Skip to main content

Sequestered Caterpillar Chemical Defenses: From “Disgusting Morsels” to Model Systems

  • Chapter
  • First Online:
Caterpillars in the Middle

Part of the book series: Fascinating Life Sciences ((FLS))

  • 920 Accesses

Abstract

Caterpillars that sequester chemical defenses from their host plants are truly caught in the middle between their host plants and their enemies. On the one hand, they not only need to cope with the compounds in the plants on which they feed, they also need to have the physiology to be able to store those compounds. On the other hand, they need to deploy these defenses in the most effective way possible and escape or survive attack by their own natural enemies. This chapter first summarizes the early (mid-nineteenth to mid-twentieth century) investigations into unpalatability of caterpillars and the historical importance of these discoveries for the fields of ecology, evolution, and behavior and the birth of the field of chemical ecology. It then provides an introduction to caterpillar sequestration and unpalatability and introduces iridoid glycosides as a model system for investigating sequestering caterpillars. Different caterpillar species that sequester defense compounds from their host plants may vary in their ability to retain these compounds. Examples of such variation are explored. The host plant species on which a caterpillar feeds may affect the amounts and kinds of compounds sequestered, with consequences for the efficacy of these defenses against enemies; examples of these interactions are described. The effects of humans on the planet are many, varied, and profound; the consequences of such anthropogenic influences on the environment and their impact on sequestering caterpillars are discussed, including introduced plants, nitrogen and water availability, elevated carbon dioxide, and use of pesticides and herbicides. The chapter concludes with a section on possible future directions in research on sequestering caterpillars.

figure a

Euphydryias phaeton larva (Nymphalidae) on white turtlehead, Chelone glabra (Plantaginaceae). (Photo: M. Deane Bowers)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baden CU, Geier T, Franke S, Dobler S (2011) Sequestered iridoid glycosides – highly effective deterrents against ant predators? Biochem Syst Ecol 39:897–901

    Article  CAS  Google Scholar 

  • Barton K, Bowers MD (2006) Neighbor species differentially alter resistance phenotypes in Plantago. Oecologia 150:442–452

    Article  PubMed  Google Scholar 

  • Barton KE, Koricheva J (2010) The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis. Am Nat 175:481–493

    Article  PubMed  Google Scholar 

  • Bates HW (1862) Contributions to an insect fauna of the Amazon Valley. Lepidoptera: Heliconidae. Trans Linn Soc Lond 23:495–566

    Article  Google Scholar 

  • Battisti A, Holm G, Fagrell B, Larsson S (2011) Urticating hairs in arthropods: their nature and medical significance. Annu Rev Entomol 56:203–220

    Article  CAS  PubMed  Google Scholar 

  • Bernays E, DeLuca C (1981) Insect anti-feedant properties of an iridoid glycoside: ipolamiide. Experientia 37:1289–1290

    Article  CAS  Google Scholar 

  • Blake RJ, Woodcock BA, Westbury DB, Sutton P, Potts SG (2011) New tools to boost butterfly habitat quality in existing grass buffer strips. J Insect Conserv 15:221–232

    Article  Google Scholar 

  • Blum MS, Whitman DW, Severson RF, Arrendale RF (1987) Herbivores and toxic plants: evolution of a menu of options for processing allelochemicals. Int J Trop Insect Sci 8:459–463

    Article  CAS  Google Scholar 

  • Boege K, Marquis RJ (2005) Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends Ecol Evol 20:441–448

    Article  PubMed  Google Scholar 

  • Boege K, Agrawal AA, Thaler JS (2019) Ontogenetic strategies in insect herbivores and their impact on tri-trophic interactions. Curr Op Insect Sci 32:61–67

    Article  Google Scholar 

  • Bowers MD (1979) Unpalatability as a defense strategy of checkerspot butterflies with special reference to Euphydryas phaeton (Nymphalidae). Dissertation, University of Massachusetts

    Google Scholar 

  • Bowers MD (1980) Unpalatability as a defense strategy of Euphydryas phaeton (Lepidoptera, Nymphalidae). Evolution 34:586–600

    Article  PubMed  Google Scholar 

  • Bowers MD (1981) Unpalatability as a defense strategy of western checkerspot butterflies (Euphydryas, Nymphalidae). Evolution 35:367–375

    PubMed  Google Scholar 

  • Bowers MD (1991) Iridoid glycosides. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites, vol 2. Academic Press, San Diego, pp 297–325

    Chapter  Google Scholar 

  • Bowers MD (1993) Aposematic caterpillars: lifestyles of the unpalatable and warningly colored. In: Stamp NE, Casey T (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York, pp 331–371

    Google Scholar 

  • Bowers MD (2003) Defensive chemistry and ecology of the Catalpa Sphinx, Ceratomia catalpae (Sphingidae). J Chem Ecol 29:2359–2367

