perenne L.) subjected to a water deficit. Environ Exp Bot 63:183–199. https://doi.org/10.1016/j.envexpbot.2007.10.021

    Article  Google Scholar 

  • Harris CM, Schneider MJ, Ungemach FS, Hill JE, Harris TM (1988) Biosynthesis of the toxic indolizidine alkaloids slaframine and swainsonine in Rhizoctonia leguminicola: metabolism of 1-hydroxyindolizidines. J Am Chem Soc 110:940–949. https://doi.org/10.1021/ja00211a039

    Article  CAS  Google Scholar 

  • Havemann J, Vogel D, Loll B, Keller U (2014) Cyclolization of D-lysergic acid alkaloid peptides. Chem Biol 21:146–155. https://doi.org/10.1016/j.chembiol.2013.11.008

    Article  CAS  Google Scholar 

  • Hawkes CV, Kjøller R, Raaijmakers JM, Riber L, Christensen S, Rasmussen S, Christensen JH, Dahl AB, Westergaard JC, Nielsen M, Brown-Guedira G, Hansen LH (2021) Extension of plant phenotypes by the foliar microbiome. Annu Rev Plant Biol 72:823–846. https://doi.org/10.1146/annurev-arplant-080620-114342

    Article  CAS  Google Scholar 

  • Heil M (2014) Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol 204:297–306. https://doi.org/10.1111/nph.12977

    Article  CAS  Google Scholar 

  • Hettiarachchige IK, Jagt CJV, Mann RC, Sawbridge TI, Spangenberg GC, Guthridge KM (2021) Global changes in asexual epichloë transcriptomes during the early stages, from seed to seedling, of symbiotum establishment. Microorganisms 9. https://doi.org/10.3390/microorganisms9050991

  • Hewitt KG, Mace WJ, McKenzie CM, Matthew C, Popay AJ (2020) Fungal alkaloid occurrence in endophyte-infected perennial ryegrass during seedling establishment. J Chem Ecol 46:410–421. https://doi.org/10.1007/s10886-020-01162-w

    Article  CAS  Google Scholar 

  • Hinton DM, Bacon CW (1985) The distribution and ultrastructure of the endophyte of toxic tall fescue. Can J Bot 63:36–42. https://doi.org/10.1139/b85-006

    Article  Google Scholar 

  • Hodgson S, de Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4:1199–1208. https://doi.org/10.1002/ece3.953

    Article  Google Scholar 

  • Hopkins AA, Young CA, Butler TJ, Bouton JH (2011) Registration of Texoma MaxQ II tall fescue. J Plant Regist 5:14–18

    Article  Google Scholar 

  • Hoveland C (2009) Origin and history. In: Fribourg HA, Hannaway DB, West CP (eds) Tall Fescue for the twenty-first century. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin, pp 3–10

    Google Scholar 

  • Hume DE, Ryan GD, Gibert A, Helander M, Mirlohi A, Sabzalian MR (2016) Epichloë fungal endophytes for grassland ecosystems. Sustain Agric Rev 2016:233–305

    Article  Google Scholar 

  • Hume DE, Stewart AV, Simpson WR, Johnson RD (2020) Epichloë fungal endophytes play a fundamental role in New Zealand grasslands. J R Soc N Z 50:279–298. https://doi.org/10.1080/03036758.2020.1726415

  • Iannone LJ, Cabral D, Schardl CL, Rossi MS (2009) Phylogenetic divergence, morphological and physiological differences distinguish a new Neotyphodium endophyte species in the grass Bromus auleticus from South America. Mycologia 101:340–351. https://doi.org/10.3852/08-156

    Article  CAS  Google Scholar 

  • Iannone LJ, Novas MV, Young CA, De Battista JP, Schardl CL (2012a) Endophytes of native grasses from South America: Biodiversity and ecology. Fungal Ecol 5:357–363. https://doi.org/10.1016/j.funeco.2011.05.007

    Article  Google Scholar 

  • Iannone LJ, Pinget AD, Nagabhyru P, Schardl CL, De Battista JP (2012b) Beneficial effects of Neotyphodium tembladerae and Neotyphodium pampeanum on a wild forage grass. Grass Forage Sci 67:382–390. https://doi.org/10.1111/j.1365-2494.2012.00855.x

    Article  Google Scholar 

  • Iannone LJ, Mc Cargo PD, Giussani LM, Schardl CL (2013) Geographic distribution patterns of vertically transmitted endophytes in two native grasses in Argentina. Symbiosis 59:99–110. https://doi.org/10.1007/s13199-012-0214-y

    Article  Google Scholar 

  • Iannone LJ, Irisarri JGN, Mc Cargo PD, Pérez LI, Gundel PE (2015) Occurrence of Epichloë fungal endophytes in the sheep-preferred grass Hordeum comosum from Patagonia. J Arid Environ 115:19–26. https://doi.org/10.1016/j.jaridenv.2014.12.008

    Article  Google Scholar 

  • Iannone LJ, Vignale MV, Pinget AD, Re A, Mc Cargo PD, Novas MV (2017) Seed-transmitted Epichloë sp. endophyte alleviates the negative effects of head smut of grasses (Ustilago bullata) on Bromus auleticus. Fungal Ecol 29:45–51. https://doi.org/10.1016/j.funeco.2017.06.001

    Article  Google Scholar 

  • Iqbal J, Nelson JA, McCulley RL (2013) Fungal endophyte presence and genotype affect plant diversity and soil-to-atmosphere trace gas fluxes. Plant Soil 364:15–27. https://doi.org/10.1007/s11104-012-1326-0

    Article  CAS  Google Scholar 

  • Jakubczyk D, Caputi L, Stevenson CEM, Lawson DM, O’Connor SE (2016) Structural characterization of EasH (Aspergillus japonicus) - an oxidase involved in cycloclavine biosynthesis. Chem Commun 52:14306–14309. https://doi.org/10.1039/c6cc08438a

    Article  CAS  Google Scholar 

  • Jani AJ, Faeth SH, Gardner D (2010) Asexual endophytes and associated alkaloids alter arthropod community structure and increase herbivore abundances on a native grass. Ecol Lett 13:106–117. https://doi.org/10.1111/j.1461-0248.2009.01401.x

    Article  Google Scholar 

  • Ji Y-l, Zhan L-h, Kang Y, Sun X-h, Yu H-s, Wang Z-w (2009) A new stromata-producing Neotyphodium species symbiotic with clonal grass Calamagrostis epigeios (L.) Roth. grown in China. Mycologia 101:200–205. https://doi.org/10.3852/08-044

    Article  CAS  Google Scholar 

  • Johnson LJ, Johnson RD, Schardl CL, Panaccione DG (2003) Identification of differentially expressed genes in the mutualistic association of tall fescue with Neotyphodium coenophialum. Physiol Mol Plant Pathol 63:305–317

    Article  CAS  Google Scholar 

  • Johnson LJ, Koulman A, Christensen M, Lane GA, Fraser K, Forester N, Johnson RD, Bryan GT, Rasmussen S (2013) An extracellular siderophore is required to maintain the mutualistic interaction of Epichloe festucae with Lolium perenne. PLoS Pathog 9:e1003332. https://doi.org/10.1371/journal.ppat.1003332

    Article  CAS  Google Scholar 

  • Johnson RD, Lane GA, Koulman A, Cao M, Fraser K, Fleetwood DJ, Voisey CR, Dyer JM, Pratt J, Christensen M, Simpson WR, Bryan GT, Johnson LJ (2015) A novel family of cyclic oligopeptides derived from ribosomal peptide synthesis of an in planta-induced gene, gigA, in Epichloë endophytes of grasses. Fungal Genet Biol 85:14–24. https://doi.org/10.1016/j.fgb.2015.10.005

    Article  CAS  Google Scholar 

  • Kalosa-Kenyon E, Slaughter LC, Rudgers JA, McCulley RL (2018) Asexual Epichloë endophytes do not consistently alter arbuscular mycorrhizal fungi colonization in three grasses. Am Midl Nat 179:157–165. https://doi.org/10.1674/0003-0031-179.2.157

