Skip to main content

Cultivation and Utilization of Red Clover (Trifolium pratense L.)

  • Chapter
  • First Online:
Medicinal Plants

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 28))

  • 2179 Accesses

Abstract

The theoretical study provides an overview of current data on red clover (Trifolium pratense L.), its cultivation and breeding, other practical uses and future prospects. Particular attention is paid to this taxon as a fodder plant of global importance in traditional and modern animal husbandry systems. Evidence is presented that red clover is a leading component, influencing the pasture management on all continents due to its high biomass production, protein content and overall nutritional value associated with the ability to fix atmospheric nitrogen. Some considerations cover important agrobiological and agrotechnological issues (e.g., plant interseeding) related to increasing adaptability, sustainability and yield of red clover and other crops coexisting in the same biosystems. Interesting biotechnological approaches have been pointed out in relation to the introduction to cultivation of new varieties, which are breeding hybrids of red clover and other wild species, with greater durability and yield-forming capacity. A separate part of the review is the assessment of the phytochemical profile of red clover with particular reference to biologically active specialized metabolites. Recent data from preclinical and human studies on existing and potential applications of this taxon and individual polyphenolic components in traditional and official medicine are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abberton MT (2007) Interspecific hybridization in the genus Trifolium. Plant Breed 126:337–342

    Article  Google Scholar 

  • Abberton MT, Thomas I (2011) Genetic resources in Trifolium and their utilization in plant breeding. Plant Genet Res Charact Util 9:38–44

    Article  Google Scholar 

  • Aburjai T, Natsheh FM (2003) Plants used in cosmetics. Phytother Res 17(9):987–1000

    Article  PubMed  Google Scholar 

  • Adams NR (1995) Detection of the effects of phytoestrogens on sheep and cattle. J Animal Sci 73:1509–1515

    Article  CAS  Google Scholar 

  • Akbaribazm M, Khazaei MR, Khazaei M (2020b) Trifolium pratense L. (red clover) extract and doxorubicin synergistically inhibits proliferation of 4T1 breast cancer in tumor-bearing BALB/c mice through modulation of apoptosis and increase antioxidant and anti‐inflammatory related pathways. Food Sci Nutr (in press)

    Google Scholar 

  • Akbaribazm M, Khazaei MR, Khazaei M (2020a) Phytochemicals and antioxidant activity of alcoholic/hydroalcoholic extract of Trifolium pratense. Chin Herb Med (in press)

    Google Scholar 

  • Akdoğan N, Doğan S, Atakan N, Yalçın B (2018) Association of serum hormone levels with acne vulgaris: low estradiol level can be a pathogenetic factor in female acne. Our Dermatol Online 9:249–256

    Article  Google Scholar 

  • Amossé C, Jeuffroy MH, Celette F, David C (2013) Relay-intercropped forage legumes help to control weeds in organic grain production. Euro J Agron 49:158–167

    Article  Google Scholar 

  • Andres S, Hansen U, Niemann B et al (2015) Determination of the isoflavone composition and estrogenic activity of commercial dietary supplements based on soy or red clover. Food Funct 6(6):2017–2025

    Article  CAS  PubMed  Google Scholar 

  • Aparecida Santos M, Florencio-Silva R, Teixeira CP et al (2016) Effects of early and late treatment with soy isoflavones in the mammary gland of ovariectomized rats. Climacteric 19:77–84

    Article  CAS  PubMed  Google Scholar 

  • Asgary S, Moshtaghian J, Naderi G et al (2007) Effects of dietary red clover on blood factors and cardiovascular fatty streak formation in hypercholesterolemic rabbits. Phytother Res 21(8):768–770

    Article  CAS  PubMed  Google Scholar 

  • Beck V, Rohr U, Jungbauer A (2005) Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy? J Steroid Biochem 94(5):499–518

