Skip to main content
Log in

Accumulation of starch in duckweeds (Lemnaceae), potential energy plants

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Starch can accumulate in both actively growing vegetative fronds and over-wintering propagules, or turions of duckweeds, small floating aquatic plants belonging to the family of the Lemnaceae. The starch synthesizing potential of 36 duckweed species varies enormously, and the starch contents actually occurring in the duckweed tissues are determined by growth conditions, various types of stress and the action of growth regulators. The present review examines the effects of phytohormones and growth retardants, heavy metals, nutrient deficiency and salinity on the accumulation of starch in duckweeds with a view to obtaining high yields of starch as a feedstock for biofuel production. Biotechnological approaches to degrading duckweed starch to its component sugars and the fermentation of these sugars to bio-alcohols are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

All data were given within the manuscript.

Code availability

Not applicable.

References

  • Acosta K, Appenroth KJ, Borisjuk L, Edelman M, Heinig U, Jansen MAK, Oyama T, Pasaribu B, Schubert I, Sorrels S, Sree KS, Xu S, Michael TP, Lam E (2021) Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. Plant Cell. https://doi.org/10.1093/plcell/koab189

    Article  PubMed  Google Scholar 

  • Appenroth KJ (2002) Clonal differences in the formation of turions are independent of the specific turion-inducing signal in Spirodela polyrhiza (great duckweed). Plant Biol 4:688–693

    Google Scholar 

  • Appenroth KJ, Teller S, Horn M (1996) Photophysiology of turion formation and germination in Spirodela polyrhiza. Biol Plant 38:95–106

    Google Scholar 

  • Appenroth KJ, Keresztes A, Jaglarz A, Fischer W (2003) Multiple effects of chromate on Spirodela polyrhiza: electron microscopy and biochemical investigations. Plant Biol 5:315–323

    CAS  Google Scholar 

  • Appenroth KJ, Krech K, Keresztes A, Fischer W, Koloczek H (2010) Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Chemosphere 78:216–223

    CAS  PubMed  Google Scholar 

  • Appenroth KJ, Sree KS, Boehm V, Hammann S, Vetter W, Leiterer M, Jahreis G (2017) Nutritional value of duckweeds (Lemnaceae) as human food. Food Chem 217:266–273

    CAS  PubMed  Google Scholar 

  • Appenroth KJ, Sree KS, Bog M, Ecker J, Seeliger C, Boehm V, Lorkowski S, Sommer K, Vetter W, Tolzin-Banasch K, Kirmse R, Leiterer M, Dawczynski C, Liebisch G, Jahreis G (2018) Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Front Chem 6:483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arefin MA, Rashid F, Islam A (2021) A review of biofuel production from floating aquatic plants: an emerging source of bio-renewable energy. Biofuels Bioprod Biorefining 15:574–591

    CAS  Google Scholar 

  • Avni A, Blazquez MA (2011) Can plant biotechnology help in solving our food and energy shortage in the future? Curr Opin Biotechnol 22:220–223

    CAS  PubMed  Google Scholar 

  • Bog M, Appenroth KJ, Sree KS (2020) Key to the determination of taxa of Lemnaceae: an update. Nord J Bot 38:e02658

    Google Scholar 

  • Calicioglu O, Richard TL, Brennen RA (2019) Anaerobic bioprocessing of wastewater-derived duckweed: maximizing product yield in a biorefinery value cascade. Bioresour Technol 289:121716

    CAS  PubMed  Google Scholar 

  • Calicioglu O, Femeena PV, Mutel CL, Sills DL, Richard TL, Brennan RA (2021) Techno-economic analysis and life cycle assessment of an integrated wastewater-derived duckweed biorefinery. ACS Sustain Chem Eng 9:9395–9408

    CAS  Google Scholar 

  • Chang I-H, Cheng K-T, Huang P-C, Lin Y-Y, Cheng L-J, Cheng T-S (2012) Oxidative stress in greater duckweed (Spirodela polyrhiza) caused by long-term NaCl exposure. Acta Physiol Plant 34:1165–1176

    CAS  Google Scholar 

  • Chen HG, Zhang YHP (2015) New biorefineries and sustainable agriculture: Increased food, biofuels, and ecosystem security. Renew Sustain Energy Rev 47:117–132

    CAS  Google Scholar 

  • Chen Q, Jin Y, Zhang G, Fang Y, Xiao Y, Zhao H (2012) Improving production of bioethanol from duckweed (Landoltia punctata) by pectinase treatment. Energies 5:3019–3032