    Article  CAS  PubMed  Google Scholar 

  • Bowers, MD, Collinge, SK (1992) Sequestration and metabolism of iridoid glycosides by larvae of the Buckeye, Junonia coenia (Nymphalidae). J Chem Ecol 18:817–831

    Google Scholar 

  • Bowers MD, Farley S (1990) The behavior of grey jays, Perisoreus canadensis, towards palatable and unpalatable Lepidoptera. Anim Behav 39:699–705

    Article  Google Scholar 

  • Bowers MD, Larin Z (1989) Acquired chemical defense in the lycaenid butterfly, Eumaeus atala. J Chem Ecol 15:1133–1146

    Article  CAS  PubMed  Google Scholar 

  • Bowers MD, Puttick GM (1986) Fate of ingested iridoid glycosides in lepidopteran herbivores. J Chem Ecol 12:169–178

    Article  CAS  PubMed  Google Scholar 

  • Bowers MD, Puttick GM (1988) Response of generalist and specialist insects to qualitative allelochemical variation. J Chem Ecol 14:319–334

    Article  CAS  Google Scholar 

  • Bowers MD, Stamp NE (1993) Effect of plant age, genotype, and herbivory on Plantago performance and chemistry. Ecology 74:1778–1791

    Article  Google Scholar 

  • Bowers MD, Stamp NE (1997) Fate of hostplant iridoid glycosides in larvae of the Nymphalidae and Arctiidae. J Chem Ecol 23:2955–2965

    Article  CAS  Google Scholar 

  • Bowers MD, Stamp NE, Collinge SK (1992a) Early stage of host range expansion by a specialist herbivore, Euphydryas phaeton (Nymphalidae). Ecology 73:526–536

    Article  Google Scholar 

  • Bowers MD, Collinge SK, Gamble SE, Schmitt J (1992b) Effects of genotype, habitat, and seasonal-variation on iridoid glycoside content of Plantago lanceolata (Plantaginaceae) and the implications for insect herbivores. Oecologia 91:201–207

    Article  Google Scholar 

  • Bowers MD, Boockvar K, Collinge SK (1993) Iridoid glycosides of Chelone glabra (Scrophulariaceae) and their sequestration by larvae of a sawfly, Tenthredo grandis (Tenthredinidae). J Chem Ecol 19:815–823

    Article  CAS  PubMed  Google Scholar 

  • Brower JVZ (1958a) Experimental studies of mimicry in some North American butterflies. Part I. The Monarch, Danaus plexippus and viceroy, Limenitis archippus archippus. Evolution 12:32–47

    Article  Google Scholar 

  • Brower JVZ (1958b) Experimental studies of mimicry in some North American butterflies. Part II. Battus philenor and Pailiio troilus, P. polyxenes and P. glaucus. Evolution 12:123–136

    Article  Google Scholar 

  • Brower JVZ (1958c) Experimental studies of mimicry in some North American butterflies. Part III. Danaus gilippus berenice and Limenitis archippus floridensis. Evolution 12:273–285

    Article  Google Scholar 

  • Brower LP (1969) Ecological chemistry. Sci Am 220:22–29

    Article  CAS  PubMed  Google Scholar 

  • Brower LP, Brower JVZ, Corvino JM (1967) Plant poisons in a terrestrial food chain. Proc Natl Acad Sci 57:893–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brower LP, Ryerson WN, Coppinger LL, Glazier SC (1968) Ecological chemistry and the palatability spectrum. Science 161:1349–1350

    Article  CAS  PubMed  Google Scholar 

  • Brown LM, Breed GA, Severns PM, Crone EE (2017) Losing a battle but winning the war: moving past preference-performance to understand native herbivore-novel host plant interactions. Oecologia 183:441–453

    Article  PubMed  Google Scholar 

  • Butler AG (1869) Remarks upon certain caterpillars, etc., which are unpalatable to their enemies. Trans R Entomol Soc London 1869:27–29

    Google Scholar 

  • Cavers PB, Bassett IJ, Crompton CW (1980) The biology of Canadian weeds: 47. Plantago lanceolata L. Can J Plant Sci 60:1269–1282

    Article  Google Scholar 

  • Cohen JA (1985) Differences and similarities in cardenolide contents of queen and monarch butterflies in Florida and the ecological and evolutionary implications. J Chem Ecol 11:85–103

    Article  CAS  PubMed  Google Scholar 

  • Darrow K, Bowers MD (1997) Phenological and population variation in iridoid glycosides of Plantago lanceolata (Plantaginaceae). Biochem Syst Ecol 25:1–11

    Article  CAS  Google Scholar 

  • de Roode JC, Pedersen AB, Hunter MD, Altizer A (2008) Host plant species affects virulence in monarch butterfly parasites. J Anim Ecol 77:120–126

    Article  PubMed  Google Scholar 

  • Decker LE, deRoode JC, Hunter MD (2018) Elevated atmospheric concentrations of carbon dioxide reduce monarch tolerance and increase parasite virulence by altering the medicinal properties of milkweeds. Ecol Lett 21:1353–1363