    Article  CAS  Google Scholar 

  • Bemis DL, Capodice JL, Desai M et al (2004) A concentrated aglycone isoflavone preparation (GCP) that demonstrates potent anti-prostate cancer activity in vitro and in vivo. Clin Cancer Res 10(15):5282–5292

    Article  CAS  PubMed  Google Scholar 

  • Broderick GA, Walgenbach RP, Maignan S (2001) Production of lactating dairy cows fed alfalfa or red clover silage at equal dry matter or crude protein contents in the diet. J Dairy Sci 84:1728–1737

    Article  CAS  PubMed  Google Scholar 

  • Bruneau A, Doyle JJ, Herendeen P et al (2013) Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon 62(2):217–248

    Article  Google Scholar 

  • Cegieła U, Folwarczna J, Pytlik M, Zgórka G (2012) Effects of extracts from Trifolium medium L. and Trifolium pratense L. on development of estrogen deficiency‐induced osteoporosis in rats. Evid-Based Compl Alt 2012 Article ID 921684:11 pages

    Google Scholar 

  • Che CT, Wong MS, Lam CWK (2016) Natural products from Chinese medicines with potential benefits to bone health. Molecules 21:239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chedraui P, San Miguel G, Hidalgo L et al (2008) Effect of Trifolium pratense-derived isoflavones on the lipid profile of postmenopausal women with increased body mass index. Gynecol Endocrinol 24(11):620–624

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wyse DL, Johnson GA et al (2006) Effect of cover crops alfalfa, red clover, and perennial ryegrass on soybean cyst nematode population and soybean and corn yields in minnesota. Crop Sci 46:1890–1897

    Article  Google Scholar 

  • Chen J, Zhao X, Ye Y, Wang Y, Tian J (2013) Estrogen receptor beta-mediated proliferative inhibition and apoptosis in human breast cancer by calycosin and formononetin. Cell Physiol Biochem 32(6):1790–1797

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Hou R, Zhang X (2014) Calycosin suppresses breast cancer cell growth via ERβ-dependent regulation of IGF-1R p38 MAPK and PI3K/Akt pathways. PLoS ONE 9(3):e91245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen MN, Lin CC, Liu CF (2015) Efficacy of phytoestrogens for menopausal symptoms: a meta-analysis and systematic review. Climacteric 18:260–269

    Article  CAS  PubMed  Google Scholar 

  • Cong W, Dupont YL, Søegaard K, Eriksen J (2020) Optimizing yield and flower resources for pollinators in intensively managed multi-species grasslands. Agr Ecosyst Environ 302:107062

    Article  CAS  Google Scholar 

  • Conklin AE, Erich MS, Liebman M (2002) Effects of red clover (Trifolium pratense) green manure and compost soil amendments on wild mustard (Brassica kaber) growth and incidence of disease. Plant Sci 238:245–256

    CAS  Google Scholar 

  • Courty PE, Smith P, Koegel S et al (2015) Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions. Crit Rev Plant Sci 34(1–3):4–16

    Article  CAS  Google Scholar 

  • Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agr Ecosyst Environ 102(3):279–297

    Article  Google Scholar 

  • Davis SR (2002) Phytoestrogens in the context of SERMs. In: Manni A, Verderame MF (eds) Selective estrogen receptor modulators. Humana Press, Totowa, NJ, pp 345–363

    Chapter  Google Scholar 

  • den Hollander NG, Bastiaans L, Kropff MJ (2007) Clover as a cover crop for weed suppression in an intercropping design: II. Competitive ability of several clover species. Eur J Agron 26(2):104–112

    Google Scholar 

  • de Rijke E, Zafra-Gómez A, Ariese F et al (2001) Determination of isoflavone glucoside malonates in Trifolium pratense L (red clover) extracts: quantification and stability studies. J Chromatogr A 932(1–2):55–64

    Article  PubMed  Google Scholar 

  • De Vega J, Ayling S, Hegarty M et al (2015) Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci Rep 5:17394

