Skip to main content

Parsnip (Pastinaca sativa L.) Breeding for the Future

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Vegetable Crops

Abstract

Parsnip (Pastinaca sativa L.) is a monocarpic perennial typically grown as a biennial crop. A member of the Apiaceae family, it can be found throughout northern temperate regions and is grown for both human consumption and livestock feed. Today, parsnip maintains a niche position within the vegetable market, with demand growing year on year. Described as a sweet and starchy root crop, it contains a number of health-promoting compounds such as carbohydrate, sugar and fiber as well as essential vitamins and minerals including calcium, potassium, vitamin C, thiamine and riboflavin etc. In addition to these beneficial compounds, parsnip leaves also contain furanocoumarins; these secondary plant metabolites not only play a role in predator and disease defense but are also highly toxic. The cause of phytophotodermatitis, these compounds can bind with DNA and absorb energy in the presence of UVA light. It is for this reason parsnip foliage and wild parsnips are often considered invasive noxious weeds. Parsnips are propagated by seed, typically in spring, with root harvest occurring from 5 months after sowing. Although cultivated and wild parsnip are not considered genetically distinct, modern agriculture practices have led to a dependence on a small selection of domesticated species. With increasing challenges from pests and disease as well as changing habitats and global warming, there is a need to develop new parsnip varieties. In this chapter, we present an overview of the origin, distribution, economic importance, taxonomic position, crop cultivation practices and challenges as well as recent developments in molecular breeding and biotechnology and how these new technologies can be used to develop improved, sustainable parsnip varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquaah G (2015) Conventional plant breeding principles and techniques. In: Al-Khayri J, Jain S, Johnson D (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer, Cham, pp 115–158

    Chapter  Google Scholar 

  • Averill KM, DiTommaso A (2007) Wild parsnip (Pastinaca sativa): a troublesome species of increasing concern. Weed Technol 21(1):279–287

    Article  Google Scholar 

  • Bailey LH (1951) Manual of cultivated plants most commonly grown in the continental United States and Canada. Macmillan, New York

    Google Scholar 

  • Beejan PHF, Nowbuth R (2018) Study to determine the growth reduction Dose 50 (GR50) for gamma rays induced mutagenesis in carrot (Daucus Carota L.). Poster presented at the International Symposium on Plant Mutation Breeding and Biotechnology, IAEA-CN-263, International Atomic Energy Agency (IAEA)

    Google Scholar 

  • Berenbaum MR, Zangerl AR, Nitao JK (1984) Furanocoumarins in seeds of wild and cultivated parsnip. Phytochemistry 23(8):809–1810

    Article  Google Scholar 

  • Berenbaum MR, Zangerl AR, Nitao JK (1986) Constraints on chemical coevolution: wild parsnips and the parsnip webworm. Evolution 40(6):1215–1228

    Article  CAS  PubMed  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304(5922):184

    Article  CAS  Google Scholar 

  • Bhatia S, Sharma K, Dahiya R, Bera T (2015) Modern applications of plant biotechnology in pharmaceutical sciences. Elsevier/Academic, Cambridge MA, pp 194–206

    Google Scholar 

  • Bouchez D, Höfte H (1998) Functional genomics in plants. Plant Physiol 118(3):725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breseghello F, Coelho ASG (2013) Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). J Agric Food Chem 61(35):8277–8286

    Article  CAS  PubMed  Google Scholar 

  • Brookes P, Lawley PD (1961) The reaction of mono- and di-functional alkylating agents with nucleic acids. Biochem J 80(3):496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown A, Nourish WH, Fletcher JT (1964) The effect of spacing and time of sowing on the incidence of parsnip canker. J Hortic Sci 39(2):103–110

    Article  Google Scholar 

  • Buckman J (1865) Science and practice in farm cultivation, vol 1. R. Hardwicke, Library of Alexandria, London, pp 2–15

    Book  Google Scholar 

  • CABI (2019) Invasive species compendium: Pastinaca sativa (parsnip). CAB International, Wallingford. https://www.cabi.org/isc/datasheet/39028#top-page. Accessed July 2019

  • Cain N, Darbyshire SJ, Francis A et al (2010) The biology of Canadian weeds. 144. Pastinaca sativa L. Can J Plant Sci 90(2):217–240

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Maatougui et al (2010) Plant breeding and climate changes. J Agric Sci 148(6):627–637