    Article  PubMed  Google Scholar 

  • Decker LE, Soule AJ, deRoode JC, Hunter MD (2019) Phytochemical changes in milkweed induced by elevated CO2 alter wing morphology but not toxin sequestration in monarch butterflies. Funct Ecol 33:411–421

    Article  Google Scholar 

  • Diaz JH (2005) The evolving global epidemiology, syndromic classification, management, and prevention of caterpillar envenoming. Am J Trop Med Hyg 72:347–357

    Article  PubMed  Google Scholar 

  • Dimarco RD, Nice CC, Forcyce JA (2012) Family matters: effect of host plant variation in chemical and mechanical defenses on a sequestering specialists herbivore. Oecologia 170:687–693

    Article  PubMed  Google Scholar 

  • Dinda B (2019) Pharmacology and applications of naturally occurring iridoids. Springer Nature, Cham

    Book  Google Scholar 

  • Dobler S, Petschenka G, Pankoke H (2011) Coping with toxic plant compounds – the insect’s perspective on iridoid glycosides and cardenolides. Phytochemistry 72:1593–1604

    Article  CAS  PubMed  Google Scholar 

  • Dobler S, Dalla S, Wagschal V, Agrawal AA (2012) Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the NA,K-ATPase. Proc Natl Acad Sci 109:13040–13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffey SS (1980) Sequestration of plant natural products by insects. Annu Rev Entomol 25:447–477

    Article  CAS  Google Scholar 

  • Dyer LA (1995) Tasty generalists and nasty specialists? Antipredator mechanisms in tropical lepidopteran larvae. Ecology 76:1483–1496

    Article  Google Scholar 

  • Dyer LA (1997) Effectiveness of caterpillar defenses against three species of invertebrate predators. J Res Lepid 34:48–68

    Article  Google Scholar 

  • Dyer LA, Bowers MD (1996) The importance of sequestered iridoid glycosides as a defense against an ant predator. J Chem Ecol 22:1527–1539

    Article  CAS  PubMed  Google Scholar 

  • Dyer LA, Gentry G (1999) Predicting natural-enemy responses to herbivores in natural and managed systems. Ecol Appl 9:402–408

    Article  Google Scholar 

  • Ehrlich PR, Raven P (1964) Butterflies and plants: a study on coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • El-Naggar LJ, Beal JL (1980) Iridoids: a review. J Nat Prod 43:649–707

    Article  CAS  PubMed  Google Scholar 

  • Eltringham H (1909) A account of some experiments on the edibility of certain lepidopterous larvae. Trans R Entomol Soc Lond 1909:471–478

    Google Scholar 

  • Engler-Chaouat HS, Gilbert LE (2007) De novo synthesis vs. sequestration: negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. J Chem Ecol 33:25–42

    Article  CAS  PubMed  Google Scholar 

  • Erb M, Kliebenstein DJ (2020) Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiol 184:39–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faldyn MJ, Hunter MD, Elderd BD (2018) Climate change and invasive, tropical milkweed: an ecological trap for monarch butterflies. Ecology 99:1031–1038

    Article  PubMed  Google Scholar 

  • Fink L, Brower L, Waide R, Spitzer P (1983) Overwintering monarch butterflies as food for insectivorous birds in Mexico. Biotropica 15:151–153

    Article  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Book  Google Scholar 

  • Fordyce JA, Nice CC (2008) Antagonistic, stage-specific selection on defensive chemical sequestration in a toxic butterfly. Evolution 62:1610–1617

    Article  PubMed  Google Scholar 

  • Fraenkel G (1959) The raison d’etre of secondary plant substances. Science 139:1466–1470

    Article  Google Scholar 

  • Fraenkel G (1969) Evaluation of our thoughts on secondary plant substances. Entomol Exp Appl 12:473–486

    Article  Google Scholar 

  • Frankfater C, Tellez MR, Slattery M (2009) The scent of alarm: ontogenetic and genetic variation in the osmeterial gland chemistry of Papilio glaucus (Papilionidae) caterpillars. Chemoecology 19:81–96

    Article  CAS  Google Scholar 

  • Gardner DR, Stermitz FR (1988) Host plant utilization and iridoid glycoside sequestration by Euphydryas anicia (Lepidoptera: Nymphalidae). J Chem Ecol 14:2147–2168

    Article  CAS  PubMed  Google Scholar 

  • Glassmire AE, Jeffrey CS, Forister ML, Parchman TL, Nice CC, Jahner JP, Wilson JS, Walla TR, Richards LA, Smilanich AM, Leonard MD, Morrison CR, Simbana W, Salagaje LA, Dodson GD, Miller JS, Tepe EJ, Villamarin-Cortez S, Dyer LA (2016) Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars. New Phytol 212:208–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Glendinning JI (1990) Responses of three mouse species to deterrent chemicals in the monarch butterfly. II. Taste tests using intact monarchs. Chemoecology 1:124–130