    Google Scholar 

  • Dias PMB, Julier B, Sampoux J et al (2008) Genetic diversity in red clover (Trifolium pratense L.) revealed by morphological and microsatellite (SSR) markers. Euphytica 160:189–205

    Article  CAS  Google Scholar 

  • Dluhošová J, Ištvánek J, Nedělník J, Řepková J (2018) Red clover (Trifolium pratense) and zigzag clover (T. medium)—a picture of genomic similarities and differences. Front Plant Sci 9:724

    Google Scholar 

  • Dornstauder E, Jisa E, Unterrieder I et al (2001) Estrogenic activity of two standardized red clover extracts (Menoflavon) intended for large scale use in hormone replacement therapy. J Steroid Biochem Mol Biol 78:67–75

    Article  CAS  PubMed  Google Scholar 

  • FAO (2013) Grassland index. A searchable catalogue of grass and forage legumes. Red clover (Trifolium pratense) FAO, Rome, Italy

    Google Scholar 

  • Fauvart M, Michiels J (2008) Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis. FEMS Microbiol Lett 285(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Fei HX, Zhang YB, Liu T (2018) Neuroprotective effect of formononetin in ameliorating learning and memory impairment in mouse model of Alzheimer’s disease. Biosci Biotech Biochem 82(1):57–64

    Article  CAS  Google Scholar 

  • Ferraris C, Ballestra B, Listorti C (2020) Red clover and lifestyle changes to contrast menopausal symptoms in premenopausal patients with hormone-sensitive breast cancer receiving tamoxifen. Breast Cancer Res Treat 180(1):157–165

    Article  CAS  PubMed  Google Scholar 

  • Fisk JW, Hesterman OB, Shrestha A et al (2001) Weed suppression by annual legume cover crops in no-tillage corn. Agron J 93:319–325

    Article  Google Scholar 

  • Gaudin ACM, Westra S, Loucks CES et al (2013) Improving resilience of northern field crop systems using inter-seeded red clover: a review. Agronomy 3:148–180

    Article  Google Scholar 

  • Gauthier G, Bedard J (1991) Experimental tests of the palatability of forage plants in greater snow geese. J Appl Ecol 28(2):491–500

    Article  Google Scholar 

  • Henry DC, Mullen RW, Dygert CE et al (2010) Nitrogen contribution from red clover for corn following wheat in western Ohio. Agron J 102:210–215

    Article  CAS  Google Scholar 

  • Hidalgo LA, Chedraui PA, Morocho N et al (2005) The effect of red clover isoflavones on menopausal symptoms, lipids and vaginal cytology in menopausal women: a randomized, double-blind, placebo-controlled study. Gynecol Endocrinol 21(5):257–264

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Xie M, Gao P (2015) Antiproliferative effects of formononetin on human colorectal cancer via suppressing cell growth in vitro and in vivo. Process Biochem 50(6):912–917

    Article  CAS  Google Scholar 

  • Ishii HS, Kadoya EZ (2016) Legitimate visitors and nectar robbers on Trifolium pratense showed contrasting flower fidelity versus co-flowering plant species: could motor learning be a major determinant of flower constancy by bumble bees? Behav Ecol Sociobiol 70:377–386

    Article  Google Scholar 

  • Ištvánek J, Jaros M, Krenek A, Řepková J (2014) Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae). Am J Bot 101:327–337

    Article  PubMed  Google Scholar 

  • Jakešová H, Řepková J, Hampel D et al (2011) Variation of morphological and agronomic traits in hybrids of Trifolium pratense × T. medium and a comparison with the parental species. Czech J Genet Plant Breed 47:28–36

    Article  Google Scholar 

  • Jakešová H, Hampel D, Řepková J, Nedělník J (2014) Evaluation of feeding characteristics in variety Pramedi—interspecific hybrid Trifolium pratense × Trifolium medium. Úroda 12:183–186

