Skip to main content
Log in

From morphological to molecular: studies of myxomycetes since the publication of the Martin and Alexopoulos (1969) monograph

  • Review
  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Myxomycetes (plasmodial slime molds or myxogastrids) are a group of eukaryotic microorganisms usually present and sometimes abundant in terrestrial ecosystems. Because they produce aerial spore-bearing structures that resemble those of certain fungi and also typically occur in some of the same types of ecological situations as fungi, myxomycetes have been traditionally studied by mycologists, and this continued to be the case for the greater part of the twentieth century. However, there is now abundant molecular data to confirm that they are amoebozoans and not fungi. Efforts are currently underway to develop the first molecular phylogeny for myxomycetes, and several recent studies have used molecular techniques to detect the presence of these organisms in nature by means of direct environmental sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexopoulos CJ (1963) The myxomycetes II. Bot Rev 29:1–77

    Google Scholar 

  • Alexopoulos CJ (1964) The rapid sporulation of some myxomycetes in moist chamber culture. Southwest Nat 9:155–159

    Google Scholar 

  • Alexopoulos CJ (1970) Rain forest myxomycetes. In: Odum HT (ed) A tropical rain forest. United States Atomic Energy Commission, Washington, pp F21–F23

    Google Scholar 

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology, 4th edn. Wiley, New York

    Google Scholar 

  • Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706

    PubMed  CAS  Google Scholar 

  • Baldauf SL, Doolittle WF (1997) Origin and evolution of the slime molds (mycetozoa). Proc Natl Acad Sci USA 94:12007–12012

    PubMed  CAS  Google Scholar 

  • Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977

    PubMed  CAS  Google Scholar 

  • Black DR, Stephenson SL, Pearce CA (2004) Myxomycetes associated with the aerial litter microhabitat in tropical forests of northern Queensland, Australia. Syst Geogr Pl 74:129–132

    Google Scholar 

  • Blackwell M, Gilbertson RL (1980) Sonoran desert myxomycetes. Mycotaxon 11:139–149

    Google Scholar 

  • Berry JA, Franke RG (1973) Taxonomic significance of intraspecific isozyme patterns of the slime mold Fuligo septica produced by disc electrophoresis. Am J Bot 60:976–986

    Google Scholar 

  • Betterley DA, Collins OR (1983) Reproductive systems, morphology, and genetical diversity in Didymium iridis (myxomycetes). Mycologia 75:1044–1063

    Google Scholar 

  • Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev 73:203–266

    PubMed  CAS  Google Scholar 

  • Clark J (2000) The species problem in the myxomycetes. Stapfia 73:39–53

    Google Scholar 

  • Clark J, Stephenson SL (2000) Biosystematics of the myxomycete Physarum melleum. Nova Hedwigia 71:161–164

    Google Scholar 

  • Collins OR (1980) Apomictic-heterothallic conversion in a myxomycete Didymium iridis. Mycologia 72:1109–1116

    Google Scholar 

  • Collins OR (1981) Myxomycete genetics, 1960–1981. J Elisha Mitch Sci Soc 97:101–125

    Google Scholar 

  • Cooke MC (1877) The myxomycetes of Great Britain arranged according to the method of Rostafinski: the characters of all the orders, families and genera, with descriptions of the British species, and original analytical tables, translated from the Polish. Williams and Norgate, London

    Google Scholar 

  • Cox JJ (1981) Notes on coprophilous myxomycetes from the western United States. Mycologia 73:741–747

    Google Scholar 

  • de Bary A (1859) Die mycetozoen. Ein beitrag zur Kenntnis der niedersten thiere. Z Wiss Zool 10:88–175

    Google Scholar 

  • Dömke W (1952) Der erste sichere Fund eines Myxomyceten im Baltischen Bernstein (Stemonitis splendens Rost fa succini fa nov foss). Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg 21: 154–161