    Article  Google Scholar 

  • Channon AG (1963) Studies on parsnip canker: I. The causes of the diseases. Ann Appl Biol 51(1):1–15

    Article  Google Scholar 

  • Channon AG (1964) Studies on parsnip canker: III. The effect of sowing date and spacing on canker development. Ann Appl Biol 54(1):63–70

    Article  Google Scholar 

  • Chappell LHK, Barker GC, Kennedy S, Clarkson JP (2021a) The causes of parsnip canker and characterization of two parsnip pathogens; Cylindrocarpon destructans and Mycocentrospora acerina. In preparation

    Google Scholar 

  • Chappell LHK, Clarkson JP, Kennedy S, Barker GC (2021b) Characterisation of resistance in Pastinaca sativa (parsnip) to three fungal pathogens; Itersonilia pastinacae, Mycocentrospora acerina and Cylindrocarpon destructans. In preparation

    Google Scholar 

  • Clapham AR, Tutin TG, Warburg EF (1962) Flora of the British Isles, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Conners IL (1967) An annotated index of plant diseases in Canada and fungi recorded on plants in Alaska, Canada and Greenland. Publ Res Br Canada Dept Agric 1251:381

    Google Scholar 

  • Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. PNAS 92(14):6602–6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirmenci T (2008) A new species of Pastinaca L. (Apiaceae) from Turkey. Bot J Linn Soc 158(2):296–300

    Article  Google Scholar 

  • Ferrie AM, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Cult 104:301–309

    Article  Google Scholar 

  • Ferrie AM, Mykytyshyn ML, Bethune T (2011) Methods for producing microspore derived doubled haploid apiaceae. U.S. Patent 7,923,248

    Google Scholar 

  • Grieve M (1931) A modern herbal. The medicinal, culinary, cosmetic and economic properties, cultivation and folk-lore of herbs, grasses, fungi, shrubs and trees with all their modern scientific uses. Jonathon Cape, Toronto

    Google Scholar 

  • Gross BL, Olsen KM (2010) Genetic perspectives on crop domestication. Trends Plant Sci 15(9):529–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkes JG, Francisco-Ortega J (1993) The early history of the potato in Europe. Euphytica 70(1–2):1–7

    Article  Google Scholar 

  • Hendrick UP (1919) Sturtevant’s notes on edible plants. J.B. Lyon, Albany

    Google Scholar 

  • Hendrix SD (1984) Variation in seed weight and its effects on germination in Pastinaca sativa L. (Umbelliferae). Am J Bot 71(6):795–802

    Article  Google Scholar 

  • Hicks RGT, Smith TJ, Edwards RP (1986) Effects of strawberry latent ringspot virus on the development of seeds and seedlings of Chenopodium quinoa and Pastinaca sativa (parsnip). Seed Sci Technol 14(2):409–417

    Google Scholar 

  • Ilić ZS, Sunić L (2014) Carbohydrate changes in parsnip (Pastinaca sativa L.) during long-term cold storage. Int Conf Postharvest 1079:667–674

    Google Scholar 

  • Iorizzo M, Ellison S, Senalik D et al (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48(6):657

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G et al (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985. https://doi.org/10.3389/fpls.2018.00985

    Article  PubMed  PubMed Central  Google Scholar 

  • Jogesh T, Peery R, Downie SR, Berenbaum MR (2015) Patterns of genetic diversity in the globally invasive species wild parsnip (Pastinaca sativa). Invasive Plant Sci Manag 8(4):415–429

    Article  CAS  Google Scholar 

  • Kamada H, Harada H (1979) Studies on the organogenesis in carrot tissue cultures I. Effects of growth regulators on somatic embryogenesis and root formation. Z Pflanzenphysiol 91(3):255–266

    Article  CAS  Google Scholar 

  • Keilwagen J, Lehnert H, Berner T et al (2017) The terpene synthase gene family of carrot (Daucus carota L.): identification of QTLs and candidate genes associated with terpenoid volatile compounds. Front Plant Sci 8:1930. https://doi.org/10.3389/fpls.2017.01930

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan TN, Croser JS (2004) Pea | Overview. In: Wrigley C (ed) Encyclopedia of grain science. Elsevier, London, pp 418–427

    Chapter  Google Scholar 

  • Kharkwal MC, Shu Q, Shu QY (2009) Induced plant mutations in the genomics era. FAO, Rome