    Article  Google Scholar 

  • Kang Y, Ji YL, Zhu KR, Wang H, Miao HM, Wang ZW (2011) A new Epichloë species with interspecific hybrid origins from Poa pratensis ssp pratensis in Liyang, China. Mycologia 103:1341–1350. https://doi.org/10.3852/10-352

    Article  CAS  Google Scholar 

  • Kilpatrick RA, Rich AE, Conklin JG (1961) Juncus effusus, a new host for Epichloë typhina. Plant Dis Rep 45:899

    Google Scholar 

  • Kimmons CA, Gwinn KD, Bernard EC (1990) Nematode reproduction on endophyte-infected and endophyte-free tall fescue. Plant Dis 74:757–761

    Article  Google Scholar 

  • Koga H, Christensen MJ, Bennett RJ (1993) Incompatibility of some grass-Acremonium endophyte associations. Mycol Res 97:1237–1244. https://doi.org/10.1016/S0953-7562(09)81292-6

    Article  Google Scholar 

  • Koulman A, Lane GA, Christensen MJ, Fraser K, Tapper BA (2007) Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochemistry 68:355–360

    Article  CAS  Google Scholar 

  • Kozák L, Szilágyi Z, Vágó B, Kakuk A, Tóth L, Molnár I, Pócsi I (2018) Inactivation of the indole-diterpene biosynthetic gene cluster of Claviceps paspali by Agrobacterium-mediated gene replacement. Appl Microbiol Biotechnol 102:3255–3266. https://doi.org/10.1007/s00253-018-8807-x

    Article  CAS  Google Scholar 

  • Laihonen M, Saikkonen K, Helander M, Vázquez de Aldana BR, Zabalgogeazcoa I, Fuchs B (2022) Epichloë endophytepromoted seed pathogen increases host grass resistance against insect herbivory. Front Microbiol 12:786619–786619. https://doi.org/10.3389/fmicb.2021.786619

    Article  Google Scholar 

  • Latch GCM, Christensen MJ (1985) Artificial infections of grasses with endophytes. Ann Appl Biol 107:17–24

    Article  Google Scholar 

  • Lee ST, Gardner DR, Cook D (2017) Identification of indole diterpenes in Ipomoea asarifolia and Ipomoea muelleri, plants tremorgenic to livestock. J Agric Food Chem 65:5266–5277. https://doi.org/10.1021/acs.jafc.7b01834

    Article  CAS  Google Scholar 

  • Lehtonen PT, Helander M, Siddiqui SA, Lehto K, Saikkonen K (2006) Endophytic fungus decreases plant virus infections in meadow ryegrass (Lolium pratense). Biol Lett 2:620–623. https://doi.org/10.1098/rsbl.2006.0499

    Article  Google Scholar 

  • Lembicz M, Olejniczak P, Olszanowski Z, Górzyńska K, Leuchtmann A (2009) Man-made habitats - hotspots of evolutionary game between grass, fungus and fly. Biodivers Res Conserv 15:47–52

    Article  Google Scholar 

  • Lemons A, Clay K, Rudgers JA (2005) Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145:595–604

    Article  Google Scholar 

  • Leuchtmann A, Clay K (1988) Atkinsonella hypoxylon and Balansia cyperi, epiphytic members of the Balansiae. Mycologia 80:192–199

    Google Scholar 

  • Leuchtmann A, Michelsen V (2016) Biology and evolution of the Epichloë-associated Botanophila species found in Europe (Diptera: Anthomyiidae). Insect Syst Evol 47:1–14. https://doi.org/10.1163/1876312x-46052130

    Article  Google Scholar 

  • Leuchtmann A, Oberhofer M (2013) The Epichloë endophytes associated with the woodland grass Hordelymus europaeus including four new taxa. Mycologia 105:1315–1324. https://doi.org/10.3852/12-400

    Article  Google Scholar 

  • Leuchtmann A, Schardl CL (1998) Mating compatibility and phylogenetic relationships among two new species of Epichloë and other congeneric European species. Mycol Res 102:1169–1182

    Article  Google Scholar 

  • Leuchtmann A, Bacon CW, Schardl CL, White JF, Tadych M (2014) Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia 106:202–215. https://doi.org/10.3852/106.2.202

    Article  CAS  Google Scholar 

  • Leuchtmann A, Young CA, Stewart AV, Simpson WR, Hume DE, Scott B (2019) Epichloë novae-zelandiae, a new endophyte from the endemic New Zealand grass Poa matthewsii. N Z J Bot 57:271–288. https://doi.org/10.1080/0028825X.2019.1651344

  • Leuchtmann A, Schardl CL (2022) Genetic diversity of Epichloë endophytes associated with Brachypodium and Calamagrostis host grass genera including two new species. J Fungi 8:1086. https://doi.org/10.3390/jof8101086

    Article  CAS  Google Scholar 

  • Li T, Blande JD, Gundel PE, Helander M, Saikkonen K (2014) Epichloë endophytes alter inducible indirect defences in host grasses. PLoS One 9:e101331. https://doi.org/10.1371/journal.pone.0101331

  • Li X, Zhou Y, Zhu M, Qin J, Ren A, Gao Y (2015) Stroma-bearing endophyte and its potential horizontal transmission ability in Achnatherum sibiricum. Mycologia 107:21–31. https://doi.org/10.3852/13-355

    Article  Google Scholar 

  • Libralato S, Christensen V, Pauly D (2006) A method for identifying keystone species in food web models. Ecol Model 195:153–171. https://doi.org/10.1016/j.ecolmodel.2005.11.029

    Article  Google Scholar 

  • Liu J, Li Y, Creamer R (2016) A re-examination of the taxonomic status of Embellisia astragali. Curr Microbiol 72:404–409. https://doi.org/10.1007/s00284-015-0962-z

    Article  CAS  Google Scholar 

  • Liu J, Nagabhyru P, Schardl CL (2017) Epichloë festucae endophytic growth in florets, seeds, and seedlings of perennial ryegrass (Lolium perenne). Mycologia 109:691–700. https://doi.org/10.1080/00275514.2017.1400305

    Article  Google Scholar 

  • Liu H, Wu M, Liu J, Gao Y, Ren A (2021) Endophyte infection influences arbuscular mycorrhizal fungi communities in rhizosphere soils of host as opposed to non-host grass. Eur J Soil Sci 72:995–1009. https://doi.org/10.1111/ejss.12996

    Article  CAS  Google Scholar 

  • Ludlow EJ, Vassiliadis S, Ekanayake PN, Hettiarachchige IK, Reddy P, Sawbridge TI, Rochfort SJ, Spangenberg GC, Guthridge KM (2019) Analysis of the indole diterpene gene cluster for biosynthesis of the epoxy-janthitrems in Epichloë endophytes. Microorganisms 7:560. https://doi.org/10.3390/microorganisms7110560

    Article  CAS  Google Scholar 

  • Luo F, Hong S, Chen B, Yin Y, Tang G, Hu F, Zhang H, Wang C (2020) Unveiling of swainsonine biosynthesis via a multibranched pathway in fungi. ACS Chem Biol 15:2476–2484. https://doi.org/10.1021/acschembio.0c00466

    Article  CAS  Google Scholar 

  • Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320

    Article  Google Scholar 

  • Mahmud K, Lee K, Hill NS, Mergoum A, Missaoui A (2021) Influence of tall fescue Epichloë endophytes on rhizosphere soil microbiome. Microorganisms 9:1843. https://doi.org/10.3390/microorganisms9091843

    Article  CAS  Google Scholar 

  • Maier FJ, Miedaner T, Hadeler B, Felk A, Salomon S, Lemmens M, Kassner H, Schafer W (2006) Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Mol Plant Pathol 7:449–461. https://doi.org/10.1111/j.1364-3703.2006.00351.x

    Article  CAS  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Malinowski DP, Belesky DP (2019) Epichloë (formerly Neotyphodium) fungal endophytes increase adaptation of cool-season perennial grasses to environmental stresses. Acta Agrobot 72. https://doi.org/10.5586/aa.1767