  • Dörfelt HA, Schmidt R, Ullmann P, Wunderlich J (2003) The oldest fossil myxogastroid slime mold. Mycol Res 107:123–126

    PubMed  Google Scholar 

  • El Hage N, Little C, Clark J (2000) Biosystematics of the Didymium squamulosum complex. Mycologia 92:54–64

    Google Scholar 

  • Eliasson UH (1981) Patterns of occurrence of myxomycetes in a spruce forest in south Sweden. Holarctic Ecol 4:20–31

    Google Scholar 

  • Eliasson U, Lundqvist N (1979) Fimicolous myxomycetes. Bot Notiser 132:551–568

    Google Scholar 

  • Eliasson U, Keller HW (1999) Coprophilous myxomycetes: updated summary, key to species, and taxonomic observations on Trichia brunnea, Arcyria elaterensis, and Arcyria stipata. Karstenia 39:1–10

    Google Scholar 

  • Farr ML (1976) Flora Neotropica monograph no. 16. Myxomycetes. New York Botanical Garden, New York

    Google Scholar 

  • Farr ML (1981) How to know the true slime molds. Wm C Brown Company, Dubuque

    Google Scholar 

  • Feest A (1987) The quantitative ecology of soil mycetozoa. Prog Protistology 2:331–361

    Google Scholar 

  • Feest A, Madelin MF (1985) A method for the enumeration of myxomycetes in soils and its application to a wide range of soils. FEMS Microbiol Ecol 31:103–109

    Google Scholar 

  • Fiore-Donno A-M, Berney C, Pawlowski J, Baldauf SL (2005) Higher-order phylogeny of plasmodial slime molds (Myxogastria) based on EF1A and SSU rRNA sequences. J Eukaryot Microbiol 52:201–210

    PubMed  CAS  Google Scholar 

  • Fiore-Donno A-M, Meyer M, Baldauf SL, Pawlowski J (2008) Evolution of dark-spored myxomycetes (slime-molds): molecules versus morphology. Mol Phylogenet Evol 46:878–889

    PubMed  CAS  Google Scholar 

  • Fiore-Donno A-M, Nikolaev SI, Nelson M, Pawlowski J, Cavalier-Smith T, Baldauf SL (2010) Deep phylogeny and evolution of slime moulds (mycetozoa). Protist 161:55–70

    PubMed  CAS  Google Scholar 

  • Franke RG (1967) Preliminary investigation of the double-diffusion technique as a tool in determining relationships among some myxomycetes, order physarales. Amer J Bot 54:1189–1197

    Google Scholar 

  • Franke RG (1973) Symposium on the use of electrophoresis in the taxonomy of algae and fungi. V. Electrophoresis and the taxonomy of saprophytic fungi. Bull Torrey Bot Club 100:287–296

    CAS  Google Scholar 

  • Franke RG, Balek RW, Visentin LP (1968) Taxonomic significance of isozyme patterns of some myxomycetes, order physarales, produced with starch gel electrophoresis. Mycologia 60:331–339

    PubMed  CAS  Google Scholar 

  • Franke RG, Berry JA (1972) Taxonomic application of isozyme patterns produced with disc electrophoresis of some myxomycetes, order physarales. Mycologia 64:830–840

    PubMed  CAS  Google Scholar 

  • Gilbert HC, Martin GW (1933) Myxomycetes found on the bark of living trees. Univ Iowa Stud Nat Hist 15:3–8

    Google Scholar 

  • Graham A (1971) The role of myxomycota spores in palynology (with a brief note on the morphology of certain algal zygospores). Rev Palaeobot Palynol 11:89–99

    Google Scholar 

  • Hagelstein R (1944) Mycetozoa of North America. Published by the author, Mineola, New York

  • Harkönen M (1977) Corticolous myxomycetes in three different habitats in southern Finland. Karstenia 17:19–32

    Google Scholar 

  • Harkönen M (1981) Myxomycetes developed on litter of common Finnish trees in moist chamber cultures. Nord J Bot 1:791–794

    Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond 270:313–321

    CAS  Google Scholar 

  • Hoppe T, Kutschera U (2010) In the shadow of Darwin: Anton de Bary’s origin of myxomycetology and a molecular phylogeny of the plasmodial slime molds. Theory Biosci 129:15–23

    PubMed  CAS  Google Scholar 

  • Hudson HJ (1986) Fungal biology. Edward Arnold, Baltimore, Maryland

  • Ing B (1994) The phytosociology of myxomycetes. New Phytol 126:175–201

    Google Scholar 

  • Ing B (1999a) The myxomycetes of Britain and Ireland: an identification handbook. The Richmond Publishing Company, Ltd, Slough

    Google Scholar 

  • Ing B (1999b) Alpine myxomycetes in Scotland. Bot J Scotland 50:47–53

    Google Scholar 

  • Irawan B, Clark JD, Stephenson SL (2000) Biosystematics of the Physarum compressum morphospecies. Mycologia 92:884–893

    CAS  Google Scholar 

  • Kalyanasundaram I (1997) Myxomycetes in the tropics: distribution and ecology. In: Janardhanan KK, Rajendran C, Natarajan K, Hawksworth DL (eds) Tropical mycology. Science Publishers, Inc, Enfield, pp 227–237

    Google Scholar 

  • Kamono A, Kojima H, Matsumoto J, Kawamura K, Fukui M (2009) Airborne myxomycete spores: detection using molecular techniques. Naturwissenschaften 96:147–151

    PubMed  CAS  Google Scholar 

  • Kamono A, Fukui M (2006) Rapid PCR-based method for detection and differentiation of Didymiaceae and Physaraceae (myxomycetes) in environmental samples. J Microbiol Meth 67:496–506

    CAS  Google Scholar 

  • Keller HW, Brooks TE (1976) Corticolous myxomycetes V: observations on the genus Echinostelium. Mycologia 68:1204–1220

    Google Scholar 

  • Kerr SJ (1994) Frequency of recovery of myxomycetes from soils of the northern United States. Can J Bot 72:771–778

    Google Scholar 

  • Ko Ko TW, Stephenson SL, Hyde KD, Lumyong S (2010) Patterns of occurrence of myxomycetes on lianas. Fungal Ecol 3:302–310

    Google Scholar 

  • Ko Ko TW, Stephenson SL, Jeewon R, Lumyong S, Hyde KD (2009) Molecular diversity of myxomycetes associated with decaying wood and forest floor leaf litter. Mycologia 101:592–598

    Google Scholar 

  • Kowalski DT (1967) Observations on the dianemaceae. Mycologia 59:1075–1084

    Google Scholar 

  • Kowalski DT (1970) The species of Lamproderma. Mycologia 62:621–672

    PubMed  CAS  Google Scholar 

  • Kowalski DT (1971) The genus Lepidoderma. Mycologia 63:490–516

    Google Scholar 

  • Lado C (2005–2010) An on line nomenclatural information system of Eumycetozoa. http://www.nomen.eumycetozoa.com (15 December 2010)

  • Lado C, Estrada-Torres A, Stephenson SL (2007) Myxomycetes collected in the first phase of a north-south transect of Chile. Fungal Divers 25:81–101

    Google Scholar 

  • Lado C, Estrada-Torres A, Stephenson SL, Wrigley de Basanta D, Schnittler M (2003) Biodiversity assessment of myxomycetes from two tropical forest reserves in Mexico. Fungal Divers 12:67–110

    Google Scholar 

  • Lado C, Wrigley de Basanta D (2008) A review of Neotropical myxomycetes, 1828–2008. Anales Jard Bot Madrid 65:211–254

    Google Scholar 

  • Lindley LA, Stephenson SL, Spiegel FW (2007) Protostelids and myxomycetes isolated from aquatic habitats. Mycologia 99:504–509