    Article  CAS  Google Scholar 

  • Glendinning JI (1993) Comparative feeding responses of the mice Peromyscus melanotis, P. aztecus, Reithrodontomys sumichrasti, and Microtus mexicanus to overwintering monarch butterflies in Mexico. In: Malcolm SB, Zalucki MP (eds) Biology and conservation of the monarch butterfly. Natural History Museum of Los Angeles County, Los Angeles, pp 323–333

    Google Scholar 

  • Graves SD, Shapiro A (2003) Exotics as host plants of the California butterfly fauna. Biol Conserv 110:413–433

    Article  Google Scholar 

  • Haan NL, Bakker JD, Dunwiddie P, Linders MJ (2018) Instar-specific effects of host plants on survival of endangered butterfly larvae. Ecol Entomol 43:742–753

    Article  Google Scholar 

  • Haan NL, Bowers MD, Bakker JD (2021) Preference, performance, and chemical defense in an endangered butterfly using novel and ancestral host plants. Sci Rep 11:992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haase E (1896) Researches on mimicry on the basis of a natural classification of the Papilionidae. Pt II. Transl. by CM Childs. Nagel, Stuttgard

    Google Scholar 

  • Hahn PG, Maron JL (2016) A framework for predicting intraspecific variation in plant defense. Trends Ecol Evol 31:646–656

    Article  PubMed  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Hamann E, Blevins C, Franks SJ, Jameel MI, Anderson JT (2021) Climate change alters plant-herbivore interactions. New Phytol 229:1894–1910

    Article  CAS  PubMed  Google Scholar 

  • Handjieva NV, Elieva EI, Spassov SL, Popov SS, Duddeck H (1993) Iridoid glycosides from Linaria species. Tetrahedron 49:9261–9266

    Article  CAS  Google Scholar 

  • Hartmann T, Ober D (2000) Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. Top Curr Chem 209:207–243

    Article  CAS  Google Scholar 

  • Hawkins BA, Cornell HV, Hochberg ME (1997) Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 78:2145–2152

    Article  Google Scholar 

  • Hawthorne WR (1974) The biology of Canadian weeds. 4. Plantago major and P. rugellii. Can J Plant Sci 54:383–396

    Article  Google Scholar 

  • Hay-Roe MM, Nation J (2007) Spectrum of cyanide toxicity and allocation in Heliconius erato and Passiflora host plants. J Chem Ecol 33:319–329

    Article  CAS  PubMed  Google Scholar 

  • Heckel DG (2014) Insect detoxification and sequestration strategies. Annu Plant Rev 47:77–114

    Article  CAS  Google Scholar 

  • Hegnauer R (1962-1996) Chemotaxonomies der Pflanzen. Vols I–X. Berkhauser Verlag, Basel/Stuttgart

    Book  Google Scholar 

  • Hesbacher S, Giez I, Embacher G, Fiedler K, Max W, Trawoger A, Turk R, Lange OL, Proksch P (1995) Sequestration of lichen compounds by lichen-feeding members of the Arctiidae (Lepidoptera). J Chem Ecol 21:2079–2089

    Article  CAS  PubMed  Google Scholar 

  • Holzinger F, Frick C, Wink M (1992) Molecular basis for the insensitivity of the monarch (Danaus plexippus) to cardiac glycosides. FEBS Lett 314:477–480

    Article  CAS  PubMed  Google Scholar 

  • Honda K (1981) Larval osmeterial secretions of the swallowtails (Papilio). J Chem Ecol 7:1089–1113

    Article  CAS  PubMed  Google Scholar 

  • Honda K (1983) Defensive potential of components of the larval osmeterial secretion of papilionid butterflies against ants. Physiol Entomol 8:173–179

    Article  CAS  Google Scholar 

  • Hunter MD (2016) The phytochemical landscape: linking trophic interactions and nutrient dynamics. Princeton University Press, Princeton

    Book  Google Scholar 

  • Jamieson M, Bowers MD (2010) Iridoid glycoside variation in the invasive plant dalmatian toadflax, Linaria dalmatica (Plantaginaceae) and sequestration by the biological control agent Calophasia lunula (Noctuidae). J Chem Ecol 36:70–79

    Article  CAS  PubMed  Google Scholar 

  • Jamieson M, Bowers MD (2012) Plant-mediated effects of soil nitrogen enrichment on a chemically defended specialist herbivore, Calophasia lunula. Ecol Entomol 37:300–308

    Article  Google Scholar 

  • Jamieson MA, Burkle LA, Manson JS, Runyon JB, Trowbridge AM, Zientek J (2017) Global change effects on plant-insect interactions: the role of phytochemistry. Curr Opin Insect Sci 23:70–80

    Article  PubMed  Google Scholar 

  • Jensen SR (1991) Plant iridoids, their biosynthesis and distribution in angiosperms. In: Harborne JB, Tomas-Barberan FA (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press, Oxford, pp 133–158