  • Malinowski DP, Alloush GA, Belesky DP (1998) Evidence for chemical changes on the root surface of tall fescue in response to infection with the fungal endophyte Neotyphodium coenophialum. Plant Soil 205:1–12. https://doi.org/10.1023/A:1004331932018

    Article  CAS  Google Scholar 

  • Malinowski DP, Brauer DK, Belesky DP (1999) The endophyte Neotyphodium coenophialum affects root morphology of tall fescue grown under phosphorus deficiency. J Agron Crop Sci 183:53–60. https://doi.org/10.1046/j.1439-037x.1999.00321.x

    Article  CAS  Google Scholar 

  • Marcet-Houben M, Gabaldón T (2016) Horizontal acquisition of toxic alkaloid synthesis in a clade of plant associated fungi. Fungal Genet Biol 86:71–80. https://doi.org/10.1016/j.fgb.2015.12.006

    Article  CAS  Google Scholar 

  • Martin WF (2017) Too much eukaryote LGT. BioEssays 39:1700115. https://doi.org/10.1002/bies.201700115

    Article  Google Scholar 

  • Matthews AK, Poore MH, Huntington GB, Green JT (2005) Intake, digestion, and N metabolism in steers fed endophyte-free, ergot alkaloid-producing endophyte-infected, or nonergot alkaloid-producing endophyte-infected fescue hayI. J Anim Sci 83:1179–1185

    Article  CAS  Google Scholar 

  • Mc Cargo PD, Iannone LJ, Vignale MV, Schardl CL, Rossi MS (2014) Species diversity of Epichloë symbiotic with two grasses from southern Argentinean Patagonia. Mycologia 106:339–352. https://doi.org/10.3852/106.2.339

    Article  CAS  Google Scholar 

  • Mc Cargo PD, Iannone LJ, Soria M, Novas MV (2020) Diversity of foliar endophytes in a dioecious wild grass and their interaction with the systemic Epichloë. Fungal Ecol 47:100945. https://doi.org/10.1016/j.funeco.2020.100945

    Article  Google Scholar 

  • Moon CD, Scott B, Schardl CL, Christensen MJ (2000) The evolutionary origins of Epichloë endophytes from annual ryegrasses. Mycologia 92:1103–1118

    Article  Google Scholar 

  • Moon CD, Miles CO, Jarlfors U, Schardl CL (2002) The evolutionary origins of three new Neotyphodium endophyte species from grasses indigenous to the Southern Hemisphere. Mycologia 94:694–711

    Article  CAS  Google Scholar 

  • Moon CD, Craven KD, Leuchtmann A, Clement SL, Schardl CL (2004) Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Mol Ecol 13:1455–1467. https://doi.org/10.1111/j.1365-294X.2004.02138.x

    Article  CAS  Google Scholar 

  • Moon CD, Guillaumin J-J, Ravel C, Li C, Craven KD, Schardl CL (2007) New Neotyphodium endophyte species from the grass tribes Stipeae and Meliceae. Mycologia 99:895–905. https://doi.org/10.3852/mycologia.99.6.895

    Article  CAS  Google Scholar 

  • Motoyama T, Hayashi T, Hirota H, Ueki M, Osada H (2012) Terpendole E, a kinesin Eg5 inhibitor, is a key biosynthetic intermediate of indole-diterpenes in the producing fungus Chaunopycnis alba. Chem Biol 19:1611–1619. https://doi.org/10.1016/j.chembiol.2012.10.010

    Article  CAS  Google Scholar 

  • Moy M, Belanger F, Duncan R, Freehof A, Leary C, Meyer W, Sullivan R, White JJ (2000) Identification of epiphyllous mycelial nets on leaves of grasses infected by clavicipitaceous endophytes. Symbiosis 28:291–302

    Google Scholar 

  • Moy M, Li HJM, Sullivan R, White JF, Belanger FC (2002) Endophytic fungal β-1,6-glucanase expression in the infected host grass. Plant Physiol 130:1298–1308

    Article  CAS  Google Scholar 

  • Munday-Finch SC, Wilkins AL, Miles CO, Tomoda H, Omura S (1997) Isolation and structure elucidation of lolilline, a possible biosynthetic precursor of the lolitrem family of tremorgenic mycotoxins. J Agric Food Chem 45:199–204

    Article  CAS  Google Scholar 

  • Nagabhyru P, Dinkins RD, Wood CL, Bacon CW, Schardl CL (2013) Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol 13:127. https://doi.org/10.1186/1471-2229-13-127

    Article  CAS  Google Scholar 

  • Nagabhyru P, Dinkins RD, Schardl CL (2019) Transcriptomics of Epichloë-grass symbioses in host vegetative and reproductive stages. Mol Plant-Microbe Interact 32:194–207. https://doi.org/10.1094/MPMI-10-17-0251-R

    Article  CAS  Google Scholar 

  • Nagabhyru P, Dinkins RD, Schardl CL (2022) Transcriptome analysis of Epichloë strains in tall fescue in response to drought stress. Mycologia 114:697–712. https://doi.org/10.1080/00275514.2022.2060008

    Article  CAS  Google Scholar 

  • Neyaz M, Das S, Cook D, Creamer R (2022a) Phylogenetic comparison of swainsonine biosynthetic gene clusters among fungi. J Fungi (Basel) 8:359. https://doi.org/10.3390/jof8040359

    Article  CAS  Google Scholar 

  • Neyaz M, Gardner DR, Creamer R, Cook D (2022b) Localization of the swainsonine-producing Chaetothyriales symbiont in the seed and shoot apical meristem in its host Ipomoea carnea. Microorganisms 10:545. https://doi.org/10.3390/microorganisms10030545

    Article  CAS  Google Scholar 

  • Nicholson MJ, Koulman A, Monahan BJ, Pritchard BL, Payne GA, Scott B (2009) Identification of two aflatrem biosynthetic gene loci in Aspergillus flavus and metabolic engineering in Penicillium paxilli to elucidate gene function. Appl Environ Microbiol 75:7469–7481. https://doi.org/10.1128/aem.02146-08

    Article  CAS  Google Scholar 

  • Nissinen R, Helander M, Kumar M, Saikkonen K (2019) Heritable Epichloë symbiosis shapes fungal but not bacterial communities of plant leaves. Sci Rep 9:5253. https://doi.org/10.1038/s41598-019-41603-5

    Article  CAS  Google Scholar 

  • Noor AI, Neyaz M, Cook D, Creamer R (2020) Molecular characterization of a fungal ketide synthase gene among swainsonine-producing Alternaria species in the USA. Curr Microbiol 77:2554–2563. https://doi.org/10.1007/s00284-020-02111-2

    Article  CAS  Google Scholar 

  • Novas MV, Cabral D, Godeas AM (2005) Interaction between grass endophytes and mycorrhizas in Bromus setifolius from Patagonia, Argentina. Symbiosis 40(1):23–30

    Google Scholar 

  • Novas MV, Iannone LJ, Godeas AM, Cabral D (2008) Positive association between mycorrhiza and foliar endophytes in Poa bonariensis, a native grass. Mycol Prog 8:75. https://doi.org/10.1007/s11557-008-0579-8

    Article  Google Scholar 

  • Oberhofer M, Leuchtmann A (2012) Genetic diversity in epichloid endophytes of Hordelymus europaeus suggests repeated host jumps and interspecific hybridizations. Mol Ecol. https://doi.org/10.1111/j.1365-294X.2012.05459.x

  • Oberhofer M, Leuchtmann A (2014) Horizontal transmission, persistence and competition capabilities of Epichloë endophytes in Hordelymus europaeus grass hosts using dual endophyte inocula. Fungal Ecol 11:37–49. https://doi.org/10.1016/j.funeco.2014.04.005

    Article  Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM, Muller CB (2001) Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature 409:78–81

    Article  CAS  Google Scholar 

  • Omacini M, Semmartin M, Pérez LI, Gundel PE (2012) Grass–endophyte symbiosis: a neglected aboveground interaction with multiple belowground consequences. Appl Soil Ecol 61:273–279. https://doi.org/10.1016/j.apsoil.2011.10.012