    PubMed  Google Scholar 

  • Link JHF (1833) Handbuch zur erkennung der nutzbarsten und am häufigsten vorkommenden gewächse 3. Ordo Fungi, Subordo 6. Myxomycetes 405–422, 432–433. Berlin

  • Lister A (1894) A monograph of the mycetozoa. Printed by order of the trustees, London

  • Lister A (1911) A monograph of the mycetozoa. British Museum of Natural History, London (revised by G. Lister)

  • Lister A (1925) A monograph of the mycetozoa. British Museum of Natural History, London (revised by G. Lister)

  • Macbride TH (1899) North American slime-moulds. The Macmillan Company, New York

    Google Scholar 

  • Macbride TH (1922) North American slime-moulds, 2nd edn. The Macmillan Company, New York

    Google Scholar 

  • Macbride TH, Martin GW (1934) The myxomycetes. The Macmillan Company, New York

    Google Scholar 

  • Madelin MF (1984) Myxomycetes, microorganisms and animals: a model of diversity in animal-microbial interactions. In: Anderson JN, Rayer ADA, Walton WH (eds) Invertebrate-microbial interactions. Cambridge University Press, New York, pp 1–33

    Google Scholar 

  • Madelin MF (1990) Methods for studying the ecology and population dynamics of soil myxomycetes. Method Microbiol 22:405–416

    Google Scholar 

  • Martin GW (1960) The systematic position of the myxomycetes. Mycologia 52:119–129

    Google Scholar 

  • Martin GW, Alexopoulos CJ (1969) The myxomycetes. University of Iowa Press, Iowa City

    Google Scholar 

  • Martin GW, Alexopoulos CJ, Farr ML (1983) The genera of myxomycetes. University of Iowa Press, Iowa City

    Google Scholar 

  • Martín MP, Lado C, Johansen S (2003) Primers are designed for amplification and direct sequencing of ITS region of rDNA from myxomycetes. Mycologia 95:474–479

    PubMed  Google Scholar 

  • Massee G (1892) A monograph of the myxogastres. Methuen and Company, London

    Google Scholar 

  • Mayr E (1970) Population, species and evolution. Belknap Press, Harvard University Press, Cambridge

    Google Scholar 

  • Micales JA, Bonde MR, Peterson GL (1986) The use of isozyme analysis in fungal taxonomy and genetics. Mycotaxon 27:405–449

    Google Scholar 

  • Mitchell DW (1980) A key to corticolous myxomycetes. The British Mycological Society, Cambridge

    Google Scholar 

  • Mosquera J, Lado C, Beltrán-Tejera E (2000) Morphology and ecology of Didymium subreticulosporum. Mycologia 92:378–983

    Google Scholar 

  • Nannenga-Bremekamp NE (1991) A guide to temperate myxomycetes. Biopress Limited, Bristol

    Google Scholar 

  • Nassonova E, Smirnov A, Fahrni J, Pawlowski J (2010) Barcoding amoebae: comparison of SSU, ITS and CO1 genes as tools for molecular identification of naked lobose amoebae. Protist 161:102–115

    PubMed  CAS  Google Scholar 

  • Ndiritu GG, Spiegel FW, Stephenson SL (2009) Rapid biodiversity assessment of myxomycetes in two regions of Kenya. Sydowia 61:287–319

    Google Scholar 

  • Novozhilov YK, Schnittler M (1996) Nivicole myxomycetes of the Khibine Mountains, Kola Peninsula. Nordic J Bot 16:549–561

    Google Scholar 

  • Novozhilov YK, Schnittler M (2008) Myxomycete diversity and ecology in arid regions of the Great Lake Basin of western Mongolia. Fungal Divers 30:97–119

    Google Scholar 

  • Novozhilov YK, Schnittler M, Stephenson SL (1999) Myxomycetes of the Taimyr Peninsula (north-central Siberia): taxonomy and distribution. Karstenia 39:77–97