    Google Scholar 

  • Jarred RA, Keikha M, Dowling C (2002) Induction of apoptosis in low to moderate-grade human prostate carcinoma by red clover-derived dietary isoflavones. Cancer Epidem Biomar 11(12):1689–1696

    CAS  Google Scholar 

  • Jia M, Dahlman-Wright K, Jå G (2015) Estrogen receptor alpha and beta in health and disease. Best Pract Res Cl En 29:557–568

    Article  CAS  Google Scholar 

  • Kaczmarczyk-Sedlak I, Wojnar W, Zych M (2013) Effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. Evid Based Compl Alt 2013, Article ID 457052:10 pages

    Google Scholar 

  • Kaurinovic B, Popovic M, Vlaisavljevic S (2012) Antioxidant profile of Trifolium pratense L. Molecules 17(9):11156–11172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khazaei M, Pazhouhi M (2019) Antiproliferative effect of Trifolium pratens L extract in human breast cancer cells. Nutr Cancer 71(1):128–140

    Article  CAS  PubMed  Google Scholar 

  • Khazaei M, Mona Pazhouhi and Saber Khazaei (2018) Evaluation of hydro-alcoholic extract of Trifolium pratense L. for its anti-cancer potential on U87MG cell line. Cell J (Yakhteh) 20(3):412–421

    Google Scholar 

  • Kim MR, Kim HJ, Yu SH et al (2020) Combination of red clover and hops extract improved menopause symptoms in an ovariectomized rat model. Evid Based Compl Alt 2020, Article ID 7941391:9 pages

    Google Scholar 

  • Kiyama R, Wada-Kiyama Y (2015) Estrogenic endocrine disruptors: molecular mechanisms of action. Environ Int 83:11–40

    Article  CAS  PubMed  Google Scholar 

  • Kjærgaard T (2003) A plant that changed the world: the rise and fall of clover 1000–2000. Landscape Res 28(1):41–49

    Article  Google Scholar 

  • Klejdus B, Vitamvásová-Sterbova D, Kuban V (2001) Identification of isoflavone conjugates in red clover (Trifolium pratense) by liquid chromatography–mass spectrometry after two-dimensional solid-phase extraction. Anal Chim Acta 450(1–2):81–97

    Article  CAS  Google Scholar 

  • Kołodziejczyk-Czepas J (2016) Trifolium species–the latest findings on chemical profile, ethnomedicinal use and pharmacological properties. J Pharm Pharmacol 68(7):845–861

    Article  PubMed  CAS  Google Scholar 

  • Křížová L, Dadáková K, Kašparovská J, Kašparovský T (2019) Isoflavones. Molecules 24(6):1076

    Article  PubMed Central  CAS  Google Scholar 

  • Kunelius HT, Johnston HW, Macleod JA (1992) Effect of undersowing barley with Italian ryegrass or red clover on yield, crop composition and root biomass. Agric Ecosyst Environ 38:127–137

    Article  Google Scholar 

  • Lagari VS, Levis S (2014) Phytoestrogens for menopausal bone loss and climacteric symptoms. J Steroid Biochem 139:294–301

    Article  CAS  Google Scholar 

  • Lee SG, Brownmiller CR, Lee SO et al (2020) Anti-inflammatory and antioxidant effects of anthocyanins of Trifolium pratense (Red Clover) in lipopolysaccharide-stimulated RAW-267.4 macrophages. Nutrients 12(4):1089

    Google Scholar 

  • Liang K, Ye Y, Wang Y et al (2014) Formononetin mediates neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/Bcl-2 ratio and upregulation PI3K/Akt signaling pathway. J Neurol Sci 344(1–2):100–104

    Article  CAS  PubMed  Google Scholar 

  • Lin LZ, He XG, Lindenmaier M et al (2000) LC-ESI-MS study of the flavonoid glycoside malonates of red clover (Trifolium pratense). J Agric Food Chem 48(2):354–365