    Article  Google Scholar 

  • Orr SP, Rudgers JA, Clay K (2005) Invasive plants can inhibit native tree seedlings: testing potential allelopathic mechanisms. Plant Ecol 181:153–165. https://doi.org/10.1007/s11258-005-5698-6

    Article  Google Scholar 

  • Ortel I, Keller U (2009) Combinatorial assembly of simple and complex d-lysergic acid alkaloid peptide classes in the ergot fungus Claviceps purpurea. J Biol Chem 284:6650–6660. https://doi.org/10.1074/jbc.M807168200

    Article  CAS  Google Scholar 

  • Pan J, Bhardwaj M, Faulkner JR, Nagabhyru P, Charlton ND, Higashi RM, Miller A-F, Young CA, Grossman RB, Schardl CL (2014a) Ether bridge formation in loline alkaloid biosynthesis. Phytochemistry 98:60–68. https://doi.org/10.1016/j.phytochem.2013.11.015

    Article  CAS  Google Scholar 

  • Pan J, Bhardwaj M, Nagabhyru P, Grossman RB, Schardl CL (2014b) Enzymes from fungal and plant origin required for chemical diversification of insecticidal loline alkaloids in grass-Epichloë symbiota. PLoS One 9:e115590. https://doi.org/10.1371/journal.pone.0115590

    Article  CAS  Google Scholar 

  • Pan J, Bhardwaj M, Zhang B, Chang W-c, Schardl CL, Krebs C, Grossman RB, Bollinger JM Jr (2018) Installation of the ether bridge of lolines by the iron- and 2-oxoglutarate-dependent oxygenase, LolO: regio- and stereochemistry of sequential hydroxylation and oxacyclization reactions. Biochemistry 57:2074–2083. https://doi.org/10.1021/acs.biochem.8b00157

    Article  CAS  Google Scholar 

  • Panaccione DG (2005) Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiol Lett 251:9–17. https://doi.org/10.1016/j.femsle.2005.07.039

    Article  CAS  Google Scholar 

  • Panaccione DG, Johnson RD, Wang JH, Young CA, Damrongkool P, Scott B, Schardl CL (2001) Elimination of ergovaline from a grass-Neotyphodium endophyte symbiosis by genetic modification of the endophyte. Proc Natl Acad Sci U S A 98:12820–12825. https://doi.org/10.1073/pnas.221198698

    Article  CAS  Google Scholar 

  • Panaccione DG, Tapper BA, Lane GA, Davies E, Fraser K (2003) Biochemical outcome of blocking the ergot alkaloid pathway of a grass endophyte. J Agric Food Chem 51:6429–6437

    Article  CAS  Google Scholar 

  • Panaccione DG, Cipoletti JR, Sedlock AB, Blemings KP, Schardl CL, Machado C, Seidel GE (2006a) Effects of ergot alkaloids on food preference and satiety in rabbits, as assessed with gene-knockout endophytes in perennial ryegrass (Lolium perenne). J Agric Food Chem 54:4582–4587

    Article  CAS  Google Scholar 

  • Panaccione DG, Kotcon JB, Schardl CL, Johnson RD, Morton JB (2006b) Ergot alkaloids are not essential for endophytic fungus-associated population suppression of the lesion nematode, Pratylenchus scribneri, on perennial ryegrass. Nematology 8:583–590. https://doi.org/10.1163/156854106778614074

    Article  CAS  Google Scholar 

  • Panaccione DG, Beaulieu WT, Cook D (2014) Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol 28:299–314. https://doi.org/10.1111/1365-2435.12076

    Article  Google Scholar 

  • Pava-Ripoll M, Angelini C, Fang W, Wang S, Posada FJ, St Leger R (2011) The rhizosphere-competent entomopathogen Metarhizium anisopliae expresses a specific subset of genes in plant root exudate. Microbiology 157:47–55. https://doi.org/10.1099/mic.0.042200-0

    Article  CAS  Google Scholar 

  • Pennell CGL, Popay AJ, Rolston MP, Townsend RJ, Lloyd-West CM, Card SD (2016) Avanex unique endophyte technology: reduced insect food source at airports. Environ Entomol 45:101–108. https://doi.org/10.1093/ee/nvv145

    Article  Google Scholar 

  • Pérez LI, Gundel PE, Ghersa CM, Omacini M (2013) Family issues: fungal endophyte protects host grass from the closely related pathogen Claviceps purpurea. Fungal Ecol 6:379–386. https://doi.org/10.1016/j.funeco.2013.06.006

    Article  Google Scholar 

  • Pérez LI, Gundel PE, Omacini M (2016) Can the defensive mutualism between grasses and fungal endophytes protect non-symbiotic neighbours from soil pathogens? Plant Soil 405:289–298. https://doi.org/10.1007/s11104-015-2568-4

    Article  CAS  Google Scholar 

  • Pérez LI, Gundel PE, Marrero HJ, Arzac AG, Omacini M (2017) Symbiosis with systemic fungal endophytes promotes host escape from vector-borne disease. Oecologia 184:237–245. https://doi.org/10.1007/s00442-017-3850-3

    Article  Google Scholar 

  • Pérez LI, Gundel PE, Zabalgogeazcoa I, Omacini M (2020) An ecological framework for understanding the roles of Epichloë endophytes on plant defenses against fungal diseases. Fungal Biol Rev 34:115–125. https://doi.org/10.1016/j.fbr.2020.06.001

    Article  Google Scholar 

  • Philipson MN, Christey MC (1985) An epiphytic/endophytic fungal associate of Danthonia spicata transmitted through the embryo sac. Bot Gaz 146:70–81. https://doi.org/10.1086/337502

    Article  Google Scholar 

  • Píchová K, Pažoutová S, Kostovčík M, Chudíčková M, Stodůlková E, Novak P, Flieger M, van der Linde E, Kolařík M (2018) Evolutionary history of ergot with a new infrageneric classification (Hypocreales: Clavicipitaceae: Claviceps). Mol Phylogenet Evol 123:73–87. https://doi.org/10.1016/j.ympev.2018.02.013

    Article  Google Scholar 

  • Popay AJ, Gerard PJ (2007) Cultivar and endophyte effects on a root aphid, Aploneura lentisci, in perennial ryegrass. N Z Plant Protect 60:223–227

    Google Scholar 

  • Popay AJ, Tapper BA, Podmore C (2009) Endophyte-infected meadow fescue and loline alkaloids affect argentine stem weevil larvae. N Z Plant Protect 62:19–27

    CAS  Google Scholar 

  • Popay AJ, Jensen JG, Mace WJ (2020) Root herbivory: grass species, epichloe endophytes and moisture status make a difference. Microorganisms 8:997. https://doi.org/10.3390/microorganisms8070997

    Article  CAS  Google Scholar 

  • Potter DA, Stokes JT, Redmond CT, Schardl CL, Panaccione DG (2008) Contribution of ergot alkaloids to suppression of a grass-feeding caterpillar assessed with gene-knockout endophytes in perennial ryegrass. Entomol Exp Appl 126:138–147. https://doi.org/10.1111/j.1570-7458.2007.00650.x

    Article  Google Scholar 

  • Powell RG, Petroski RJ (1992) The loline group of pyrrolizidine alkaloids. Alkaloids Chem Biol Perspect 8:320–338

    Article  CAS  Google Scholar 

  • Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones: identifying keystone species is difficult—but essential to understanding how loss of species will affect ecosystems. Bioscience 46:609–620. https://doi.org/10.2307/1312990

    Article  Google Scholar 

  • Proctor RH, Van Hove F, Susca A, Stea G, Busman M, van der Lee T, Waalwijk C, Moretti A, Ward TJ (2013) Birth, death and horizontal transfer of the fumonisin biosynthetic gene cluster during the evolutionary diversification of Fusarium. Mol Microbiol 90:290–306. https://doi.org/10.1111/mmi.12362