    CAS  Google Scholar 

  • Chen D, Zhang H, Wang Q, Shao M, Li X, Chen D, Zeng R, Song Y (2020) Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza). J Hazard Mater 395:122672

    CAS  PubMed  Google Scholar 

  • Chen G, Yu Y, Li W, Yan B, Zhao K, Dong X, Cheng Z, Lin F, Li L, Zhao H, Fang Y (2020) Effects of reaction conditions on products and elements distribution via hydrothermal liquefaction of duckweed for wastewater treatment. Bioresour Technol 317:124033

    CAS  PubMed  Google Scholar 

  • Cheng TS (2011) NaCl-induced responses in giant duckweed (Spirodela polyrhiza). J Aquat Plant Manag 49:62–71

    Google Scholar 

  • Cheng JJ, Stomp AM (2009) Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean 37:17–26

    CAS  Google Scholar 

  • Cheng TS, Hung MJ, Cheng YI, Cheng LJ (2013) Calcium-induced proline accumulation contributes to amelioration of NaCl injury and expression of glutamine synthetase in greater duckweed (Spirodela polyrhiza L.). Aquat Toxicol 144–145:265–274

    PubMed  Google Scholar 

  • Chmur M, Bajguz A, Piotrowska-Niczyporuk A (2020) Effect of cadmium on the level of isoprenoid-derived phytohormones in duckweed Wolffia arrhiza. J Plant Growth Regul 39:1518–1530

    CAS  Google Scholar 

  • Cui W, Cheng JJ (2015) Growing duckweed for biofuel production: a review. Plant Biol 17(Suppl 1):16–23

    PubMed  Google Scholar 

  • Cui W, Xu J, Cheng JJ, Stomp AM (2011) Starch accumulation in duckweed for bioethanol production. Biol Eng 3:187–197

    Google Scholar 

  • de Morais MB, Barbosa-Neto AG, Willadino L, Ulisses C, Junior TC (2019) Salt stress induces increase in starch accumulation in duckweed (Lemna aequinoctialis, Lemnaceae): biochemical and physiological apects. J Plant Growth Regul 38:683–700

    Google Scholar 

  • Djandja OS, Yin LX, Wang ZC, Guo Y, Zhang XX, Duan PG (2021) Progress in thermochemical conversion of duckweed and upgrading of the bio-oil: a critical review. Sci Total Environ 769:144660

    CAS  PubMed  Google Scholar 

  • Dolger K, Tirlapur UK, Appenroth KJ (1997) Phytochrome-regulated starch degradation in germinating turions of Spirodela polyrhiza. Photochem Photobiol 66:124–127

    Google Scholar 

  • Fu L, Ding Z, Sun X, Zhang J (2019) Physiological and transcriptomic analysis reveals distorted ion homeostasis and responses in the freshwater plant Spirodela polyrhiza L. under salt stress. Genes 10:743

    CAS  PubMed Central  Google Scholar 

  • Fujita M, Mori K, Kodera T (1999) Nutrient removal and starch production through cultivation of Wolffia arrhiza. J Biosci Bioeng 87:194–198

    CAS  PubMed  Google Scholar 

  • Georgelis N, Braun EL, Shaw JR, Hannah LC (2007) The two AGPase subunits evolve at different rates in angiosperms, yet they are equally sensitive to activity-altering amino acid changes when expressed in bacteria. Plant Cell 19:1458–1472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Ding Y, Xu Y, Li Z, Jin Y, He K, Fang Y, Zhao H (2017) Responses of Landoltia punctata to cobalt and nickel: removal, growth, photosynthesis, antioxidant system and starch metabolism. Aquat Toxicol 190:87–93

    CAS  PubMed  Google Scholar 

  • Guo L, Jin Y, Xiao Y, Tan L, Tian X, Ding Y, He K, Du A, Li J, Yi Z, Wang S, Fang Y, Zhao H (2020) Energy-efficient and environmentally friendly production of starch-rich duckweed biomass using nitrogen-limited cultivation. J Clean Prod 251:119726

    CAS  Google Scholar 

  • Huang M, Fang Y, Xiao X, Sun J, Jina Y, Tao X, Maa X, Hea K, Zhao H (2014) Proteomic analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation. Ind Crops Prod 59:299–308