    Google Scholar 

  • Lipovac M, Chedraui P, Gruenhut C et al (2010) Improvement of postmenopausal depressive and anxiety symptoms after treatment with isoflavones derived from red clover extracts. Maturitas 65(3):258–261

    Article  CAS  PubMed  Google Scholar 

  • Lipovac M, Chedraui P, Gruenhut Ch et al (2011) Effect of red clover isoflavones over skin appendages and mucosal status in postmenopausal women. Obst Gynecol Int 2011, Article ID 949302:6 pages

    Google Scholar 

  • Lipovac M, Chedraui P, Gruenhut Ch et al (2012) The effect of red clover isoflavone supplementation over vasomotor and menopausal symptoms in postmenopausal women. Gynecol Endocrinol 28:203–207

    Article  CAS  PubMed  Google Scholar 

  • Loing E, Lachance R, Ollier V, Hocquaux M (2013) A new strategy to modulate alopecia using a combination of two specific and unique ingredients. J Cosmet Sci 64(1):45–58

    CAS  PubMed  Google Scholar 

  • Mayo B, Vázquez L, Flórez AB (2019) Equol: a bacterial metabolite from the daidzein isoflavone and its presumed beneficial health effects. Nutrients 11(9):2231

    Article  CAS  PubMed Central  Google Scholar 

  • McKenna P, Cannon N, Conway J, Dooley J (2018) The use of red clover (Trifolium pratense) in soil fertility-building: a review. Field Crop Res 221:38–49

    Article  Google Scholar 

  • Merker A (1984) Hybrids between Trifolium medium and T. pratense. Hereditas 101:267–268

    Article  Google Scholar 

  • Monk KA (1989) Effects of diet composition on intake by adult wild European rabbits. Appetite 13(3):201–209

    Article  CAS  PubMed  Google Scholar 

  • Moreira AC, Silva AM, Santos MS, Sardão VA (2014) Phytoestrogens as alternative hormone replacement therapy in menopause: what is real, what is unknown. J Steroid Biochem 143:61–71

    Article  CAS  Google Scholar 

  • Mutch DR, Martin TE, Kosola KR (2003) Red clover (Trifolium pratense) suppression of common ragweed (Ambrosia) in winter wheat (Triticum aestivum). Weed Technol 17:181–185

    Article  Google Scholar 

  • Myers SP, Vigar V (2017) Effects of a standardised extract of Trifolium pratense (Promensil) at a dosage of 80 mg in the treatment of menopausal hot flushes: a systematic review and meta-analysis. Phytomedicine 24:141–147

    Article  CAS  PubMed  Google Scholar 

  • Ohno T, Doolan KL (2001) Effects of red clover decomposition on phytotoxicity to wild mustard seedling growth. Appl Soil Ecol 16:187–192

    Article  Google Scholar 

  • Oleszek W, Stochmal A (2002) Triterpene saponins and flavonoids in the seeds of Trifolium species. Phytochemistry 61(2):165–170

    Article  CAS  PubMed  Google Scholar 

  • Overk CR, Guo J, Chadwick LR et al (2008) In vivo estrogenic comparisons of Trifolium pratense (red clover) Humulus lupulus (hops) and the pure compounds isoxanthohumol and 8-prenylnaringenin. Chem Biol Interact 176(1):30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Tripathi S (2014) Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J Pharmacogn Phytochem 2(5):115–119

    Google Scholar 

  • Patisaul HB, Jefferson W (2010) The pros and cons of phytoestrogens. Front Neuroendocrinol 31(4):400–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips GC, Grosser JW, Berger S et al (1992) Interspecific hybridisation between red clover and Trifolium alpestre using in vitro embryo culture. Crop Sci 32:1113–1115