    Google Scholar 

  • Jones PL, Petschenka G, Flecht L, Agrawal AA (2019) Cardenolide intake, sequestration, and excretion by the monarch butterfly along gradients of plant toxicity and larval ontogeny. J Chem Ecol 45:264–277

    Article  CAS  PubMed  Google Scholar 

  • Kelly CA, Bowers MD (2018) Host plant iridoid glycosides mediate herbivore interactions with natural enemies. Oecologia 188:491–500

    Google Scholar 

  • Knerl A, Bowers MD (2013) Incorporation of an introduced weed into the diet of a native butterfly: consequences for preference, performance and chemical defense. J Chem Ecol 39:1313–1321

    Article  CAS  PubMed  Google Scholar 

  • Kubinova R, Svajdleka E, Kulovana T (2014) Accumulation of secondary metabolites in larvae of Death’s-head hawk moth (Acherontia atropos) is dependent on food composition. Chem List 108:1145–1148

    CAS  Google Scholar 

  • L’Empereur KM, Stermitz FR (1990) Iridoid glycoside content of Euphydryas anicia (Lepidoptera, Nymphalidae) and its major hostplant, Besseya plantaginea (Scrophulariaceae) at a high-plains Colorado site. J Chem Ecol 16:187–197

    Article  PubMed  Google Scholar 

  • LaBar CC, Schultz CB (2012) Investigating the role of herbicides in controlling invasive grasses in prairie habitats: effects on non-target butterflies. Nat Areas J 32:177–189

    Article  Google Scholar 

  • Lampert EC, Bowers MD (2010) Host plant influences on iridoid glycoside sequestration of generalist and specialist caterpillars. J Chem Ecol 36:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Lampert EC, Bowers MD (2014) Incompatibility between plant-derived defensive chemistry and immune response of two sphingid herbivores. J Chem Ecol 41:85–92

    Article  PubMed  CAS  Google Scholar 

  • Lampert EC, Dyer LA, Bowers MD (2010) Caterpillar chemical defense and parasitoid success: Cotesia congregata parasitism of Ceratomia catalpae. J Chem Ecol 36:992–998

    Article  CAS  PubMed  Google Scholar 

  • Lampert EC, Dyer LA, Bowers MD (2014) Dietary specialization and the effects of plant species on potential multitrophic interactions of three species of nymphaline caterpillars. Entomol Exp Appl 153:207–216

    Article  Google Scholar 

  • Li F, Dudley TL, Chen B, Chang X, Liang L, Peng S (2016) Responses of tree and insect herbivores to elevated nitrogen inputs: a meta-analysis. Acta Oecol 77:160–167

    Article  Google Scholar 

  • Lydon J, Duke SO (1989) Pesticide effects on secondary metabolism of higher plants. Pest Manag Sci 25:361–373

    Article  CAS  Google Scholar 

  • Majewska AA, Altizer S (2019) Exposure to non-native tropical milkweed promotes reproductive development in migratory monarch butterflies. Insects 10:253. https://doi.org/10.3390/insects10080253

    Article  PubMed Central  Google Scholar 

  • Malcolm S (1991) Cardenolide-mediated interactions between plants and herbivores. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites, vol 1. Academic Press, San Diego, pp 251–295

    Chapter  Google Scholar 

  • Malcolm S (2018) Anthropogenic impacts on mortality and population viability of the monarch butterfly. Annu Rev Entomol 63:277–302

    Article  CAS  PubMed  Google Scholar 

  • Marushia RG, Allen EB (2011) Control of exotic annual grasses to restore native forbs in abandoned agricultural land. Restor Ecol 19:45–54

    Article  Google Scholar 

  • Mattila ALK, Jiggins CD, Poedal OH, Montejo-Kovacevich G, de Castro E, WO MM, Baquet C, Saastamoinen M (2020) High evolutionary potential in the chemical defenses of an aposematic Heliconius butterfly. BioRxiv. preprint posted January 15, https://doi.org/10.1101/2020.01.14.905950

  • Moore BD, Andrew RL, Kulheim C, Foley WJ (2013) Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201:733–750

    Article  PubMed  Google Scholar 

  • Muller C (2009) Interactions between glucosinolate- and myrosinase-containing plants and the sawfly Athalia rosae. Phytochem Rev 8:121–134

    Article  CAS  Google Scholar 

  • Nahrstedt A, Davis RH (1983) Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of the Heliconiini (Insecta: Lepidoptera). Comp Biochem Physiol Part B Biochem 75:65–73

    Article  Google Scholar 

  • Nash RJ, Bell EA, Ackery PR (1992) The protective role of cycasin in Cycad-feeding Lepidoptera. Phytochemistry 31:1955–1957

    Article  CAS  Google Scholar 

  • Nayar JK, Fraenkel G (1963) The chemical basis of host selection in the catalpa sphinx, Ceratomia catalpae (Lepidoptera, Sphingidae). Ann Entomol Soc Am 56:119–122