    Google Scholar 

  • Klimek-Chodacka M, Oleszkiewicz T, Lowder LG et al (2018) Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37(4):575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloppenburg J, Kleinman DL (1987) The plant germplasm controversy. Bioscience 37(3):190–198

    Article  Google Scholar 

  • Lamkey K, Edwards JW (1999) Quantitative genetics of heterosis. Agron Conf Proc Present 65:35–40

    Google Scholar 

  • Laser KD, Lersten NR (1972) Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot Rev 38(3):425–454

    Article  Google Scholar 

  • Laws B (2004) Spade, skirret and parsnip. The curious history of vegetables. Sutton Publishing Limited, Gloucestershire, pp 40–54

    Google Scholar 

  • Lee K, Berenbaum MR (1990) Defense of parsnip webworm against phototoxic furanocoumarins: role of antioxidant enzymes. J Chem Ecol 16(8):2451–2460

    Article  CAS  PubMed  Google Scholar 

  • Maćkowska K, Jarosz A, Grzebelus E (2014) Plant regeneration from leaf-derived protoplasts within the Daucus genus: effect of different conditions in alginate embedding and phytosulfokine application. Plant Cell Tissue Organ Cult 117(2):241–252

    Article  CAS  Google Scholar 

  • Mandal BB (1999) Conservation biotechnology of endemic and other economically important plant species of India. In: Benson EE (ed) Plant conservation biotechnology. Taylor and Francis, Oxfordshire, pp 211–223

    Google Scholar 

  • Marchi N, Caron M, Bradley P (2018) Parsnip plants (Pastinaca sativa) and carrot plants (Daucus carota) can regenerate from cultured callus cells in mixed co-cultures. Biology Department, Worcester State University, Worcester. https://slideplayer.com/slide/12772602/. Accessed July 2019

  • McGee H (1984) On food and cooking: the science and lore of the kitchen. Simon and Schuster, New York, pp 21–63

    Google Scholar 

  • McNabola S, Kitto SL (1989) Tissue culture of carrot roots. Am Biol Teach 51(3):165–167

    Article  Google Scholar 

  • McPherson GM et al (2013) Parsnip: an improved understanding of root blemishes and their prevention. AHDB final report, FV366, pp 5–16

    Google Scholar 

  • Melough MM et al (2017) Identification and quantification of furocoumarins in popularly consumed foods in the U.S. using QuEChERS extraction coupled with UPLC-MS/MS analysis. J Agric Food Chem 65(24):5049–5055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melough MM, Cho E, Chun OK (2018) Furocoumarins: a review of biochemical activities, dietary sources and intake, and potential health risks. Food Chem Toxicol 113:99–107

    Article  CAS  PubMed  Google Scholar 

  • Menemen Y, Jury SL (2001) A taxonomic revision of the genus Pastinaca L. (Umbelliferae). Isr J Plant Sci 49(1):67–77

    Article  Google Scholar 

  • Miller PD, Vaughn KC, Wilson KG (1980) Induction, ultrastructure, isolation, and tissue culture of chlorophyll mutants in carrot. In Vitro 16(10):823–828

    Article  Google Scholar 

  • Miller PD, Vaughn KC, Wilson KG (1984) Ethyl methanesulfonate-induced chloroplast mutagenesis in crops: induction and ultrastructure of mutants. J Hered 75(2):86–92

    Article  CAS  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147(3):969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munakata R, Olry A, Karamat F et al (2016) Molecular evolution of parsnip (Pastinaca sativa) membrane-bound prenyltransferases for linear and/or angular furanocoumarin biosynthesis. New Phytol 211(1):332–344

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray RDH, Méndez J, Brown SA (1982) The natural coumarins. Wiley, New York, pp 76–124

    Google Scholar 

  • Neuffer MG, Ficsor G (1963) Mutagenic action of ethyl methanesulfonate in maize. Science 139(3561):1296–1297

    Article  CAS  PubMed  Google Scholar 

  • Nowbuth RD, Cahoolessur N, Seewoogoolam R (2018) Application of gamma irradiation for the improvement of cauliflower, cabbage and carrot in Mauritius. Poster presented at the International Symposium on Plant Mutation Breeding and Biotechnology, IAEA-CN-263, International Atomic Energy Agency (IAEA)

    Google Scholar 

  • Ohara Y, Tashiro Y, Mizutani T, Miyazaki S (1995) Effects of conditioned medium and nurse culture on low density culture of Apiaceae protoplasts. Plant Tissue Cult Lett 12(1):68–72