    Article  CAS  Google Scholar 

  • Pryor BM, Creamer R, Shoemaker RA, McLain Romero J, Hambleton S (2009) Undifilum, a new genus for endophytic Embellisia oxytropis and parasitic Helminthosporium bornmuelleri on legumes. Botany 87:178–194. https://doi.org/10.1139/B08-130

    Article  CAS  Google Scholar 

  • Purahong W, Hyde KD (2010) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7. https://doi.org/10.1007/s13225-010-0083-8

    Article  Google Scholar 

  • Ralphs MH, Creamer R, Baucom D, Gardner DR, Welsh SL, Graham JD, Hart C, Cook D, Stegelmeier BL (2008) Relationship between the endophyte Embellisia spp. and the toxic alkaloid swainsonine in major locoweed species (Astragalus and Oxytropis). J Chem Ecol 34:32–38. https://doi.org/10.1007/s10886-007-9399-6

    Article  CAS  Google Scholar 

  • Rasmussen S, Parsons AJ, Bassett S, Christensen MJ, Hume DE, Johnson LJ, Johnson RD, Simpson WR, Stacke C, Voisey CR, Xue H, Newman JA (2007) High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. New Phytol 173:787–797

    Article  CAS  Google Scholar 

  • Reyna R, Cooke P, Grum D, Cook D, Creamer R (2012) Detection and localization of the endophyte Undifilum oxytropis in locoweed tissues. Botany-Botanique 90:1229–1236. https://doi.org/10.1139/b2012-092

    Article  CAS  Google Scholar 

  • Rizaludin MS, Stopnisek N, Raaijmakers JM, Garbeva P (2021) The chemistry of stress: understanding the ‘cry for help’ of plant roots. Metabolites 11. https://doi.org/10.3390/metabo11060357

  • Rojas X, Guo J, Leff JW, McNear DH, Fierer N, McCulley RL (2016) Infection with a shoot-specific fungal endophyte (Epichloë) alters tall fescue soil microbial communities. Microb Ecol 2016:1–10. https://doi.org/10.1007/s00248-016-0750-8

    Article  CAS  Google Scholar 

  • Rostás M, Cripps MG, Silcock P (2015) Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect. Oecologia 177:487–497. https://doi.org/10.1007/s00442-014-3104-6

    Article  Google Scholar 

  • Rúa MA, McCulley RL, Mitchell CE, Newman J (2013) Fungal endophyte infection and host genetic background jointly modulate host response to an aphid-transmitted viral pathogen. J Ecol 101:1007–1018. https://doi.org/10.1111/1365-2745.12106

    Article  Google Scholar 

  • Rudgers JA, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biol Rev 21:107–124

    Article  Google Scholar 

  • Rudgers JA, Clay K (2008) An invasive plant-fungal mutualism reduces arthropod diversity. Ecol Lett 11:831–840

    Article  Google Scholar 

  • Rudgers JA, Koslow JM, Clay K (2004) Endophytic fungi alter relationships between diversity and ecosystem properties. Ecol Lett 7:42–51

    Article  Google Scholar 

  • Rudgers JA, Holah J, Orr SP, Clay K (2007) Forest succession suppressed by an introduced plant-fungal symbiosis. Ecology 88:18–25

    Article  Google Scholar 

  • Rudgers JA, Fischer S, Clay K (2010) Managing plant symbiosis: fungal endophyte genotype alters plant community composition. J Appl Ecol 47:468–477. https://doi.org/10.1111/j.1365-2664.2010.01788.x

    Article  Google Scholar 

  • Rudgers JA, Miller TEX, Ziegler SM, Craven KD (2012) There are many ways to be a mutualist: endophytic fungus reduces plant survival but increases population growth. Ecology 93:565–574. https://doi.org/10.1890/11-0689.1

    Article  Google Scholar 

  • Rudgers JA, Fletcher B, Olivas E, Young CA, Charlton ND, Pearson D, Maron JL (2016) Long-term ungulate exclusion reduces fungal symbiont frequency within Festuca campestris in native grasslands. J Ecol 181:1151–1161

    Google Scholar 

  • Ryan GD, Rasmussen S, Xue H, Parsons AJ, Newman JA (2014) Metabolite analysis of the effects of elevated CO2 and nitrogen fertilization on the association between tall fescue (Schedonorus arundinaceus) and its fungal symbiont Neotyphodium coenophialum. Plant Cell Environ 37:204–212. https://doi.org/10.1111/pce.12146

    Article  CAS  Google Scholar 

  • Ryan KL, Akhmedov NG, Panaccione DG (2015) Identification and structural elucidation of ergotryptamine, a new ergot alkaloid produced by genetically modified Aspergillus nidulans and natural isolates of Epichloë species. J Agric Food Chem 63:61–67. https://doi.org/10.1021/jf505718x

    Article  CAS  Google Scholar 

  • Saikia S, Nicholson MJ, Young C, Parker EJ, Scott B (2008) The genetic basis for indole-diterpene chemical diversity in filamentous fungi. Mycol Res 112:184–199. https://doi.org/10.1016/j.mycres.2007.06.015

    Article  CAS  Google Scholar 

  • Saikia S, Takemoto D, Tapper BA, Lane GA, Frazer K, Scott B (2012) Functional analysis of an indole-diterpene gene cluster for lolitrem B biosynthesis in the grass endosymbiont Epichloë festucae. FEBS Lett 586:2563–2569. https://doi.org/10.1016/j.febslet.2012.06.035

    Article  CAS  Google Scholar 

  • Saikkonen K, Ruokolainen K, Huitu O, Gundel PE, Piltti T, Hamilton CE, Helander M (2013) Fungal endophytes help prevent weed invasions. Agric Ecosyst Environ 165:1–5. https://doi.org/10.1016/j.agee.2012.12.002

    Article  Google Scholar 

  • Salzberg SL (2017) Horizontal gene transfer is not a hallmark of the human genome. Genome Biol 18:85. https://doi.org/10.1186/s13059-017-1214-2

    Article  CAS  Google Scholar 

  • Salzberg SL, White O, Peterson J, Eisen JA (2001) Microbial genes in the human genome: lateral transfer or gene loss? Science 292:1903–1906. https://doi.org/10.1126/science.1061036

    Article  CAS  Google Scholar 

  • Santangelo JS, Turley NE, Johnson MTJ (2015) Fungal endophytes of Festuca rubra increase in frequency following long-term exclusion of rabbits. Botany 93:233–241. https://doi.org/10.1139/cjb-2014-0187

    Article  Google Scholar 

  • Schardl CL, Craven KD (2003) Interspecific hybridization in plant-associated fungi and oomycetes: a review. Mol Ecol 12:2861–2873

    Article  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A (1999) Three new species of Epichloë symbiotic with North American grasses. Mycologia 91:95–107

    Article  Google Scholar 

  • Schardl CL, Leuchtmann A, Tsai HF, Collett MA, Watt DM, Scott DB (1994) Origin of a fungal symbiont of perennial ryegrass by interspecific hybridization of a mutualist with the ryegrass choke pathogen, Epichloë typhina. Genetics 136:1307–1317

    Article  CAS  Google Scholar 

  • Schardl CL, Panaccione DG, Tudzynski P (2006) Ergot alkaloids--biology and molecular biology. Alkaloids Chem Biol 63:45–86. https://doi.org/10.1016/S1099-4831(06)63002-2

    Article  CAS  Google Scholar 

  • Schardl CL, Grossman RB, Nagabhyru P, Faulkner JR, Mallik UP (2007) Loline alkaloids: currencies of mutualism. Phytochemistry 68:980–996. https://doi.org/10.1016/j.phytochem.2007.01.010

    Article  CAS  Google Scholar 

  • Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, O’Sullivan DM, Scott B, Tudzynski P, An Z, Arnaoudova EG, Bullock CT, Charlton ND, Chen L, Cox M, Dinkins RD, Florea S, Glenn AE, Gordon A, Güldener U, Harris DR, Hollin W, Jaromczyk J, Johnson RD, Khan AK, Leistner E, Leuchtmann A, Li C, Liu J, Liu J, Liu M, Mace W, Machado C, Nagabhyru P, Pan J, Schmid J, Sugawara K, Steiner U, Takach J, Tanaka E, Webb JS, Wilson EV, Wiseman JL, Yoshida R, Zeng Z (2013a) Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 9:e1003323. https://doi.org/10.1371/journal.pgen.1003323