    Article  CAS  Google Scholar 

  • Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47:57–92

    Article  CAS  PubMed  Google Scholar 

  • Nishida R (2014) Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites. Biosci Biotechnol Biochem 78:1–13

    Article  CAS  PubMed  Google Scholar 

  • Nishida R, Fukami H (1989) Host plant iridoid-based chemical defense of an aphid, Acyrthosiphon nipponicus, against ladybird beetles. J Chem Ecol 15:1837–1845

    Article  CAS  PubMed  Google Scholar 

  • Ode PJ (2006) Plant chemistry and natural enemy fitness: effects on herbivores and natural enemy interactions. Annu Rev Entomol 51:163–185

    Article  CAS  PubMed  Google Scholar 

  • Opitz SEW, Müller C (2009) Plant chemistry and insect sequestration. Chemoecology 19:117–154

    Article  CAS  Google Scholar 

  • Pasteels JM, Rowell-Rahier M, Braekman JC, Dupoint A (1983) Salicin from host plant as precursor of salicylaldehyde in defensive secretion of chrysomeline larvae. Physiol Entomol 8:307–314

    Article  CAS  Google Scholar 

  • Pellissier L, Rober A, Bilat J, Rasmann S (2014) High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: is it just temperature? Ecography 37:950–959

    Article  Google Scholar 

  • Petschenka G, Agrawal AA (2015) Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet. Proc R Soc B 282:20151865. https://doi.org/10.1098/rspb.2015.1865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petschenka G, Agrawal AA (2016) How herbivores coopt plant defenses: natural selection, specialization, and sequestration. Curr Opin Insect Sci 14:17–24

    Article  PubMed  Google Scholar 

  • Petschenka G, Fandrich S, Sander N, Wagschal V, Boppre M, Dobler S (2013) Stepwise evolution of resistance to toxic cardenolides vial genetic substitutions in the NA+/K+-ATPase of milkweed butterflies (Lepidoptera: Danaini). Evolution 67:2753–2761

    Article  CAS  PubMed  Google Scholar 

  • Poulton EB (1887) The experimental proof of the protective value of colour and markings in insects with reference to their vertebrate enemies. Proc Zool Soc London 1887:191–274

    Article  Google Scholar 

  • Poulton EB (1890) The colours of animals. D Appleton and Co, New York

    Google Scholar 

  • Price PC, Bouton CE, Gross PC, Bouton E, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    Article  Google Scholar 

  • Pritchett AH (1903) Some experiments in feeding lizards with protectively colored insects. Biol Bull 5:271–287

    Article  Google Scholar 

  • Prudic KL, Oliver JC, Bowers MD (2005) Soil nutrient effects on oviposition preference, larval performance and chemical defense of a specialist insect herbivore. Oecologia 143:578–587

    Article  PubMed  Google Scholar 

  • Puttick GM, Bowers MD (1988) Effect of qualitative and quantitative variation in allelochemicals on a generalist insect: iridoid glycosides and the southern armyworm. J Chem Ecol 14:335–351

    Article  CAS  PubMed  Google Scholar 

  • Quintero C, Bowers MD (2018) Plant and herbivore ontogeny interact to shape the preference, performance and chemical defense of a specialist herbivore. Oecologia 187:401–441

    Article  PubMed  Google Scholar 

  • Quintero C, Lampert EC, Bowers MD (2014) Time is of the essence: direct and indirect effects of plant ontogenetic trajectories on higher trophic levels. Ecology 95:2589–2602

    Article  Google Scholar 

  • Rayor LS (2004) Effects of monarch larval host plant chemistry and body size on Polistes wasp predation. In: Oberhauser KS, Solensky MJ (eds) Monarch butterfly biology and conservation. Cornell University Press, Ithaca, pp 39–46

    Google Scholar 

  • Rimpler H (1991) Sequestration of iridoids by insects. In: Harborne JB, Tomas-Barberan FA (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press, Oxford, pp 314–330

    Google Scholar 

  • Robinson GS, Ackery PR, Kitching I, Beccaloni G, Hernandez L (2002) Hostplants of moth and butterfly caterpillars North of Mexico. Memoirs of the American Entomological Institute, Gainesville

    Google Scholar 

  • Robinson EA, Ryan GC, Newman JA (2012) A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol 194:321–336

    Article  CAS  PubMed  Google Scholar 

  • Roeske CN, Seiber JN, Brower LP, Moffitt CM (1976) Milkweed cardenolides and their comparative processing by monarch butterflies (Danaus plexippus L.). Rec Adv Phytochem 10:93–167

    CAS  Google Scholar 

  • Rosenthal GA, Berenbaum MR (eds) (1991) Herbivores: their interactions with secondary plant metabolites. Academic, San Diego

    Google Scholar 

  • Rothschild M, Reichstein T, von Euw J, Aplin R, Harman RRM (1970) Toxic Lepidoptera. Toxicon 8:293–299