    Article  Google Scholar 

  • Okagaki RJ, Neuffer MG, Wessler SR (1991) A deletion common to two independently derived waxy mutations of maize. Genetics 128(2):425–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N et al (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16

    Article  CAS  Google Scholar 

  • Osman AMG, Chittiboyina AG, Khan IA (2013) Plant toxins. In: Reimann HP, Cliver DO (eds) Foodborne infections and intoxications. Academic/Elsevier, Cambridge, MA, pp 435–451

    Chapter  Google Scholar 

  • Osterman-Golkar S, Ehrenberg L, Wachtmeister CA (1970) Reaction kinetics and biological action in barley of mono-functional methanesulfonic esters. Int J Radiat Biol 10(4):303–327

    CAS  Google Scholar 

  • Ostertag E et al (2002) Effects of storage conditions on furanocoumarin levels in intact, chopped, or homogenized parsnips. J Agric Food Chem 50:2565–2570

    Article  CAS  PubMed  Google Scholar 

  • Pant B, Manandhar S (2007) In vitro propagation of carrot (Daucus Carota) L. Sci World 5(5):51–53

    Article  Google Scholar 

  • Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124(3):735–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai SK, Arora NEHA, Pandey NEHA et al (2012) Nutraceutical enriched vegetables: molecular approaches for crop improvement. Int J Pharm Chem Biol Sci 3(2):363–379

    Google Scholar 

  • Ricroch A, Clairand P, Harwood W (2017) Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci 1(2):169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley G (1995) Parsnips: now you see them – now you don’t. In: H Walker (ed) Disappearing foods: studies in foods and dishes at risk. Proc Oxford Symp Food Cookery 1994. Prospect Books, Oxford Symposium

    Google Scholar 

  • Roselli S, Olry A, Vautrin S et al (2017) A bacterial artificial chromosome (BAC) genomic approach reveals partial clustering of the furanocoumarin pathway genes in parsnip. Plant J 89(6):1119–1132

    Article  CAS  PubMed  Google Scholar 

  • Rubatzky VE, Yamaguchi M (2012) Carrot, celery and other vegetable umbels. In: World vegetables: principles, production, and nutritive values. Springer, Berlin, pp 418–456

    Google Scholar 

  • Sega GA (1984) A review of the genetic effects of ethyl methanesulfonate. Mutat Res Genet Toxicol Environ Mutagen 134(2–3):113–142

    Article  CAS  Google Scholar 

  • Sharma KA, Ghosh C (1954) Cytogenetics of some of the Indian Umbellifers. Genetics 27:17–44

    CAS  Google Scholar 

  • Silver L (2001) Inbreeding depression. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, Elsevier, pp 1016–1023

    Google Scholar 

  • Simon PW (2019) Classical and molecular carrot breeding. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The carrot genome. Springer, Cham, pp 137–147

    Chapter  Google Scholar 

  • Singer B (1982) Mutagenesis from a chemical perspective: nucleic acid reactions, repair, translation, and transcription. In: Lemontt JF, Generoso WM (eds) Molecular and cellular mechanisms of mutagenesis. Springer, Boston, pp 1–42

    Google Scholar 

  • Sink KC (1992) Somatic cell hybridization. In: Jain RK, Chowdhury JB (eds) Distant hybridization of crop plants. Springer, Berlin, pp 168–198

    Chapter  Google Scholar 

  • Snow AA, Moran-Palma P, Rieseberg LH et al (1998) Fecundity, phenology, and seed dormancy of F1 wild–crop hybrids in sunflower (Helianthus annuus, Asteraceae). Am J Bot 85(6):794–801

    Article  CAS  PubMed  Google Scholar 

  • Somner TG, Jillson OF (1967) Phytophotodermatitis gas plant and the wild parsnip. New Engl J Med 276:1484

    Article  Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW et al (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132(3):823–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surhone LM, Tennoe MT, Hennssonow SF (2011) Orris root. Betascript Publishing, Beau Basin

    Google Scholar 

  • Tan F, Shen H, Wang S et al (2009) Preliminary study of asymmetric protoplast fusion between celery (Apium graveolens L.) and CMS carrot (Daucus carota L.). Acta Hortic Sin 36(8):1169–1176

    CAS  Google Scholar 

  • Tavares AC, Salgueiro LR, Canhoto JM (2010) In vitro propogation of the wild carrot Daucus carota L. subsp. halophilus (Brot.) A. Pujadas for conservation purposes. In Vitro Cell Dev Plant 46:47–56