    Google Scholar 

  • Novozhilov YK, Stephenson SL, Overking M, Landolt JC, Laursen GA (2007) Studies of Frostfire myxomycetes including the description of a new species of Diderma. Mycol Prog 6:45–51

    Google Scholar 

  • Novozhilov YK, Zemlianskaia IV, Schnittler M, Stephenson SL (2006) Myxomycete diversity and ecology in the arid regions of the Lower Volga River Basin (Russia) Fungal Divers 23: 193–241

    Google Scholar 

  • Olive LS (1970) The mycetozoa: a revised classification. Bot Rev 36:59–87

    Google Scholar 

  • Olive LS (1975) The mycetozoans. Academic, New York

    Google Scholar 

  • Olive LS, Stoianovitch C (1979) Observations of the mycetozoan genus Ceratiomyxa: description of a new species. Mycologia 71:546–555

    Google Scholar 

  • Page FC (1987) The classification of “naked” amoebae (Phylum Rhizopoda). Arch Protistenkd 133:199–217

    Google Scholar 

  • Parker H (1946) Studies in the nutrition of some aquatic myxomycetes. J Elisha Mitch Sci Soc 62:231–247

    CAS  Google Scholar 

  • Rojas C, Stephenson SL (2008) Myxomycete ecology along an elevation gradient on Cocos Island, Costa Rica. Fungal Divers 29:117–127

    Google Scholar 

  • Rojas C, Valverde R, Stephenson SL, Vargas MJ (2010) Biogeographical and ecological patterns of Costa Rican myxomycetes. Fungal Ecol 3:139–147

    Google Scholar 

  • Ronikier A, Ronikier M (2009) How ‘alpine’ are nivicolous myxomycetes? A worldwide assessment of altitudinal distribution. Mycologia 101:1–16

    PubMed  CAS  Google Scholar 

  • Rostafinski JT (1873) Versuch eines systems der mycetozoen. Inaugural dissertation. University of Strassberg, Germany

  • Rostafinski JT (1874–1876) Sluzowce (mycetozoa) monografia. Towarz Nauk Scis Paryzu 5:1–215 (1974); 217–432 (1895); Dodatek [appendix] 8:1–43 (1876)

  • Schnittler M (2001a) Foliicolous liverworts as a microhabitat for Neotropical myxomycetes. Nova Hedwigia 72:259–270

    Google Scholar 

  • Schnittler M (2001b) Ecology of myxomycetes from a winter-cold desert in western Kazakhstan. Mycologia 93:135–167

    Google Scholar 

  • Schnittler M, Lado C, Stephenson SL (2002) Rapid biodiversity assessment of a tropical myxomycete assemblage—Maquipucuna Cloud Forest Reserve, Ecuador. Fungal Divers 9:135–167

    Google Scholar 

  • Schnittler M, Mitchell DW (2000) Species diversity in myxomycetes based on morphological species concept—a critical examination. Stapfia 73:55–62

    Google Scholar 

  • Schnittler M, Novozhilov YK (1996) The myxomycetes of boreal woodlands in Russian northern Karelia: a preliminary report. Karstenia 36:19–40

    Google Scholar 

  • Schnittler M, Novozhilov YK (2000) Myxomycetes of the winter-cold desert in western Kazakhstan. Mycotaxon 74:267–285

    Google Scholar 

  • Schnittler M, Stephenson SL (2000) Myxomycete biodiversity in four different forest types in Costa Rica. Mycologia 92:626–637

    Google Scholar 

  • Schnittler M, Stephenson SL (2002) Inflorescences of Neotropical herbs as a newly discovered microhabitat for myxomycetes. Mycologia 94:6–20

    PubMed  Google Scholar 

  • Schnittler M, Tesmer J (2008) A habitat colonisation model for spore-dispersed organisms—does it work with eumycetozoans? Mycol Res 112:697–707