    Article  CAS  PubMed  Google Scholar 

  • Rothschild M, Nash RJ, Bell EA (1986) Cycasin in the endangered butterfly Eumaeus atala florida. Phytochemistry 25:1853–1854

    Article  CAS  Google Scholar 

  • Sajitha TP, Siva R, Manjunatha BL, Rajai P, Navdeep G, Kavita D, Ravikanth G, Shaanker RU (2019) Sequestration of the plant secondary metabolite, colchicine, by the noctuid moth Polytela gloriosae (Fab.). Chemoecology 29:135–142

    Article  CAS  Google Scholar 

  • Saporito RA, Connelly MA, Spande TF, Garraffo HM (2012) A review of chemical ecology in poison frogs. Chemoecology 22:159–168

    Google Scholar 

  • Satterfield DA, Maerz JC, Altizer S (2015) Loss of migratory behavior increases infection risk for a butterfly host. Proc R Soc B 282:20141734

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2006) Insect-plant biology, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Schultz CB, Zemaitis JL, Thomas CC, Bowers MD, Crone EE (2016) Non-target effects of grass-specific herbicides differ among species, chemicals and host plants in Euphydryas butterflies. J Insect Conserv 20:867–877

    Article  Google Scholar 

  • Scott Chialvo CH, Chialvo P, Holland JD, Anderson TJ, Breinholt JW, Kawahara KY, Zhou X, Liu S, Zaspel JM (2018) A phylogenomic analysis of lichen-feeding tiger moths uncovers evolutionary origins of host chemical sequestration. Mol Phylogenet Evol 121:23–34

    Article  CAS  PubMed  Google Scholar 

  • Scott CH, Zaspel JM, Chialvo P, Weller SJ (2014) A preliminary molecular phylogenetic assessment of the lichen moths (Lepidoptera: Erebidae: Arctiinae: Lithosiini) with comments on palatability and chemical sequestration. Syst Entomol 39:286–303

    Article  Google Scholar 

  • Sculfort O, de Castro EP, Kozak KM, Bak S, Elias M, Nay B, Llaurens V (2020) Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies. Ecol Evol 10:2677–2694

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinjyo N, Waddell G, Green J (2020) Valerian root in treating sleep problems and associated disorders—a systematic review and meta-analysis. J Evid Based Integr Med 25:1–31

    Article  Google Scholar 

  • Singer MC, Parmesan C (2018) Lethal trap created by adaptive evolutionary response to an exotic resource. Nature 557:238–241

    Google Scholar 

  • Slater JW (1877) On the food of gaily coloured caterpillars. Trans R Entomol Soc Lond 1877:205–209

    Google Scholar 

  • Smilanich AM, Dyer LA, Chambers JQ, Bowers MD (2009) Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecol Lett 12:612–621

    Article  PubMed  Google Scholar 

  • Stamp NE (1979) New oviposition plant for Euphydryas phaeton (Nymphalidae). J Lepid Soc 33:203–204

    Google Scholar 

  • Stamp NE (2001) Effects of prey quantity and quality on predatory wasps. Ecol Entomol 26:292–301

    Article  Google Scholar 

  • Stermitz FR, Gardner DR, Odendaal FJ, Ehrlich PR (1986) Euphydryas anicia (Lepidoptera: Nymphalidae) utilization of iridoid glycosides from Castilleja and Besseya (Scrophulariaceae) host plants. J Chem Ecol 12:1455–1468

    Google Scholar 

  • Sternberg ED, Levevre T, Li J, Fernandez de Castillejo CL, Li H, Hund D, de Roode JC (2012) Food plant-derived disease tolerance and resistance in a natural butterfly-plant-parasite interaction. Evolution 66:3367–3376

    Article  PubMed  Google Scholar 

  • Strohmeyer HH, Stamp NE, Jarzomski CM, Bowers MD (1998) Prey species and prey diet affect growth of invertebrate predators. Ecol Entomol 23:68–79

    Article  Google Scholar 

  • Tan W-H, Acevedo T, Harris EV, Alcaide TY, Walters JR, Hunter MD, Gerardo NM, de Roode JC (2019) Transcriptomics of monarch butterflies (Danaus plexippus) reveals that toxic host plants alter expression of detoxification genes and down-regulate a small number of immune genes. Mol Ecol 28:4845–4863

    Article  PubMed  Google Scholar 

  • Tao L, Berns AR, Hunter MD (2014) Why does a good thing become too much? Interactions between foliar nutrients and toxins determine performance of an insect herbivore. Funct Ecol 28:190–196

    Article  Google Scholar 

  • Theodoratus DH, Bowers MD (1999) Effect of sequestered iridoid glycosides on prey choice of the prairie wolf spider, Lycosa carolinensis. J Chem Ecol 25:283–295

    Article  CAS  Google Scholar 

  • Thomas CD, Ng D, Singer MC, Mallet JLB, Parmesan C, Billington HL (1987) Incorporation of a European weed into the diet of a north American herbivore. Evolution 41:892–901