    CAS  Google Scholar 

  • Huang M, Fang Y, Liu Y, Jin L, Sun J, To X, Ma X, He K, Zhao H (2015) Using proteomic analysis to investigate uniconazole-induced phytohormone variation and starch accumulation in duckweed (Landoltia punctata). BMC Biotechnol 15:Art. 81

  • Huber W, Sankhla N (1979) Effect of sodium chloride on photosynthesis of Lemna minor L. Zeitschrift Fuer Pflanzenphysiologie 91:147–156

    CAS  Google Scholar 

  • Kaur M, Kumar M, Singh D, Sachdeva S, Puri SK (2019) A sustainable biorefinery for efficient conversion of aquatic weeds into bioethanol and biomethane. Energy Convers Manag 187:133–147

    CAS  Google Scholar 

  • Kiitiwongwattana C (2019) Differential effects of synthetic media on long-term growth, starch accumulation and transcription of ADP-glucosepyrophosphorylase subunit genes in Landoltia punctata. Sci Rep 9:15310

    Google Scholar 

  • Kruger K, Chen L, He BB (2020) Nutrient starvation and light deprivation effects on starch accumulation in Landoltia punctata cultivated on anaerobically digested dairy manure. J Environ Qual 49:1044–1053

    CAS  PubMed  Google Scholar 

  • Lalau CM, Simioni C, Vicenti DS, Ouriques LC, Mohedano RA, Puerari RC, Matias WG (2020) Toxicological effects of AgNPs on duckweed (Landoltia punctata). Sci Total Environ 710:136318

    CAS  PubMed  Google Scholar 

  • Landolt E (1986) The family of Lemnaceae—a monographic study, vol 1. Biosystematic investigations in the family of duckweeds (Lemnaceae). Veröffentlichungen des Geobotanischen Instituts der ETH, Stiftung Rübel, Zürich

  • Landolt E, Kandeler R (1987) The family of Lemnaceae—a monographic study, vol 2. Biosystematic investigations in the family of duckweeds (Lemnaceae). Veröffentlichungen des Geobotanischen Instituts der ETH, Stiftung Rübel, Zürich

  • Li X, Hou S, Ma S, Yang M, Shen S, Jiang G, Qi D, Chen S, Liu G (2010) Major energy plants and their potential for bioenergy development in China. Environ Manag 46:579–589

    Google Scholar 

  • Li X, Jin Y, Gao X, Zhang G, Zhao H (2012) Fermentation method of high ratios of biobutanol with Landoltia punctata. China Brew 31:85–88

    CAS  Google Scholar 

  • Li JM, Du AP, Liu PH, Tian XP, Jin YL, Yi ZL, He KZ, Fang J, Zhao H (2021) High starch accumulation mechanism and phosphorus utilization efficiency of duckweed (Landoltia punctata) under phosphate starvation. Ind Crops Prod 167:113529

    CAS  Google Scholar 

  • Liu Y, Fang Y, Huang M, Jin Y, Sun J, Tao X, Zhang G, He K, Zhao Y, Zhao H (2015a) Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) I: transcriptome analysis of the effects on chlorophyll and endogenous hormone biosynthesis. Biotechnol Biofuels 8:Art. 57

  • Liu Y, Fang Y, Huang M, Jin Y, Sun J, Tao X, Zhang G, He K, Zhao Y, Zhao H (2015b) Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk. Biotechnol Biofuels 8:Art. 64

  • Liu Y, Chen X, Wang X, Fang Y, Zhang Y, Huang M, Zhao H (2019) The influence of different plant hormones on biomass and starch accumulation of duckweed: a renewable feedstock for bioethanol production. Renew Energy 138:659–665

    CAS  Google Scholar 

  • Liu Y, Xu H, Wang Y, Tang XF, He G, Wang SM, Ma YB, Kong YZ, Yu CJ, Zhou GK (2020) A submerged duckweed mutant with abundant starch accumulation for bioethanol production. Glob Change Biol Bioenergy 12:1078–1091

    CAS  Google Scholar 

  • Liu Y, Xu H, Yu CJ, Zhou GK (2021) Multifaceted roles of duckweed in aquatic phytoremediation and bioproducts synthesis. Glob Change Biol Bioenergy 13:70–82

    Google Scholar 

  • Lu Y, Gehan JP, Sharkey TD (2005) Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiol 138:2280–2291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    CAS  Google Scholar 