    PubMed  Google Scholar 

  • Shadwick LL, Spiegel FW, Shadwick JDL, Brown MW, Silberman JD (2009) Eumycetozoa = Amoebozoa?: SSUrDNA phylogeny of protosteloid slime molds and its significance for the amoebozoan supergroup. PLoS ONE 4:e6754

    PubMed  Google Scholar 

  • Smith T, Stephenson SL (2007) Algae associated with myxomycetes and leafy liverworts on decaying spruce logs. Castanea 72:50–57

    Google Scholar 

  • Snell KL, Keller HW, Eliasson UH (2003) Tree canopy myxomycetes and new records from ground sites in the Great Smoky Mountains National Park. Castanea 68:97–108

    Google Scholar 

  • Stephenson SL (1988) Distribution and ecology of myxomycetes in temperate forests. I. Patterns of occurrence in the upland forests of southwestern Virginia. Can J Bot 66:2187–2207

    Google Scholar 

  • Stephenson SL (1989) Distribution and ecology of myxomycetes in temperate forests. II. Patterns of occurrence on bark surface of living trees, leaf litter, and dung. Mycologia 81:608–621

    Google Scholar 

  • Stephenson SL (2003) Myxomycetes of New Zealand. Fungal Diversity, Hong Kong

    Google Scholar 

  • Stephenson SL, Cavender JC (1996) Dictyostelids and myxomycetes. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. CAB International, Wallingford, pp 91–101

    Google Scholar 

  • Stephenson SL, Clark J, Landolt JC (2004a) Myxomycetes occurring as single genetic strains in forest soils. Syst Geogr Plants 74:287–289

    Google Scholar 

  • Stephenson SL, Landolt JC (1996) The vertical distribution of dictyostelids and myxomycetes in the soil/litter microhabitat. Nova Hedwigia 62:105–117

    Google Scholar 

  • Stephenson SL, Landolt JC (1998) Dictyostelid cellular slime molds in canopy soils of tropical forests. Biotropica 30:657–661

    Google Scholar 

  • Stephenson SL, Landolt JC, Moore DL (1998) Protostelids, dictyostelids, and myxomycetes in the litter microhabitat of the Luquillo Experimental Forest, Puerto Rico. Mycol Res 103:209–214

    Google Scholar 

  • Stephenson SL, Laursen GA (1993) A preliminary report on the distribution and ecology of myxomycetes in Alaskan tundra. Bibl Mycol 150:251–257

    Google Scholar 

  • Stephenson SL, Laursen GA (1998) Myxomycetes from Alaska. Nova Hedwigia 66:425–434

    Google Scholar 

  • Stephenson SL, Laursen GA, Seppelt RD (2007) Myxomycetes of subantarctic Macquarie Island. Aust J Bot 55:439–449

    Google Scholar 

  • Stephenson SL, Novozhilov Y, Schnittler M (2000) Distribution and ecology of myxomycetes in high-latitude regions of the Northern Hemisphere. J Biogeogr 27:741–754

    Google Scholar 

  • Stephenson SL, Moreno G (2006) A new species of Didymium (Myxomycetes) from subantarctic Macquarie Island. Mycol Prog 5:255–258

    Google Scholar 

  • Stephenson SL, Schnittler M, Lado C, Estrada-Torres A, Wrigley de Basanta D, Landolt JC, Novozhilov YK, Clark J, Moore DL, Spiegel FW (2004b) Studies of Neotropical mycetozoans. Syst Geogr Pl 74:87–108

    Google Scholar 

  • Stephenson SL, Schnittler M, Mitchell DW, Novozhilov YK (2001) Myxomycetes of the Great Smoky Mountains National Park. Mycotaxon 78:1–15

    Google Scholar 

  • Stephenson SL, Schnittler M, Novozhilov Y (2008) Myxomycete diversity and distribution from the fossil record to the present. Biodivers Conserv 17:285–301

    Google Scholar 

  • Stephenson SL, Shadwick JD (2009) Nivicolous myxomycetes from alpine areas of south-eastern Australia. Aust J Bot 57:116–122