    Article  CAS  PubMed  Google Scholar 

  • Throop HL, Lerdau MT (2004) Effects of nitrogen deposition on insect herbivory: implications for community and ecosystem processes. Ecosystems 7:109–133

    Article  CAS  Google Scholar 

  • Tundis R, Loizzo M, Menichini F, Statti G, Menichini F (2008) Biological and pharmacological activities of iridoids: recent developments. Mini Rev Med Chem 8:399–420

    Article  CAS  PubMed  Google Scholar 

  • Vaughan GL, Jungreis AM (1977) Insensitivity of lepidopteran tissues to ouabain: physiological mechanisms for protection from cardiac glycosides. J Insect Physiol 23:585–589

    Article  CAS  Google Scholar 

  • Verschaffelt E (1910) The cause determining the selection of food in some herbivorous insects. Proc Acad Sci Amsterdam 1:536–542

    Google Scholar 

  • Veteli TO, Kuokkanen K, Julkenen-Titto R, Roininen H, Tahavanainen J (2002) Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry. Glob Chang Biol 8:1240–1252

    Article  Google Scholar 

  • Von Poser GL, Schripsema J, Henriques AT, Jensen SR (2000) Th distribution of iridoids in Bignoniaceae. Biochem Syst Ecol 28:351–366

    Article  Google Scholar 

  • Wallace AR (1867a) Caterpillars and birds. Field, The Country Gentleman’s Newspaper 29 (743): 206. Accessed from http://wallace-online.org

  • Wallace AR (1867b) Untitled. Proc R Entomol Soc London 1867:lxxx–lxxxi

    Google Scholar 

  • Weir JJ (1869) On insects and insectivorous birds; and especially on the relation between the color and edibility of Lepidoptera and their larvae. Trans R Entomol Soc Lond 1869:21–26

    Google Scholar 

  • Weir JJ (1870) Further observations on the relations between the color and edibility of Lepidoptera and their larvae. Trans R Entomol Soc Lond 1870:337–339

    Google Scholar 

  • Willinger G, Dobler S (2001) Selective sequestration of iridoid glycosides from their host plants in Longitarsus flea beetles. Biochem Syst Ecol 29:335–346

    Article  CAS  PubMed  Google Scholar 

  • Winde I, Wittstock U (2011) Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Phytochemistry 72:1566–1575

    Article  CAS  PubMed  Google Scholar 

  • Wink M (2019) Quinolizidine and pyrrolizidine alkaloid chemical ecology – a mini-review on their similarities and differences. J Chem Ecol 45:109–115

    Article  CAS  PubMed  Google Scholar 

  • Wray V, Davis RH, Nahrstedt A (1983) Biosynthesis of cyanogenic glycosides in butterflies and moths: incorporation of valine and isoleucine into linamarin and lotaustralin by Zygaena and Heliconius species (Lepidoptera). Zeit Für Naturfor C 38:583–588

    Article  Google Scholar 

  • Zagrobelny M, Møller BL (2011) Cyanogenic glucosides in the biological warfare between plants and insects: the burnet moth-birdsfoot trefoil model system. Phytochemistry 72:1585–1592

    Article  CAS  PubMed  Google Scholar 

  • Zagrobelny M, Pinheiro De Castro EC, Moller BL, Bak S (2018) Cyanogenesis in arthropods: From chemical warfare to nuptial gifts. Insects 9: 51; https://doi.org/10.3390/insects9020051

  • Zust T, Petschenka G, Hastings A, Agrawal AA (2019) Toxicity of milkweed leaves and latex: chromatographic quantification versus biological activity of cardenolides in 16 Asclepias species. J Chem Ecol 45:50–60

    Google Scholar 

Download references

Acknowledgments

Many thanks to the wonderful students, post-docs and colleagues who, over many years, have contributed to my thoughts about the behavior, ecology, and evolution of unpalatable caterpillars. I appreciate the comments from Adrian Carper, the Bowers-Resasco lab group, and three anonymous reviewers. I thank Greg Hill for German translation, Bob Marquis for the citizen science observation and Katherine Hernandez, Mary Jamieson, Nadya Muchoney, and Mike Singer for use of their photographs. I especially thank Suzanne Koptur and Bob Marquis for the invitation to contribute to this volume. In this chapter, much of the research from my laboratory was funded by the National Science Foundation and the United States Department of Agriculture. While writing this chapter, research was funded by NSF DEB-1929522.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Deane Bowers .

Editor information

Editors and Affiliations

Additional information

To Theodore Sargent and Lincoln Brower, two talented biologists who shared with all of us their vast knowledge of both larval and adult Lepidoptera. They are missed.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bowers, M.D. (2022). Sequestered Caterpillar Chemical Defenses: From “Disgusting Morsels” to Model Systems. In: Marquis, R.J., Koptur, S. (eds) Caterpillars in the Middle. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-86688-4_6

Download citation

Publish with us

Policies and ethics