  • Ma YB, Zhu M, Yu CJ, Wang Y, Liu Y, Li ML, Sun YD, Zhao JS, Zhou GK (2018) Large-scale screening and characterisation of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production. Plant Biol 20:357–364

    CAS  PubMed  Google Scholar 

  • Naumann B, Eberius M, Appenroth KJ (2007) Growth rate based dose-response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. J Plant Physiol 164:1656–1664

    CAS  PubMed  Google Scholar 

  • Nesan D, Selvabala K, Chieh DCJ (2020) Nutrient uptakes and biochemical composition of Lemna minor in brackish water. Aquat Res 51:3563–3570

    CAS  Google Scholar 

  • Neto AGB, Morais MB, Dutra ED, Junior TC (2019) Biological diversity of Lemna aequinoctialis Welw. isolates influences biomass production and wastewater phytoremediation. Bioresour Technol Rep 6:251–259

    Google Scholar 

  • Pagliuso D, Gradis A, Lam E, Buckeridge MS (2020) High saccharification, low lignin, and high sustainability potential make duckweeds adequate as bioenergy feedstocks. Bioenergy Res. https://doi.org/10.1007/s12155-020-10211-x

    Article  Google Scholar 

  • Panda SK, Upadhya SK (2003) Salt stress injury induces oxidative alterations and antioxidative defence in the roots of Lemna minor. Biol Plant 48:249–253

    Google Scholar 

  • Pena-Castro JM, del Moral S, Nunez-Lopez L, Barrera-Figueroa BE, Amaya-Delgado L (2017) Biotechnological strategies to improve plant biomass quality for bioethanol production. Biomed Res Int ID: 7824076

  • Radic S, Pevalek-Kozlina B (2010) Effects of osmotic stress on antioxidative system of duckweed (Lemna minor L). Period Biol 112:293–299

    Google Scholar 

  • Rahul MS, Sundaramahalingam MA, Shivamthi CS, Shyam Kumar R, Varalakshmi P, Karthikumar S, Kanimozhi J, Kumar VR, Sabarathinam S, Ganesh Moorthy I, Pugazhendhi A (2020) Insights about sustainable biodiesel production from microalgae biomass: a review. Int J Energy Res 45:17028–17056

    Google Scholar 

  • Rana QUA, Khan MAN, Irfan M, Shah AA, Hasan F, Khan S, Ahmed S, Adnan F, Li W, Ju M, Badshah M (2021) Starved Spirodela polyrhiza and Saccharomyces cerevisiae: a potent combination for sustainable bioethanol production. Biomass Convers Biorefining 11:1665–1674

    CAS  Google Scholar 

  • Reale L, Ferranti F, Mantilacci S, Corboli M, Aversa S, Landucci F, Baldisserotto C, Ferroni L, Pancaldi S, Venanzoni R (2016) Cyto-histological and morpho-physiological responses of common duckweed (Lemna minor L.) to chromium. Chemosphere 145:98–105

    CAS  PubMed  Google Scholar 

  • Reid MS, Bieleski RL (1970) Response of Spirodela oligorrhiza to phosphorus deficiency. Plant Physiol 46:609–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salvi BL, Panwar NL (2012) Biodiesel resources and production technologies—a review. Renew Sustain Energy Rev 16:3680–3689

    CAS  Google Scholar 

  • Sembada AA, Faizal A (2019) Effect of polyculture cultivation system and addition of abscisic acid (ABA) on enhancement of starch and protein content from duckweeds. In: AIF conference proceedings 2120, 030026-8. https://doi.org/10.1063/1.5115630

  • Shao J, Liu Z, Ding Y, Wang J, Li Y, Yang Y (2020) Biosynthesis of starch is improved by supplement of nickel (Ni2+) in duckweed (Landoltia punctata). J Plant Res 133:587–596

    CAS  PubMed  Google Scholar 

  • Sikorski L, Piotrowicz-Cieslak AI, Adomas B (2013) Phytotoxicity of sodium chloride towards common duckweed (Lemna minor L.) and yellow lupin (Lupinus luteus L.). Arch Environ Prot 39:117–128

    CAS  Google Scholar 

  • Smart CC, Trewavas A (1983) Abscisic-acid-induced turion formation in Spirodela polyrrhiza L. I. Production and development of the turion. Plant Cell Environ 6:507–514