    Google Scholar 

  • Stephenson SL, Stempen H (1994) Myxomycetes: a handbook of slime molds. Timber, Portland

    Google Scholar 

  • Stephenson SL, Studlar SM (1985) Myxomycetes fruiting upon bryophytes: coincidence or preference? J Bryol 13:537–548

    Google Scholar 

  • Takahashi K (2004) Distribution of myxomycetes on different decay states of deciduous broadleaf and coniferous wood in a natural temperate forest in the Southwest of Japan. Syst Geogr Pl 74:133–142

    Google Scholar 

  • Takahashi K, Hada Y (2009) Distribution of myxomycetes on coarse woody debris of Pinus densiflora at different decay stages in secondary forests of western Japan. Mycoscience 50:253–260

    Google Scholar 

  • Tamayama M (2000) Nivicolous taxa of the myxomycetes in Japan. Stapfia 73:121–129

    Google Scholar 

  • Thom C, Raper KB (1930) Myxamoebae in soil and decomposing crop residues. J Wash Acad Sci 20:362–370

    Google Scholar 

  • Tran HTM, Stephenson SL, Hyde KD, Mongkolporn O (2006) Distribution and occurrence of myxomycetes in tropical forests of northern Thailand. Fungal Divers 22:227–242

    Google Scholar 

  • Tran HTM, Stephenson SL, Hyde KD, Mongkolporn O (2008) Distribution and occurrence of myxomycetes on agricultural ground litter and forest floor litter in Thailand. Mycologia 100:181–190

    PubMed  Google Scholar 

  • Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE 3:e2527

    PubMed  Google Scholar 

  • Waggoner BM, Poinar GO Jr (1992) A fossil myxomycete plasmodium from Eocene-Oligocene amber of the Dominican Republic. J Protozoology 39:639–642

    Google Scholar 

  • Warcup J (1950) The soil plate method for the isolation of fungi from soil. Nature 166:117–118

    PubMed  CAS  Google Scholar 

  • Winsett KE, Stephenson SL (2008) Using ITS sequences to assess intraspecific genetic relationships among geographically separated collections of the myxomycete Didymium squamulosum. Rev Mex Micologia 27:59–65

    Google Scholar 

  • Winsett KE, Stephenson SL (2011) Global distribution and molecular diversity of Didymium difforme. Mycosphere 2:135–146

    Google Scholar 

  • Wrigley de Basanta D (2000) Acid deposition in Madrid and corticolous myxomycetes. Stapfia 73:113–120

    Google Scholar 

  • Wrigley de Basanta D, Lado C, Estrada-Torres A, Stephenson SL (2010) Biodiversity of myxomycetes in subantarctic forests of Patagonia and Tierra del Fuego, Argentina. Nova Hedwigia 90:45–79

    Google Scholar 

  • Wrigley de Basanta D, Stephenson SL, Lado C, Estrada-Torres A, Nieves-Rivera AM (2008) Lianas as a microhabitat for myxomycetes in tropical forests. Fungal Divers 28:109–125

    Google Scholar 

Download references

Acknowledgments

Much of the information provided in this paper is the product of studies that the author and a number of his colleagues have carried out over the past 35 years. These studies were supported by grants from several different sources, including the National Science Foundation and the National Geographic Society. Appreciation is extended to Randy Darrah, who prepared two of the figures used in this paper, and Katherine Winsett, who compiled the molecular data presented herein. Some of the images used in Figs. 3 and 4 were contributed by Randy Darrah, Kimberly Fleming, Emily Johnson, William Roody, and Clive Shirley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Stephenson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephenson, S.L. From morphological to molecular: studies of myxomycetes since the publication of the Martin and Alexopoulos (1969) monograph. Fungal Diversity 50, 21–34 (2011). https://doi.org/10.1007/s13225-011-0113-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-011-0113-1

Keywords

Navigation