Skip to main content
Log in

The Presence of Azulene on the Surface of Plant Cells as a Test for Ozone Sensitivity

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The reactions to ozone of the surface cells of leaves and needles of five introduced wood species of Sochi National Park in chronic 3-day exposure in total doses of up to 0.05 μL/L have been studied. In secretory structures of silvery or ashen leaves of Eucalyptus cinerea F. Muell. Ex. Benth, we observed noticeable changes in absorbance (fading) and autofluorescence in cells. Blue and silvery needles of Picea pungens Engelm species. cv. Sv, Cedrus atlantica (Endl.) Manetti ex Carrière cv. Argentea, Pinus parviflora Siebold &Zucc. Glauca and leaves of Acacia dealbata Link. were not sensitive to ozone in the above-mentioned reactions. It was shown that the surface layers of the cuticle and cell wall of these plants included azulenes. These pigments are supposed to be primary targets for ozone, and their antioxidant properties determine low sensitivity to ozone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ernst D., Jürgensen M., Bahnweg G., Heller W., Müller-Starck G. 2012. Common links of molecular biology with biochemistry and physiology in plants under ozone and pathogen attack. In: Growth and Defense in Plants. Eds. Matyssek R., Schnyder H., Oßwald W. Heidelberg, New York: Springer, p. 29–51.

    Google Scholar 

  2. Pearson M. 1995. Effects of ozone on growth and gas exchange of Eucalyptus globulus seedlings. Tree Physiology. 15 (3), 207–210.

    Article  CAS  Google Scholar 

  3. Pell E.J., Schlagnhaufer C.D., Arteca R. N. 2006. Ozone-induced oxidative stress: Mechanisms of action and reaction. Phisiologia Plantarum. 100 (2), 264–273.

    Article  Google Scholar 

  4. Roshchina V.V., Roshchina V.D. 2003. Ozone and plant cell. Dordrecht: Kluwer.

    Book  Google Scholar 

  5. Roshchina V. V. 2020. How tropospheric ozone influences the allelopathy of woody species: some experimental approaches. J. Plant Sciences. 8 (4), 71–79.

    Article  Google Scholar 

  6. Roshchina V.V., Soltani G.A. 2020. Effects of ozone (O3) on leaf secretory cell characteristics related to allelopathy of woody plants: Modelling allelopathic interactions. Allelopathy Journal. 51 (2), 209–220.

    Article  Google Scholar 

  7. Roshchina V.V., Khaibulaeva L.M., Prizova N.K., Kuchin A.V., Soltani G.A., Kunyev A.R.2021. Sensitivity to ozone of plant surface cells as sensors. In: Receptors and Intracellular Signaling. Eds. Zinchenko V.P. and Berezhnov A.V., Pushchino 21–23 May 2021. Vol. 2, p. 581–587.

  8. Budantsev A.Yu., Roshchina V.V. 2020. Enzymatic tissue biotests (MAO and AChE biotests) and bioindicators. In: Macro, micro, and nano-biosensors. Eds. Rai, M., Reshetilov, A., Plekhanova, Y., Ingle, A.P. Cham, Switzerland: Springer Int. Publ. Ag., p. 37–55.

  9. Monk R.J., Murray F. 1995. The relative tolerance of some Eucalyptus species to ozone exposure. Water Air Soil Pollut. 85, 1405–1411.

    Article  CAS  Google Scholar 

  10. Townsend A.M., Dochinger L.S. 1982. Relative sensitivity of pine species to ozone. J. Arboriculture. 8 (7), 186–188.

    Google Scholar 

  11. Konovalov D.A. 1995. Natural azulenes. Plant Resources. 31 (1), 101–130.

    Google Scholar 

  12. Roshchina V.V., Melnikova E.V., Spiridonov N.A., Kovaleva L.V. 1995. Azulenes, the blue pigments of pollen. Dokl. Biol. Sci. 340 (1), 93–96.

    Google Scholar 

  13. Roshchina V.V., Melnikova E.V., Yashin V.A., Karnaukhov V.N. 2002. Autofluorescence of intact horsetail spores Equisetum arvense L. in the process of development. Biophysics. 47 (2), 318–324.

    CAS  Google Scholar 

  14. Heilbronner E. 1959. Azulenes. In: Non-benzenoid aromatic compounds. Ed. D.Ginsburg. New York, London: Intersci. Publ. p. 171–276.

    Google Scholar 

  15. Nakagawa S., Katoh K., Kusumi T., Komura H., Nomoto K., Konno H., Huneck S., Takeda R. 1992. Two azulenes produced by liverwort, Calypogeia azurea, during in vitro culture. Phytochemistry. 31 (5), 1667–1670.

    Article  Google Scholar 

  16. Siegel U., Mues R., Dönig R., Eicher Th., Blechschmidt M., Becker H. 1992. Ten azulenes from Plagiochila longispina and Calypogeia azurea. Phytochemistry. 31 (5), 1671–1678.

    Article  CAS  Google Scholar 

  17. Roshchina V.V. 1999. Mechanisms of cell–cell communication. In: Allelopathy Update. Ed. Narwal. S.S., Delhi, Calcutta: Oxford and IBH Publ, Vol. 2, p. 1–25.

  18. Muir R.M., Hansch C. 1961. Azulene derivatives as plant growth regulators. Nature. 190, 741–742.

    Article  CAS  Google Scholar 

  19. Bakun P., Czarczynska-Goslinska B., Goslinski T., Lijewski S. 2021. In vitro and in vivo biological activities of azulene derivatives with potential applications in medicine. Med. Chem. Res. 30, 834–846.

    Article  CAS  Google Scholar 

  20. Shoji T., Okujima T., Ito S. 2020. Development of heterocycle-substituted and fused azulenes in the last decade (2010–2020). Int. J. Mol. Sci. 21, 7087–709.

    Article  CAS  Google Scholar 

  21. Roshchina V.V., Yashin V.A., Vikhlyantsev I.M. 2012. Fluorescence of plant microspores as biosensors. Biochem. (Moscow), Suppl. Series A: Membr. Cell Biol. 6 (1), 105–112.

    Google Scholar 

  22. Löber S., Hübner H., Buschauer A., Sanna F., Argiolas A., Melis M.R., Gmeiner P. 2012. Novel azulene derivatives for the treatment of erectile disfunction. Bioorg. Med. Chem. Lett. 22, 7151–7154.

    Article  Google Scholar 

  23. Sweet L.I., Meier P.G. 1997. Lethal and sublethal effects of azulene and longifolene to microtox R Ceriodaphnia dubia, Daphnia magna, and Pimephales pro-melas. Bull. Environ. Contam. Toxicol. 58, 268–274.

    Article  CAS  Google Scholar 

  24. Sizova N.V. 2012. Composition and antioxidant activity of essential oils containing azulene derivatives. Pharm. Chem. J. 46 (6), 369–371.

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the state program of basic scientific research (GP 14) on the topic (project) 61.3. (0191-2019-0022), registration number AAAA-20-120101390067-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Roshchina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Roshchina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshchina, V.V., Kuchin, A.V., Kunyev, A.R. et al. The Presence of Azulene on the Surface of Plant Cells as a Test for Ozone Sensitivity. Biochem. Moscow Suppl. Ser. A 16, 167–174 (2022). https://doi.org/10.1134/S1990747822010081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747822010081

Keywords

Navigation