    Article  Google Scholar 

  • Trager J (1970) The food book. Avon Books, New York, pp 25–54

    Google Scholar 

  • USDA National Nutrient Database for Standard Reference 1 April (2018) Software v.3.9.5.3_2019-06-13. https://ndb.nal.usda.gov/ndb/foods/show/11298?man=&lfacet=&count=&max=&qlookup=&offset=&sort=&format=Abridged&reportfmt=other&rptfrm=&ndbno=&nutrient1=&nutrient2=&nutrient3=&subset=&totCount=&measureby=&Qv=1&Q327768=1&Qv=100&Q327768=1. Accessed July 2019

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27(9):522–530

    Article  CAS  PubMed  Google Scholar 

  • Velemínský J, Zadražil S, Pokorný V et al (1973) Storage effect in barley changes in the amount of DNA lesions induced by methyl and ethyl methanesulphonates. Mutat Res Fundam Mol Mech Mutagen 19(1):73–81

    Article  Google Scholar 

  • Wheatley GA, Freeman GH (1982) A method of using the proportions of undamaged carrots or parsnips to estimate the relative population densities of carrot fly (Psila rosae) larvae, and its practical applications. Ann Appl Biol 100(2):229–244

    Article  Google Scholar 

  • Wilkinson RE (1952) Parsnip canker is caused by Itersonilia sp. Phytopathology 42:23–25

    Google Scholar 

  • Xu ZS, Tan HW, Wang F et al (2014) CarrotDB: a genomic and transcriptomic database for carrot. Database, 2014

    Google Scholar 

  • Xu Z, Feng K, Xiong A (2019) CRISPR/Cas9-mediated multiply targeted mutagenesis in orange and purple carrot plants. Mol Biotechnol 61(3):191–199

    Article  CAS  PubMed  Google Scholar 

  • Zangerl AR, Arntz AM, Berenbaum MR (1997) Physiological price of an induced chemical defense: photosynthesis, respiration, biosynthesis, and growth. Oecologia 109(3):433–441

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren H. K. Chappell .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: List of Major Institutes Engaged in Research on Parsnip (Pastinaca sativa )

Institute name

Research activities

Website

Warwick Crop Centre, The University of Warwick

Characterisation of parsnip pathogens and breeding for disease resistance

https://warwick.ac.uk/fac/sci/lifesci/wcc/

Abteilung Pharmakognosie, Institut für Pharmazie der Universität Innsbruck

Polyacetylenes from the Apiaceae vegetables

https://www.uibk.ac.at/pharmazie/index.html.en

Tiroler Krebsforschungsinstitut

Polyacetylenes from the Apiaceae vegetables

https://www.tkfi.at/

Institut für Organische Chemie der Universität Innsbruck

Polyacetylenes from the Apiaceae vegetables

https://www.uibk.ac.at/organic/

Agriculture and Horticulture Development Board (AHDB)

Levy funded research including variety testing, disease resistance

https://horticulture.ahdb.org.uk/

Department of Entomology, University of Illinois

Furanocoumarin chemistry in wild parsnips and effects on insects

https://sib.illinois.edu/profile/maybe

Biology Department, Worcester State University

Parsnip regeneration from cultured callus cells in mixed cocultures

https://www.worcester.edu/Biology/

Balikesir University, Balikesir

Identification of new species of Pastinaca L. from Turkey

http://www.balikesir.edu.tr/index.php/baun_eng/birim/fen_bilimleri_enstitusu

Department of Crop and Soil Sciences, Cornell University

Wild parsnip as an invasive weed

https://scs.cals.cornell.edu/

National Research Council, Saskatoon

Wild parsnip

https://nrc.canada.ca/en?pedisable=true

CABI, Bakeham Lane, Egham

Parsnip as an invasive species

https://www.invasive-species.org/

Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere

Functional genomics of furanocoumarin pathway

http://www.rish.kyoto-u.ac.jp/others_e/members_field/#LPGE

Laboratoire Agronomie et Environnement, INRA

Parsnip genome and microarray

https://cnrgv.toulouse.inra.fr/en/Library/Parsnip

1.2 Appendix II: Parsnip Germplasm Resources

1.2.1 Parsnip Germplasm Resources in North America

Cultivar

Important traits

Cultivation location

Pastinaca sativa

Wild type, origin Slovakia (PI 652097)