    Article  CAS  Google Scholar 

  • Schardl CL, Young CA, Pan J, Florea S, Takach JE, Panaccione DG, Farman ML, Webb JS, Jaromczyk J, Charlton ND, Nagabhyru P, Chen L, Shi C, Leuchtmann A (2013b) Currencies of mutualisms: sources of alkaloid genes in vertically transmitted epichloae. Toxins (Basel) 5:1064–1088. https://doi.org/10.3390/toxins5061064

    Article  CAS  Google Scholar 

  • Schardl CL, Chen L, Young CA (2014) Fungal endophytes of grasses and morning glories, and their bioprotective alkaloids. In: Osbourn A, Goss RJ, Carter GT (eds) Natural products: discourse, diversity, and design, 1st edn. Wiley, Hoboken, NJ, pp 125–145

    Chapter  Google Scholar 

  • Schirrmann MK, Zoller S, Fior S, Leuchtmann A (2015) Genetic evidence for reproductive isolation among sympatric Epichloë endophytes as inferred from newly developed microsatellite markers. Microb Ecol 70:51–60. https://doi.org/10.1007/s00248-014-0556-5

    Article  Google Scholar 

  • Schöning C, Flieger M, Pertz HH (2001) Complex interaction of ergovaline with 5-HT2A, 5-HT1B/1D, and alpha1 receptors in isolated arteries of rat and guinea pig. J Anim Sci 79:2202–2209

    Article  Google Scholar 

  • Scott B, Young CA, Saikia S, McMillan LK, Monahan BJ, Koulman A, Astin J, Eaton CJ, Bryant A, Wrenn RE, Finch SC, Tapper BA, Parker EJ, Jameson GB (2013) Deletion and gene expression analyses define the paxilline biosynthetic gene cluster in Penicillium paxilli. Toxins 5:1422–1446. https://doi.org/10.3390/toxins5081422

    Article  CAS  Google Scholar 

  • Scott B, Green K, Berry D (2018) The fine balance between mutualism and antagonism in the Epichloë festucae-grass symbiotic interaction. Curr Opin Plant Biol 44:32–38. https://doi.org/10.1016/j.pbi.2018.01.010

    Article  Google Scholar 

  • Seto Y, Kogami Y, Shimanuki T, Takahashi K, Matsuura H, Yoshihara T (2005) Production of phleichrome by Cladosporium phlei as stimulated by diketopiperadines of Epichloë typhina. Biosci Biotechnol Biochem 69:1515–1519

    Article  CAS  Google Scholar 

  • Shi C, An S, Yao Z, Young CA, Panaccione DG, Lee ST, Schardl CL, Li C (2017) Toxin-producing Epichloë bromicola strains symbiotic with the forage grass, Elymus dahuricus, in China. Mycologia 109:847–859. https://doi.org/10.1080/00275514.2018.1426941

    Article  Google Scholar 

  • Shinozuka H, Hettiarachchige IK, Shinozuka M, Cogan NOI, Spangenberg GC, Cocks BG, Forster JW, Sawbridge TI (2017) Horizontal transfer of a β-1,6-glucanase gene from an ancestral species of fungal endophyte to a cool-season grass host. Sci Rep 7:9024. https://doi.org/10.1038/s41598-017-07886-2

    Article  CAS  Google Scholar 

  • Shinozuka H, Shinozuka M, de Vries EM, Sawbridge TI, Spangenberg GC, Cocks BG (2020) Fungus-originated genes in the genomes of cereal and pasture grasses acquired through ancient lateral transfer. Sci Rep 10:19883. https://doi.org/10.1038/s41598-020-76478-4

    Article  CAS  Google Scholar 

  • Shoji JY, Charlton ND, Yi M, Young CA, Craven KD (2015) Vegetative hyphal fusion and subsequent nuclear behavior in Epichloë grass endophytes. PLoS One 10:e0121875. https://doi.org/10.1371/journal.pone.0121875

    Article  CAS  Google Scholar 

  • Shymanovich T, Saari S, Lovin ME, Jarmusch AK, Jarmusch SA, Musso AM, Charlton ND, Young CA, Cech NB, Faeth SH (2015) Alkaloid variation among epichloid endophytes of sleepygrass (Achnatherum robustum) and consequences for resistance to insect herbivores. J Chem Ecol 41:93–104. https://doi.org/10.1007/s10886-014-0534-x

    Article  CAS  Google Scholar 

  • Shymanovich T, Charlton ND, Musso AM, Scheerer J, Cech NB, Faeth SH, Young CA (2017) Interspecific and intraspecific hybrid Epichloë species symbiotic with the North American native grass Poa alsodes. Mycologia 109:459–474. https://doi.org/10.1080/00275514.2017.1340779

    Article  CAS  Google Scholar 

  • Shymanovich T, Crowley G, Ingram S, Steen C, Panaccione DG, Young CA, Watson W, Poore M (2020) Endophytes matter: variation of dung beetle performance across different endophyte-infected tall fescue cultivars. Appl Soil Ecol 152:103561. https://doi.org/10.1016/j.apsoil.2020.103561

    Article  Google Scholar 

  • Simons L, Bultman TL, Sullivan TJ (2008) Effects of methyl jasmonate and an endophytic fungus on plant resistance to insect herbivores. J Chem Ecol 34:1511. https://doi.org/10.1007/s10886-008-9551-y

    Article  CAS  Google Scholar 

  • Simpson WR, Faville MJ, Moraga RA, Williams WM, McManus MT, Johnson RD (2014) Epichloë fungal endophytes and the formation of synthetic symbioses in Hordeeae (=Triticeae) grasses. J Syst Evol 52:794–806. https://doi.org/10.1111/jse.12107

    Article  Google Scholar 

  • Spiering MJ, Lane GA, Christensen MJ, Schmid J (2005a) Distribution of the fungal endophyte Neotyphodium lolii is not a major determinant of the distribution of fungal alkaloids in Lolium perenne plants. Phytochemistry 66:195–202

    Article  CAS  Google Scholar 

  • Spiering MJ, Moon CD, Wilkinson HH, Schardl CL (2005b) Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics 169:1403–1414. https://doi.org/10.1534/genetics.104.035972

    Article  CAS  Google Scholar 

  • Spyreas G, Gibson DJ, Middleton BA (2001) Effects of endophyte infection in tall fescue (Festuca arundinacea: Poaceae) on community diversity. Int J Plant Sci 162:1237–1245

    Article  Google Scholar 

  • Steinebrunner F, Schiestl FP, Leuchtmann A (2008) Ecological role of volatiles produced by Epichloë differences in antifungal toxicity. FEMS Microbiol Ecol 64:307–316

    Article  CAS  Google Scholar 

  • Steiner U, Ahimsa-Müller MA, Markert A, Kucht S, Groß J, Kauf N, Kuzma M, Zych M, Lamshöft M, Furmanowa M, Knoop V, Drewke C, Leistner E (2006) Molecular characterization of a seed transmitted clavicipitaceous fungus occurring on dicotyledoneous plants (Convolvulaceae). Planta 224:533–544

    Article  CAS  Google Scholar 

  • Steiner U, Leibner S, Schardl CL, Leuchtmann A, Leistner E (2011) Periglandula, a new fungal genus within the Clavicipitaceae and its association with Convolvulaceae. Mycologia 103:1133–1145. https://doi.org/10.3852/11-031

  • Sullivan TJ, Faeth SH (2004) Gene flow in the endophyte Neotyphodium and implications for coevolution with Festuca arizonica. Mol Ecol 13:649–656

    Article  CAS  Google Scholar 

  • Sullivan TJ, Rodstrom J, Vandop J, Librizzi J, Graham C, Schardl CL, Bultman TL (2007) Symbiont-mediated changes in Lolium arundinaceum inducible defenses: evidence from changes in gene expression and leaf composition. New Phytol 176:673–679. https://doi.org/10.1111/j.1469-8137.2007.02201.x

