Skip to main content

Advertisement

Log in

Myxomycetes in a forest affected by great cormorant colony: a case study in Western Lithuania

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Myxomycete distribution patterns were investigated in a colony of great cormorants (Phalacrocorax carbo sinensis) established in a pine forest in the Curonian Spit, western Lithuania. Ornithogenic impact on the forest resulted both in vegetation changes and altered types and characteristics of myxomycete substrata. The lowest myxomycete species richness was found in the most active part of the colony with the newest and most numerous nests. The myxomycete assemblages of the active part of the colony also showed the biggest differences from the reference zone (oligotrophic pine forest). The general abundance of myxomycetes in the territory of the colony was higher due to the presence of the species that are not characteristic of pine forests. The most abundant species in the territory were Badhamia apiculospora and Perichaena cf. corticalis. Along with other facultative coprophiles, such rare species as Comatricha mirabilis and Arcyria leiocarpa were found sporulating in the colony. The Bray-Curtis ordination revealed a tripole gradient of myxomycete distribution in the colony. It was hypothesized that the first continuum may reflect myxomycete assemblage transition from hypertrophic to oligotrophic habitat; the second continuum may reflect myxomycete assemblage distribution from habitats with limited diversity of available substrata, extreme levels of nutrients and high pH to habitats with high diversity of available substrata, moderate to high levels of nutrients and pH, and the third continuum may reflect myxomycete assemblage distribution from habitats with lower diversity of available substrata, low levels of nutrients and pH to habitats with high diversity of available substrata, moderate to high levels of nutrients and pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrade Bezerra MF, Teofilo da Silva WM, Cavalcanti LH (2008) Coprophilous myxomycetes of Brazil: first report. Rev Mex Micol 27:29–37

    Google Scholar 

  • Breuning-Madsen H, Ehlers-Koch C, Gregersen J, Lund Løjtnant C (2010) Influence of perennial colonies of piscivorous birds on soil nutrient contents in a temperate humid climate. Geografisk Tidsskrift-Danish J Geogr 110(1):25–35

    Google Scholar 

  • Brummitt RK, Powell CE (1992) Authors of plant names. Royal Botanical Gardens, Kew

    Google Scholar 

  • Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species from samples. Version 7.5. User’s guide and application. http://purl.oclc.org/estimates. Accessed 28 July 2012

  • Cox JL (1981) Notes on coprophilous myxomycetes from the Western United States. Mycologia 73:741–747

    Article  Google Scholar 

  • Eliasson U (2012) Coprophilous myxomycetes: recent advances and future research directions. Fungal Divers 56 (in press)

  • Eliasson U, Lundqvist N (1979) Fimicolous myxomycetes. Bot Notiser 132:551–568

    Google Scholar 

  • Eliasson UH, Keller HW (1999) Coprophilous myxomycetes: updated summary, key to species, and taxonomic observations on Trichia brunnea, Arcyria elaterensis, and Arcyria stipata. Karstenia 39:1–10

    Google Scholar 

  • Eräjää S, Halme P, Kotiaho JS, Markkanen A, Toivanen T (2010) The volume and composition of dead wood on traditional and forest fuel harvested clear-cuts. Silva Fenn 44:203–211

    Google Scholar 

  • Galvonaitė A, Misiūnienė M, Valiukas D, Buitkuvienė MS (2007) Lietuvos klimatas. UAB “ARX Baltica”, Vilnius

  • Garcia LV, Maranon T, Ojeda F, Clemente L, Redondo R (2002) Seagull influence on soil properties, chenopod shrub distribution, and leaf nutrient status in semi-arid Mediterranean islands. Oikos 98:75–86

    Article  CAS  Google Scholar 

  • Garcia LV, Ramo C, Aponte C, Moreno A, Dominguez MT, Gomez-Aparicio L, Redondo R, Maranon T (2011) Protected wading bird species threaten relict centenarian cork oaks in a Mediterranean biosphere reserve: a conservation management conflict. Biol Conserv 144:764–771

    Article  Google Scholar 

  • Grime JP, Hodson JG, Hunt R (1988) Comparative plant ecology. A functional approach to common British species. Udwin Hyman, London

    Google Scholar 

  • Härkönen M (1977) Corticolous myxomycetes in three different habitats in southern Finland. Karstenia 17:19–32

    Google Scholar 

  • Härkönen M, Uotila P (1983) Turkish myxomycetes developed in moist chamber cultures. Karstenia 23:1–9

    Google Scholar 

  • Hobara S, Koba K, Osono T, Tokuchi N, Ishida A, Kameda K (2005) Nitrogen and phosphorus enrichment and balance in forests colonized by cormorants: implications of the influence of soil adsorption. Plant Soil 268:89–101

    Article  CAS  Google Scholar 

  • Ishida K (1996) Changes of soil properties in the colonies of the common cormorant, Phalacrocorax carbo. J Forest Res-JPN 1:31–35

    Article  Google Scholar 

  • Jončys F, Paulaitis A (1987) Valstybinio Kuršių nerijos miško parko Juodkrantės girininkijos taksoraštis. Miškotvarka 1987 m. Miško projektas, Kaunas

  • Kabailienė M, Vaikutienė G, Damušytė A, Rudnickaitė E (2009) Post–Glacial stratigraphy and palaeoenvironment of the northern part of the Curonian Spit, Western Lithuania. Quat Int 207(1–2):69–79