    Article  Google Scholar 

  • Polasek J, Queiroz EF, Hostettmann K (2007) On-line identification of phenolic compounds of Trifolium species using HPLC-UV-MS and postcolumn UV-derivatisation. Phytochem Anal 18(1):13–23

    Article  CAS  PubMed  Google Scholar 

  • Powers CN, Setzer WN (2015) A molecular docking study of phytochemical estrogen mimics from dietary herbal supplements. Silico Pharmacol 3:4

    Article  Google Scholar 

  • POWO (2019) Plants of the world online. Facilitated by the Royal Botanic Gardens, Kew. Published on the internet http://www.plantsoftheworldonline.org/. Retrieved on 04 Aug 2020

  • Prakash D, Gupta Ch (2014) Role of phytoestrogens as nutraceuticals in human health. In: Prakash D, Sharma G (eds) Phytochemicals of nutraceutical importance. CABI International, Boston, pp 148–149

    Chapter  Google Scholar 

  • Prieur AA, Swihart RK (2020) Palatability of common cover crops to voles (Microtus). Crop Prot 133:105141

    Article  Google Scholar 

  • Raju KSR, Kadian N, Taneja I et al (2015) Phytochemical analysis of isoflavonoids using liquid chromatography coupled with tandem mass spectrometry. Phytochem Rev 14(3):469–498

    Article  CAS  Google Scholar 

  • Rebāne A, Grauda D, Rancāne S et al (2016) Use of biotechnology methods in red clover (Trifolium pratense L.) breeding. In: Proceedings of the scientific and practical conference harmonious agriculture, Feb 25–26, 2016, Jelgava. Latvia University of Agriculture, pp 102–106

    Google Scholar 

  • Reckling M, Bergkvist G, Watson CA et al (2020) Re-designing organic grain legume cropping systems using systems agronomy. Eur J Agron 112:125951

    Article  Google Scholar 

  • Řepková J, Jungmannová B, Jakešová H (2003) Interspecific hybridisation prospects in the genus Trifolium. Czech J Genet Plant Breed 39:306–308

    Google Scholar 

  • Rochester JR, Millam JR (2009) Phytoestrogens and avian reproduction: exploring the evolution and function of phytoestrogens and possible role of plant compounds in the breeding ecology of wild birds. Comp Biochem Phys A 154(3):279–288

    Article  CAS  Google Scholar 

  • Rochester JR, Klasing KC, Stevenson L et al (2009) Dietary red clover (Trifolium pratense) induces oviduct growth and decreases ovary and testes growth in Japanese quail chicks. Reprod Toxicol 27(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Roskov Y, Zarucchi J, Novoselova M, Bisby F (eds.) (2019) ILDIS world database of legumes (version 12, May 2014). In: Roskov Y, Ower G, Orrell T et al (eds) Species 2000 & ITIS catalogue of life, 2019 annual checklist. Digital resource at www.catalogueoflife.org/annual-checklist/2019. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-884X

  • Rundlöf M, Lundin O, Bommarco R (2018) Annual flower strips support pollinators and potentially enhance red clover seed yield. Ecol Evol 8(16):7974–7985

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabudak T, Guler N (2009) Trifolium L.—a review on its phytochemical and pharmacological profile. Phytother Res 23:439–446

    Article  CAS  PubMed  Google Scholar 

  • Saviranta NM, Anttonen MJ, Wright A et al (2008) Red clover (Trifolium pratense L) isoflavones: determination of concentrations by plant stage flower colour plant part and cultivar. J Sci Food Agric 88(1):125–132

    Article  CAS  Google Scholar 

  • Sawai A, Ueda S, Gau M, Uchiyama K (1990) Interspecific hybrids of Trifolium medium L. × 4x T. pratense obtained through embryo culture. J Japan Grassl Sci 35:267–272

    Google Scholar 

  • Schipanski ME, Drinkwater LE (2010) Nitrogen fixation of red clover interseeded with winter cereals across a management-induced fertility gradient. Nutr Cycl Agroecos 90:105–119