    Article  CAS  Google Scholar 

  • Tadych M, Ambrose K, Bergen M, Belanger F, White J (2012) Taxonomic placement of Epichloë poae sp. nov. and horizontal dissemination to seedlings via conidia. Fungal Divers 54:117–131. https://doi.org/10.1007/s13225-012-0170-0

    Article  Google Scholar 

  • Tadych M, Bergen MS, White JF (2014) Epichloë spp. associated with grasses: new insights on life cycles, dissemination and evolution. Mycologia 106:181–201. https://doi.org/10.3852/106.2.181

  • Tagami K, Liu C, Minami A, Noike M, Isaka T, Fueki S, Shichijo Y, Toshima H, Gomi K, Dairi T, Oikawa H (2013) Reconstitution of biosynthetic machinery for indole-diterpene paxilline in Aspergillus oryzae. J Am Chem Soc 135:1260–1263. https://doi.org/10.1021/ja3116636

    Article  CAS  Google Scholar 

  • Takach JE, Mittal S, Swoboda GA, Bright SK, Trammell MA, Hopkins AA, Young CA (2012) Genotypic and chemotypic diversity of Neotyphodium endophytes in tall fescue from Greece. Appl Environ Microbiol 78:5501–5510. https://doi.org/10.1128/aem.01084-12

    Article  CAS  Google Scholar 

  • Takemoto D, Tanaka A, Scott B (2006) A p67Phox-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell 18:2807–2821. https://doi.org/10.1105/tpc.106.046169

    Article  CAS  Google Scholar 

  • Tanaka E, Tanaka C, Gafur A, Tsuda M (2002) Heteroepichloë, gen. nov. (Clavicipitaceae; Ascomycotina) on bamboo plants in East Asia. Mycoscience 43:87–93

    Google Scholar 

  • Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050

    Article  CAS  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    Article  CAS  Google Scholar 

  • Tanaka E, Shrestha B, Shivas RG (2020) Commelinaceomyces, gen. nov., for four clavicipitaceous species misplaced in Ustilago that infect Commelinaceae. Mycologia 1–12. https://doi.org/10.1080/00275514.2020.1745524

  • Tannenbaum I, Kaur J, Mann R, Sawbridge T, Rodoni B, Spangenberg G (2020) Profiling the Lolium perenne microbiome: from seed to seed. Phytobiomes J 4:281–289. https://doi.org/10.1094/PBIOMES-03-20-0026-R

    Article  Google Scholar 

  • Thornton JW, DeSalle R (2000) Gene family evolution and homology: genomics meets phylogenetics. Annu Rev Genomics Hum Genet 1:41–73

    Article  CAS  Google Scholar 

  • Thunen T, Becker Y, Cox MP, Ashrafi S (2022) Epichloë scottii sp. nov., a new endophyte isolated from Melica uniflora is the missing ancestor of Epichloe disjuncta. IMA Fungus 13:2. https://doi.org/10.1186/s43008-022-00088-0

  • Tian Z, Wang R, Ambrose KV, Clarke BB, Belanger FC (2017) The Epichloë festucae antifungal protein has activity against the plant pathogen Sclerotinia homoeocarpa, the causal agent of dollar spot disease. Sci Rep 7:5643. https://doi.org/10.1038/s41598-017-06068-4

    Article  CAS  Google Scholar 

  • Tian P, Xu W, Li C, Song H, Wang M, Schardl CL, Nan Z (2020) Phylogenetic relationship and taxonomy of a hybrid Epichloë species symbiotic with Festuca sinensis. Mycol Prog 19:1069–1081. https://doi.org/10.1007/s11557-020-01618-z

    Article  Google Scholar 

  • Timper P, Gates RN, Bouton JH (2005) Response of Pratylenchus spp. in tall fescue infected with different strains of the fungal endophyte Neotyphodium coenophialum. Nematology 7:105–110

    Article  Google Scholar 

  • Treindl AD, Leuchtmann A (2019) Assortative mating in sympatric ascomycete fungi revealed by experimental fertilizations. Fungal Biol. https://doi.org/10.1016/j.funbio.2019.06.005

  • Tsai HF, Liu JS, Staben C, Christensen MJ, Latch G, Siegel MR, Schardl CL (1994) Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloë species. Proc Natl Acad Sci U S A 91:2542–2546

    Article  CAS  Google Scholar 

  • Ueno AC, Gundel PE, Omacini M, Ghersa CM, Bush LP, Martinez-Ghersa MA (2016) Mutualism effectiveness of a fungal endophyte in an annual grass is impaired by ozone. Funct Ecol 30:226–234. https://doi.org/10.1111/1365-2435.12519

    Article  Google Scholar 

  • Ueno AC, Gundel PE, Ghersa CM, Demkura PV, Card SD, Mace WJ, Martínez-Ghersa MA (2020a) Ontogenetic and trans-generational dynamics of a vertically transmitted fungal symbiont in an annual host plant in ozone-polluted settings. Plant Cell Environ 43:2540–2550. https://doi.org/10.1111/pce.13859

    Article  CAS  Google Scholar 

  • Ueno AC, Gundel PE, Seal CE, Ghersa CM, Martínez-Ghersa MA (2020b) The negative effect of a vertically-transmitted fungal endophyte on seed longevity is stronger than that of ozone transgenerational effect. Environ Exp Bot 175:104037. https://doi.org/10.1016/j.envexpbot.2020.104037

    Article  CAS  Google Scholar 

  • Van Hecke MM, Treonis AM, Kaufman JR (2005) How does the fungal endophyte Neotyphodium coenophialum affect tall fescue (Festuca arundinacea) rhizodeposition and soil microorganisms? Plant Soil 275:101–109

    Article  CAS  Google Scholar 

  • Vázquez-de-Aldana BR, Zabalgogeazcoa I, García-Ciudad A, García-Criado B (2013) An Epichloë endophyte affects the competitive ability of Festuca rubra against other grassland species. Plant Soil 362:201–213. https://doi.org/10.1007/s11104-012-1283-7

    Article  CAS  Google Scholar 

  • Vesterlund S-R, Helander M, Faeth SH, Hyvönen T, Saikkonen K (2011) Environmental conditions and host plant origin override endophyte effects on invertebrate communities. Fungal Divers 47:109–118. https://doi.org/10.1007/s13225-011-0089-x

    Article  Google Scholar 

  • Vignale MV, Astiz-Gasso MM, Novas MV, Iannone LJ (2013) Epichloid endophytes confer resistance to the smut Ustilago bullata in the wild grass Bromus auleticus (Trin.). Biol Control 67:1–7. https://doi.org/10.1016/j.biocontrol.2013.06.002

    Article  Google Scholar 

  • Vignale MV, Iannone LJ, Pinget AD, De Battista JP, Novas MV (2016) Effect of epichloid endophytes and soil fertilization on arbuscular mycorrhizal colonization of a wild grass. Plant Soil 405:279–287. https://doi.org/10.1007/s11104-015-2522-5

    Article  CAS  Google Scholar 

  • Vignale MV, Iannone LJ, Novas MV (2020) Epichloë endophytes of a wild grass promote mycorrhizal colonization of neighbor grasses. Fungal Ecol 45:100916. https://doi.org/10.1016/j.funeco.2020.100916

  • Voisey CR, Christensen MT, Johnson LJ, Forester NT, Gagic M, Bryan GT, Simpson WR, Fleetwood DJ, Card SD, Koolaard JP, Maclean PH, Johnson RD (2016) cAMP signaling regulates synchronised growth of symbiotic Epichloë fungi with the host grass Lolium perenne. Front Plant Sci 7:17. https://doi.org/10.3389/fpls.2016.01546

    Article  Google Scholar 

  • von Cräutlein M, Helander M, Korpelainen H, Leinonen PH, Vázquez de Aldana BR, Young CA, Zabalgogeazcoa I, Saikkonen K (2021) Genetic diversity of the symbiotic fungus Epichloë festucae in naturally occurring host grass populations. Front Microbiol 12:756991–756991. https://doi.org/10.3389/fmicb.2021.756991