    Article  Google Scholar 

  • Kameda K, Koba K, Yoshimizu C, Fujiwara S, Hobara S, Koyama L, Tokuchi N, Takayanagi A (2000) Nutrient flux from aquatic to terrestrial ecosystem mediated by the Great Cormorant. Sylvia 36:54–55

    Google Scholar 

  • Kolb GS, Jerling L, Hambäck PA (2010) The impact of cormorants on plant–arthropod food webs on their nesting islands. Ecosystems 13:353–366

    Article  CAS  Google Scholar 

  • Kosheleva AP, Novozhilov YK, Schnittler M (2008) Myxomycete diversity of the state reserve “Stolby” (south-eastern Siberia, Russia). Fungal Divers 31:45–62

    Google Scholar 

  • Lado C (2005–2012) An on line nomenclatural information system of Eumycetozoa. http://www.nomen.eumycetozoa.com. Accessed 20 June 2012

  • Laiviņš M, Čekstere G (2008) Kolonijās ligzdojošo zivju gārņu (Ardea cinerea) un jūraskraukļu (Phalacrocorax carbo) ietekme uz Latvijas ezera salu augu valsti un augsnēm. Mežzinatne 18(51):74–84

    Google Scholar 

  • Mandeel QA, Blackwell M (2008) Rare or rarely recorded? Comatricha mirabilis from the desert of Bahrain. Mycologia 100(5):742–745. doi:10.3852/07-154

    Article  PubMed  Google Scholar 

  • McCune B, Mefford J (1999) Multivariate analysis of ecological data, PC-ORD Version 4.01. MjM Software, Gleneden Beach, Oregon

  • Nannenga-Bremekamp NE (1991) A guide to temperate myxomycetes. Biopress Limited, Bristol

    Google Scholar 

  • Novozhilov YK, Schnittler M (2008) Myxomycete diversity and ecology in arid regions of the Great Lake Basin of western Mongolia. Fungal Divers 30:97–119

    Google Scholar 

  • Novozhilov YK, Schnittler M, Zemlianskaya IV, Fefelov KA (2000) Biodivesrity of plasmodial slime moulds (Myxogastria): measurement and interpretation. Protistology 1(4):161–178

    Google Scholar 

  • Novozhilov YK, Mitchell DW, Schnittler M (2003) Myxomycete biodiversity of the Colorado Plateau. Mycol Prog 2(4):243–258

    Article  Google Scholar 

  • Osono T, Hobara S, Fujiwara S, Koba K, Kameda K (2002) Abundance, diversity and species composition of fungal communities in a temperate forest affected by excreta of the Great Cormorant Phalacrocorax carbo. Soil Biol Biochem 34:1537–1547

    Article  CAS  Google Scholar 

  • Osono T, Hobara S, Koba K, Kameda K, Takeda H (2006) Immobilization of avian excreta-derived nutrients and reduced lignin decomposition in needle and twig litter in a temperate coniferous forest. Soil Biol Biochem 38:517–525

    Article  CAS  Google Scholar 

  • Sato K, Sugimori H (1986) Research for mutual prosperity of human and wildlife. Report of Toyota Financial Group (85-II-114) (in Japanese)

  • Schnittler M, Stephenson SL (2002) Inflorescences of Neotropical herbs as a newly discovered microhabitat for myxomycetes. Mycologia 94(1):6–20

    Article  PubMed  Google Scholar 

  • Stephenson SL (2011) From morphological to molecular: studies of myxomycetes since the publication of the Martin and Alexopoulos (1969) monograph. Fungal Divers 50:21–34

    Article  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients. Wiley, New York

    Google Scholar 

  • Unterseher M, Schnittler M, Dormann C, Sickert A (2008) Application of species richness estimators for the assessment of fungal diversity. FEMS Microbiol Lett 282:205–213

    Article  PubMed  CAS  Google Scholar 

  • Zak JC, Willig MR (2004) Analysis and interpretation of fungal biodiversity patterns. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, Burlington, pp 59–76

    Chapter  Google Scholar 

  • Źółkóś K, Markowski R (2006) Pressure of the Grey Heron breeding colony (Ardea cinerea) on the phytocoenosis of lowland acidophilous beech forest in the ‘Czapliniec w Wierzysku’ reserve (Kaszubskie Lake District). Biodiv Res Conserv 3–4:337–339

    Google Scholar 

  • Źółkóś K, Meissner W (2008) The effect of Grey Heron (Ardea cinerea L.) colony on the surrounding vegetation and the biometrical features of three undergrowth species. Pol J Ecol 58:65–74

    Google Scholar 

  • Žydelis R, Gražulevičius G, Zarankaitė J, Mečionis R, Mačiulis M (2002) Expansion of the Cormorant (Phalacrocorax carbo sinensis) population in western Lithuania. Acta Zool Lituanica 12:283–287

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by a grant no. LEK-23/2010 from the Research Council of Lithuania. Prof. Uno Eliasson is thanked for discussions on Perichaena cf. corticalis and Stemonitis pallida as well as for valuable suggestions during the course of manuscript preparation. Meriel Goodwin is cordially thanked for linguistic help. Dr. Mindaugas Dagys is thanked for providing data on the cormorant colony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gražina Adamonytė.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamonytė, G., Iršėnaitė, R., Motiejūnaitė, J. et al. Myxomycetes in a forest affected by great cormorant colony: a case study in Western Lithuania. Fungal Diversity 59, 131–146 (2013). https://doi.org/10.1007/s13225-012-0203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-012-0203-8

Keywords

Navigation