    Article  Google Scholar 

  • Schrepfer S, Deuse T, Münze T et al (2006) The selective estrogen receptor-β agonist biochanin A shows vasculoprotective effects without uterotrophic activity. Menopause 13(3):489–499

    Article  PubMed  Google Scholar 

  • Shakeri F, Taavoni S, Goushegir A, Haghani H (2015) Effectiveness of red clover in alleviating menopausal symptoms: a 12-week randomized, controlled trial. Climacteric 18(4):568–573

    Article  CAS  PubMed  Google Scholar 

  • Simonet AM, Stochmal A, Oleszek W et al (1999) Saponins and polar compounds from Trifolium resupinatum. Phytochemistry 51(8):1065–1067

    Article  CAS  Google Scholar 

  • Smýkal P, Coyne CJ, Ambrose MJ et al (2015) Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Plant Sci 34(1–3):43–104

    Article  Google Scholar 

  • Spagnuolo P, Rasini E, Luini A et al (2014) Isoflavone content and estrogenic activity of different batches of red clover (Trifolium pratense L) extracts an in vitro study in MCF-7 cells. Fitoterapia 94:62–69

    Article  CAS  PubMed  Google Scholar 

  • Stanger TF, Lauer JG (2008) Corn grain yield response to crop rotation and nitrogen over 35 years. Agron J 100:643–650

    Article  CAS  Google Scholar 

  • Taujenis L, Padarauskas A, Mikaliuniene J et al (2015) Identification of isoflavones and their conjugates in red clover by liquid chromatography coupled with DAD and MS detectors. Chemija 26(2):107–112

    CAS  Google Scholar 

  • Tava A, Ramella D, Grecchi M et al (2009) Volatile constituents of Trifolium pratense and T. repens from NE Italian alpine pastures. Nat Prod Commun 4(6):1934578X0900400619

    Google Scholar 

  • Tava A, Pecio Ł, Stochmal A, Pecetti L (2015) Clovamide and flavonoids from leaves of Trifolium pratense and T. pratense subsp. nivale grown in Italy. Nat Prod Commun 10(6): 1934578X1501000635

    Google Scholar 

  • Taylor NL (2008) A century of clover breeding developments in the United States. Crop Sci 48:1–13

    Article  Google Scholar 

  • Taylor NL, Smith RR (1979) Red clover breeding and genetics. Adv Agron 31:125–154

    Article  Google Scholar 

  • Taylor NL, Stroube WH, Collins GB et al (1963) Interspecific hybridization of red clover (Trifolium pratense L.). Crop Sci 3:549–552

    Article  Google Scholar 

  • The Plant List (2013) Version 1.1. Published on the internet; http://www.theplantlist.org/. Accessed on 01 Jan

  • Thorup AC, Lambert MN, Kahr HS et al (2015) Intake of novel red clover supplementation for 12 weeks improves bone status in healthy menopausal women. Evid Based Compl Alt. Article ID 689138:11 pages

    Google Scholar 

  • Tsao R, Papadopoulos Y, Yang R et al (2006) Isoflavone profiles of red clovers and their distribution in different parts harvested at different growing stages. J Agric Food Chem 54(16):5797–5805

    Article  CAS  PubMed  Google Scholar 

  • Tundis R, Marrelli M, Conforti F et al (2015) Trifolium pratense and T. repens (Leguminosae): Edible flower extracts as functional ingredients. Foods 4(3):338–48

    Google Scholar 

  • Tutin TG, Heywood VH, Burges NA et al (1968) Flora Europaea. In: Rosaceae to Umbelliferae, vol 2. Cambridge University Press, Cambridge, pp 157–168

    Google Scholar 

  • USDA Agricultural Research Service (2015) Germplasm Resources Information Network (GRIN). Ag Data Commons. https://doi.org/10.15482/USDA.ADC/1212393