NC7 –Iowa State Univ

P. sativa

Wild type, origin Georgia (PI 652098)

NC7 –Iowa State Univ

P. sativa

Wild type, North Korea (PI 0652099)

NC7 –Iowa State Univ

P. sativa

Wild type, Poland (PI 652112)

NC7 –Iowa State Univ

P. sativa

Wild type, origin Georgia (PI 652113)

NC7 –Iowa State Univ

P. sativa

Wild type, origin Georgia (PI 652114)

NC7 –Iowa State Univ

P. sativa

Wild type, United States (PI 652115)

NC7 –Iowa State Univ

P. sativa

Wild type, Romania (PI 652116)

NC7 –Iowa State Univ

  1. Source: USDA U.S. National Plant Germplasm System

1.2.2 Parsnip Germplasm Resources in Europe

Institute name

Institute code

Country

Number of accessions

Arche Noah Association, Schiltern

AUT046

Austria

6

Genetic Resources Institue, Baku

AZE015

Azerbaijan

3

Gembloux agro-biotech, Université de Liège

BEL002

Belgium

1

Institute for Plant Genetic Resources ‘K. Malkov’, Sadovo

BGR001

Bulgaria

9

Institute of Rose and Essential-oil plants, Kazanlak

BGR005

Bulgaria

2

Faculty of Agriculture, University of Zagreb

HRV041

Croatia

4

College of Agriculture at Križevci

HRV044

Croatia

1

Gene Bank, Prague 6-Ruzyne

CZE122

Czech Republic

14

Botanical Garden Berlin-Dahlem, Berlin

DEU022

Germany

7

Genebank, Liebniz Institute of Plant Genetics and Crop Plant Research, Gatersleben

DEU146

Germany

48

Botanical Garden of the University of Osnabrück

DEU502

Germany

17

Botanischer Versuchs- und Lehrgarten der Univeritaet Regensburg

DEU515

Germany

7

Pädagogische Hochschule Karlsruhe

DEU626

Germany

10

Institute for Agrobotany, Tápiószele

HUN003

Hungary

44

Department of Agriculture, Fisheries and Food, Liexlip

IRL029

Ireland

1

Nordic Genetic Resource Centre, Alnarp

SWE054

Sweden

5

Faculty of Agriculture, University Ss. Cyril and Methodius, Skopje

MKD001

Macedonia

4

Plant Breeding and Acclimatization Institute, Blonie

POL003

Poland

26

Portuguese Bank of Plant Germplasm, Braga

PRT001

Portugal

1

Suceava Genebank, Suceava

ROM007

Romania

15

Gobierno de Aragón, Centro de Investigación y Technología

ESP027

Spain

17

Junta de Castilla y León

ESP109

Spain

1

Agroscope Changins, Nyon

CHE001

Switzerland

1

Institute of Volatile Oil Bearing and Medicine Crops, Crimea

UKR018

Ukraine

1

Research Station of Medicinal Crops, Crimea

UKR019

Ukraine

1

Institute of Vegetable and Melon Growing, Kharkivs’ky r-n

UKR021

Ukraine

6

Nikitskyi Botanical Gardens, Yalta

UKR036

Ukraine

2

Kolomyia Experimental Station, Kolomysi’kyi r-n

UKR075

Ukraine

1

Experimental Station ‘Maiak’, Kruty

UKR81

Ukraine

1

Millennium Seed Bank Project, Royal Botanic Gardens, Wakehurst Place, UK

GBR004

United Kingdom

8

Warwick Genetic Resources Unit, Warwick

GBR006

United Kingdom

57

  1. Source: The European Search Catalogue for Plant Genetics Resources (EURISCO)

1.2.3 Parsnip Genetic Resources Worldwide

DNA bank

Number of accessions

DNA bank accession numbers

Royal Botanic Garden Kew DNA Bank, Richmond, England

1

11559

Botanic Garden and Botanic Museum (BGBM) DNA Bank, Berlin, Germany

1

DB13256

National Herbarium Netherlands DNA Bank (NHNDB), The Netherlands

4

L0893497, L0894890, L0894975, L0896535

  1. Source: DNA Bank accession list from RBG KEW, BGBM and NHNDB

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chappell, L.H.K., Dunford, A.J. (2021). Parsnip (Pastinaca sativa L.) Breeding for the Future. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66965-2_6

Download citation

Publish with us

Policies and ethics