    CAS  Google Scholar 

  • Smart CC, Fleming AJ, Chaloupkova K, Hanke DE (1995) The physiological role of abscisic acid in eliciting turion morphogenesis. Plant Physiol 108:623–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sobrino AS, Miranda MG, Alvarez C, Quiroz, A (2010) Bio-accumulation and toxicity of lead (Pb) in Lemna gibba L (duckweed). J Environ Sci Health Part A 45:107–110

    CAS  Google Scholar 

  • Souto LRF, da Silvia IF, Ninow JL, Collins SRA, Elliston A, Waldron KW (2019) Effect of hydrothermal pre-treatment on duckweed (Landoltia punctata) biomass for simultaneous saccharification and fermentation process. Biomass Bioenergy 127:105259

    CAS  Google Scholar 

  • Sree KS, Appenroth KJ (2014) Increase of starch accumulation in the duckweed Lemna minor under abiotic stress. Albanian J Agric Sci Spec Ed 11–14

  • Sree KS, Adelmann K, Garcia C, Lam E, Appenroth KJ (2015a) Natural variance in salt tolerance and induction of starch accumulation in duckweeds. Planta 241:1395–1404

    CAS  PubMed  Google Scholar 

  • Sree KS, Keresztes A, Mueller-Roeber B, Brandt R, Eberius M, Fischer W, Appenroth KJ (2015b) Phytotoxicity of cobalt ions on the duckweed Lemna minor—morphology, ion uptake, and starch accumulation. Chemosphere 131:149–156

    CAS  PubMed  Google Scholar 

  • Sree KS, Sudakaran S, Appenroth KJ (2015c) How fast can angiosperms grow? Species and clonal diversity of growth rates in the genus Wolffia (Lemnaceae). Acta Physiol Plant 37:204

    Google Scholar 

  • Srivastava A, Appenroth KJ (1995) Interaction of EDTA and iron on the accumulation of Cd2+ in duckweeds (Lemnaceae). J Plant Physiol 146:173–176

    CAS  Google Scholar 

  • Stewart GR (1969) Abscisic acid and morphogenesis in Lemna polyrhiza L. Nature 221:61–62

    CAS  PubMed  Google Scholar 

  • Stitt M, Zeeman SC (2012) Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol 15:282–292

    CAS  PubMed  Google Scholar 

  • Su H, Zhao Y, Jiang J, Lu Q, Li Q, Luo Y, Zhao H, Wang M (2014) Use of duckweed (Landoltia punctata) as a fermentation substrate for the production of higher alcohols as biofuels. Energy Fuels 28:3206–3216

    CAS  Google Scholar 

  • Tao X, Fang Y, Xiao Y, Jin Y-l, Ma X-R, Zhao Y, He K-Z, Zhao H, Wang H-Y (2013) Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation. Biotechnol Biofuels 6:72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorsteinsson B, Eliasson L (1990) Growth retardation induced by nutritional deficiency or abscisic acid in Lemna gibba: The relationship between growth rate and endogenous cytokinin content. Plant Growth Regul 9:171–181

    CAS  Google Scholar 

  • Thorsteinsson B, Tillberg J-E (1987) Carbohydrate portioning, photosynthesis and growth in Lemna gibba G3. II. Effects of phosphorus limitation. Physiol Plant 71:271–276

    CAS  Google Scholar 

  • Thorsteinsson B, Tillberg J-E, Tillberg E (1987) Carbohydrate portioning, photosynthesis and growth in Lemna gibba G3. I. Effects of nitrogen limitation. Physiol Plant 71:264–270

    CAS  Google Scholar 

  • Wang W, Messing J (2012) Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed). BMC Plant Biol 12:Art. 5

  • Wang GH, Chen LZ, Hao ZJ, Li XY, Liu YD (2011) Effects of salinity stress on the photosynthesis of Wolffia arrhiza as probed by the OJIP test. Fresenius Environ Bull 20:432–438 (abstract only)

    CAS  Google Scholar 

  • Wang W, Wu Y, Messing J (2014) RNA-Seq transcriptome analysis of Spirodela dormancy without reproduction. BMC Genomics 15:Art. 60

  • Wang X, Cui W, Hu W, Feng C (2017) Abscisic acid-induced starch accumulation in bioenergy crop duckweed Spirodela polyrrhiza. Bioenergy Res 10:417–426