  • Van Duursen MB, Smeets EE, Rijk JC, Nijmeijer SM, van den Berg M (2013) Phytoestrogens in menopausal supplements induce ER-dependent cell proliferation and overcome breast cancer treatment in an in vitro breast cancer model. Toxicol Appl Pharmacol 269(2):132–140

    Article  PubMed  CAS  Google Scholar 

  • Villaseca P (2012) Non-estrogen conventional and phytochemical treatments for vasomotor symptoms: what needs to be known for practice. Climacteric 15:115–124

    Article  CAS  PubMed  Google Scholar 

  • Vitale DC, Piazza C, Melilli B et al (2013) Isoflavones: estrogenic activity, biological effect and bioavailability. Eur J Drug Metab Pharmacokinet 38:15–25

    Article  CAS  PubMed  Google Scholar 

  • Vlaisavljević S, Kaurinović B, Popović M, Vasiljević S (2017) Profile of phenolic compounds in Trifolium pratense L. extracts at different growth stages and their biological activities. Int J Food Prop 20(12):3090–3101

    Google Scholar 

  • Widyarini S, Spinks N, Husband AJ, Reeve VE (2001) Isoflavonoid compounds from red clover (Trifolium pratense) protect from inflammation and immune suppression induced by UV radiation. Photochem Photobiol 74(3):465–470

    Article  CAS  PubMed  Google Scholar 

  • Woods NF, Mitchell ES (2005) Symptoms during perimenopause: prevalence, severity, trajectory, and significance. Am J Med 118(12B):14–24

    Article  PubMed  Google Scholar 

  • Wu Q, Wang M, Simon JE (2003) Determination of isoflavones in red clover and related species by high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection. J Chromatogr A 1016(2):195–209

    Article  CAS  PubMed  Google Scholar 

  • Wyngaarden SL, Gaudin A, Deen W, Martin RC (2015) Expanding red clover (Trifolium pratense) usage in the corn-soy-wheat rotation. Sustainability 7:15487–15509

    Article  Google Scholar 

  • Xiao P, Zheng B, Sun J et al (2017) Biochanin A induces anticancer effects in SK-Mel-28 human malignant melanoma cells via induction of apoptosis inhibition of cell invasion and modulation of NF-κB and MAPK signaling pathways. Oncol Lett 14(5):5989–5993

    PubMed  PubMed Central  Google Scholar 

  • Yu C, Zhang P, Lou L, Wang Y (2019) Perspectives on the role of biochanin A in human. Front Pharmacol 10:793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakłos-Szyda M, Budryn G (2020) The effects of Trifolium pratense L sprouts’ phenolic compounds on cell growth and migration of MDA-MB-231 MCF-7 and HUVEC cells. Nutrients 12(1):257

    Article  PubMed Central  CAS  Google Scholar 

  • Zgórka G (2011) Studies on phytoestrogenic and nonphytoestrogenic compounds in Trifolium incarnatum L. and other clover species using pressurized liquid extraction and high performance column liquid chromatography with photodiode-array and fluorescence detection. J AOAC Int 94(1):22–31

    Google Scholar 

  • Zhou R, Xu L, Ye M et al (2014) Formononetin inhibits migration and invasion of MDA-MB-231 and 4T1 breast cancer cells by suppressing MMP-2 and MMP-9 through PI3K/AKT signaling pathways. Horm Metab Res 46(11):753–760

    Article  CAS  PubMed  Google Scholar 

  • Żuk-Gołaszewska K, Purwin C, Pysera B et al (2010) Yields and quality of green forage from red clover di- and tetraploid forms. J Elementol 15(4):757–770

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grażyna Zgórka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zgórka, G., Maciejewska-Turska, M. (2021). Cultivation and Utilization of Red Clover (Trifolium pratense L.). In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Medicinal Plants. Sustainable Development and Biodiversity, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-74779-4_10

Download citation

Publish with us

Policies and ethics