    Article  Google Scholar 

  • Wang J, Machado C, Panaccione DG, Tsai H-F, Schardl CL (2004) The determinant step in ergot alkaloid biosynthesis by an endophyte of perennial ryegrass. Fungal Genet Biol 41:189–198. https://doi.org/10.1016/j.fgb.2003.10.002

    Article  CAS  Google Scholar 

  • Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M, Su P, Li X, Wang G, Bo C, Fang X, Zhuang W, Cheng X, Wu J, Dong L, Chen W, Li W, Xiao G, Zhao J, Hao Y, Xu Y, Gao Y, Liu W, Liu Y, Yin H, Li J, Li X, Zhao Y, Wang X, Ni F, Ma X, Li A, Xu SS, Bai G, Nevo E, Gao C, Ohm H, Kong L (2020) Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368:eaba5435. https://doi.org/10.1126/science.aba5435

    Article  CAS  Google Scholar 

  • Wang R, Luo S, Clarke BB, Belanger FC (2021) The Epichloë festucae antifungal protein Efe-AfpA Is also a possible effector protein required for the interaction of the fungus with its host grass Festuca rubra subsp. rubra. Microorganisms 9:140

    Article  CAS  Google Scholar 

  • Watson RH, McCann MA, Parish JA, Hoveland CS, Thompson FN, Bouton JH (2004) Productivity of cow-calf pairs grazing tall fescue pastures infected with either the wild-type endophyte or a nonergot alkaloid-producing endophyte strain, AR542. J Anim Sci 82:3388–3393

    Article  CAS  Google Scholar 

  • White JF Jr (1993) Endophyte-host associations in grasses. XIX. A systematic study of some sympatric species of Epichloë in England. Mycologia 85:444–455

    Article  Google Scholar 

  • White JF Jr, Morrow AC, Morgan-Jones G, Chambless DA (1991) Endophyte-host associations in forage grasses. XIV. Primary stromata formation and seed transmission in Epichloë typhina: developmental and regulatory aspects. Mycologia 83:72–81

    Article  Google Scholar 

  • White JF, Sullivan RF, Balady GA, Gianfagna TJ, Yue Q, Meyer WA, Cabral D (2001) A fungal endosymbiont of the grass Bromus setifolius: distribution in some Andean populations, identification, and examination of beneficial properties. Symbiosis 31:241–257

    Google Scholar 

  • White JF, Belanger F, Meyer W, Sullivan RF, Bischoff JF, Lewis EA (2002) Clavicipitalean fungal epibionts and endophytes - development of symbiotic interactions with plants. Symbiosis 33:201–213

    Google Scholar 

  • Wiewióra B, Żurek G, Żurek M (2015) Endophyte-mediated disease resistance in wild populations of perennial ryegrass (Lolium perenne). Fungal Ecol 15:1–8. https://doi.org/10.1016/j.funeco.2015.01.004

    Article  Google Scholar 

  • Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol Plant Microbes Interact 13:1027–1033. https://doi.org/10.1094/MPMI.2000.13.10.1027

    Article  CAS  Google Scholar 

  • Wolfe ER, Ballhorn DJ (2020) Do foliar endophytes matter in litter decomposition? Microorganisms 8. https://doi.org/10.3390/microorganisms8030446

  • Xia C, Li N, Zhang Y, Li C, Zhang X, Nan Z (2018) Role of Epichloë endophytes in defense responses of cool-season grasses to pathogens: a review. Plant Dis 102:2061–2073. https://doi.org/10.1094/PDIS-05-18-0762-FE

    Article  Google Scholar 

  • Young C, McMillan L, Telfer E, Scott B (2001) Molecular cloning and genetic analysis of an indole-diterpene gene cluster from Penicillium paxilli. Mol Microbiol 39:754–764

    Article  CAS  Google Scholar 

  • Young C, Bryant M, Christensen M, Tapper B, Bryan G, Scott B (2005) Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Mol Gen Genomics 274:13–29

    Article  CAS  Google Scholar 

  • Young CA, Felitti S, Shields K, Spangenberg G, Johnson RD, Bryan GT, Saikia S, Scott B (2006) A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol 43:679–693

    Article  CAS  Google Scholar 

  • Young CA, Tapper BA, May K, Moon CD, Schardl CL, Scott B (2009) Indole-diterpene biosynthetic capability of Epichloë endophytes as predicted by ltm gene analysis. Appl Environ Microbiol 75:2200–2211. https://doi.org/10.1128/AEM.00953-08

    Article  CAS  Google Scholar 

  • Yue Q, Miller CJ, White JF, Richardson MD (2000) Isolation and characterization of fungal inhibitors from Epichloë festucae. J Agric Food Chem 48:4687–4692. https://doi.org/10.1021/jf990685q

    Article  CAS  Google Scholar 

  • Yule KM, Miller TEX, Rudgers JA (2013) Costs, benefits, and loss of vertically transmitted symbionts affect host population dynamics. Oikos 122:1512–1520. https://doi.org/10.1111/j.1600-0706.2012.00229.x

    Article  Google Scholar 

  • Zabalgogeazcoa I, Gundel PE, Helander M, Saikkonen K (2013) Non-systemic fungal endophytes in Festuca rubra plants infected by Epichloë festucae in subarctic habitats. Fungal Divers 60:25–32. https://doi.org/10.1007/s13225-013-0233-x

    Article  Google Scholar 

  • Zhang S, Monahan BJ, Tkacz JS, Scott B (2004) Indole-diterpene gene cluster from Aspergillus flavus. Appl Environ Microbiol 70:6875–6883

    Article  CAS  Google Scholar 

  • Zhang D-X, Nagabhyru P, Schardl CL (2009a) Regulation of a chemical defense against herbivory produced by symbiotic fungi in grass plants. Plant Physiol 150:1072–1082. https://doi.org/10.1104/pp.109.138222

    Article  CAS  Google Scholar 

  • Zhang X, Ren A-Z, Wei Y-K, Lin F, Li C, Liu Z-J, Gao Y-B (2009b) Taxonomy, diversity and origins of symbiotic endophytes of Achnatherum sibiricum in the Inner Mongolia Steppe of China. FEMS Microbiol Lett 301:12–20. https://doi.org/10.1111/j.1574-6968.2009.01789.x

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang K, Fang A, Han Y, Yang J, Xue M, Bao J, Hu D, Zhou B, Sun X, Li S, Wen M, Yao N, Ma L-J, Liu Y, Zhang M, Huang F, Luo C, Zhou L, Li J, Chen Z, Miao J, Wang S, Lai J, Xu J-R, Hsiang T, Peng Y-L, Sun W (2014) Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nat Commun 5. https://doi.org/10.1038/ncomms4849

  • Zhang XX, Xia C, Li CJ, Nan ZB (2015) Chemical composition and antifungal activity of the volatile oil from Epichloë gansuensis, endophyte-infected and non-infected Achnatherum inebrians. Sci China Life Sci 58:512–514. https://doi.org/10.1007/s11427-015-4837-0

    Article  Google Scholar 

  • Zhang W, Card SD, Mace WJ, Christensen MJ, McGill CR, Matthew C (2017) Defining the pathways of symbiotic Epichloë colonization in grass embryos with confocal microscopy. Mycologia 109:153–161. https://doi.org/10.1080/00275514.2016.1277469

    Article  CAS  Google Scholar 

  • Zhong R, Xia C, Ju Y, Zhang X, Duan T, Nan Z, Li C (2021) A foliar Epichloë endophyte and soil moisture modified belowground arbuscular mycorrhizal fungal biodiversity associated with Achnatherum inebrians. Plant Soil 458:105–122. https://doi.org/10.1007/s11104-019-04365-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Schardl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schardl, C.L. et al. (2023). Diversity of Seed Endophytes: Causes and Implications. In: Scott, B., Mesarich, C. (eds) Plant Relationships. The Mycota, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-031-16503-0_5

Download citation

Publish with us

Policies and ethics