    CAS  Google Scholar 

  • Wang X, Cui W, Hu W, Feng C (2020) Abscisic acid-enhanced starch accumulation of bioenergy crop duckweed (Spirodela polyrrhiza). RSC Adv 10:10394–10401

    CAS  Google Scholar 

  • Xiao Y, Fang Y, Jin Y, Zhang G, Zhao H (2013) Culturing duckweed in the field for starch accumulation. Ind Crops Prod 48:183–190

    CAS  Google Scholar 

  • Xie G, Peng L (2011) Genetic engineering of energy crops: a strategy for biofuel production in China. J Integr Plant Biol 53:143–150

    PubMed  Google Scholar 

  • Xu J, Cui W, Cheng FF, Stomp AM (2011) Production of high-starch duckweed and its conversion to bioethanol. Biosyst Eng 110:67–72

    Google Scholar 

  • Xu Y-L, Fang Y, Li Q, Yang G-L, Guo L, Chen G-K, Tan L, He K-Z, Jin Y-L, Zhao H (2018) Turion, an innovative duckweed-based starch production system for economical biofuel manufacture. Ind Crops Prod 124:108–114

    CAS  Google Scholar 

  • Xylander M, Augsten H, Appenroth KJ (1993) Influence of nickel on the life cycle of the duckweed Spirodela polyrhiza (L.) Schleiden. J Plant Physiol 142:208–213

    Google Scholar 

  • Yang JJ, Li GJ, Bishopp A, Heenatigala PPM, Hu SQ, Chen Y, Wu ZG, Kumar S, Duan PF, Yao LG, Hou HW (2018) A comparison of growth on mercuric chloride for three Lemnaceae species reveals differences in growth dynamics that effect their suitability for use in either monitoring or remediating ecosystems contaminated with mercury. Front Chem 6:112

    PubMed  PubMed Central  Google Scholar 

  • Yu C, Sun C, Yu L, Zhu M, Xu H, Zhao J, Ma Y, Zhou G (2014) Comparative analysis of duckweed cultivation with sewage water and SH media for production of fuel ethanol. PLoS ONE 9:115023

    Google Scholar 

  • Zhao X, Elliston A, Collins SRA, Moates GK, Coleman MJ, Waldron KW (2012) Enzymatic saccharification of duckweed (Lemna minor) biomass without thermophysical pretreatment. Biomass Bioenergy 47:354–361

    Google Scholar 

  • Zhao Z, Shi H-J, Wang M-L, Cui L, Zhao H, Zhao Y (2015) Effect of nitrogen and phosphorus deficiency on transcriptional regulation of genes encoding key enzymes of starch metabolism in duckweed (Landoltia punctata). Plant Physiol Biochem 86:72–81

    CAS  PubMed  Google Scholar 

  • Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234

    CAS  PubMed  Google Scholar 

  • Zhong Y, Li Y, Cheng JJ (2016) Effects of selenite on chlorophyll fluorescence, starch content and fatty acid in the duckweed Landoltia punctata. J Plant Res 129:997–1004

    CAS  PubMed  Google Scholar 

  • Zhu Y, Li X, Gao X, Sun J, Ji X, Feng G, Shen G, Xiang B, Wang Y (2021) Molecular mechanism underlying the effect of maleic hydrazide treatment on starch accumulation in S. polyrhiza 7498 fronds. Biotechnol Biofuels 14:99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler P, Adelmann K, Zimmer S, Schmidt C, Appenroth K-J (2015) Relative in vitro growth rates of duckweeds (Lemnaceae) – the most rapidly growing higher plants. Plant Biol 17(Suppl. 1):33–41

    PubMed  Google Scholar 

  • Ziegler P, Sree KS, Appenroth K-J (2016) Duckweeds for water remediation and toxicology testing. Toxicol Environ Chem 98:1127–1154

    CAS  Google Scholar 

  • Ziegler P, Sree KS, Appenroth K-J (2017) The uses of duckweed in relation to water remediation. Desalin Water Treat 63:327–342

    CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors have designed the plan of the article, evaluated the literature and have written and proof-read the manuscript.

Corresponding author

Correspondence to K. Sowjanya Sree.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appenroth, KJ., Ziegler, P. & Sree, K.S. Accumulation of starch in duckweeds (Lemnaceae), potential energy plants. Physiol Mol Biol Plants 27, 2621–2633 (2021). https://doi.org/10.1007/s12298-021-01100-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-01100-4

Keywords

Navigation