Skip to main content
Log in

Fermenting and Lignin Degradability of a White-Rot Fungus Coriolopsis trogii Using Industrial Lignin as Substrate

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bio-depolymerized the lignin macromolecules into low molecular lignin-derived aromatic compounds satisfies the requirement for carbon dioxide peaking and is also one of the important ways to realize lignin valorization. Coriolopsis trogii is a kind of less reported lignin-degrading white-rot fungus. The degradability of a self-isolated C. trogii TS01 on industrial lignins, including enzymatic hydrolysis lignin (EHL) and Kraft lignin (KL), was investigated in this paper. The results indicated that EHL could be used as an efficient carbon source to promote the cell growth and ligninolytic enzyme secretion of C. trogii TS01. Compared with using 2% glucose as carbon source, 1% EHL plus 1% glucose would increase the maximum cell dry weight, laccase activity, and manganese-dependent peroxidase activity of C. trogii TS01 by 24.8%, 164.1%, and 200%, respectively. However, the cell growth and ligninolytic enzyme secretion would be significantly inhibited in the case of 1% KL plus 1% glucose used as carbon source. As a result, at the 12th day of fermentation, the degradation rates of EHL and KL were 50.6% and 5.7%, respectively. The UV and FTIR analysis indicated that after been fermented by C. trogii TS01, S-unit content in EHL was decreased by 12.5% but G-unit content was increased by 53.7%. In conclusion, the research of this paper will provide a promising solution for the valorization of enzymatic hydrolysis lignin since the high biodegradation rate of lignin and high activity of ligninolytic enzymes could be achieved simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

EHL:

Enzymatic hydrolysis lignin

KL:

Kraft lignin

LiP:

Lignin peroxidase

MnP:

Mn-dependent peroxidase

Lac:

Laccase

PDA:

Potato dextrose agar

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

SLC:

Soluble lignin compounds

HMF:

5-Hydroxymethylfurfural

References

  1. Poveda-Giraldo, J. A., Solarte-Toro, J. C., & Cardona Alzate, C. A. (2021). The potential use of lignin as a platform product in biorefineries: A review. Renewable and Sustainable Energy Reviews, 138, 110688.

    Article  CAS  Google Scholar 

  2. Liu, G., & Qu, Y. (2018). Engineering of Filamentous fungi for efficient conversion of lignocellulose: Tools, recent advances and prospects. Biotechnology Advances, 37(4), 519–529.

    Article  PubMed  Google Scholar 

  3. Nguyen, L. T., Phan, D. P., Sarwar, A., Tran, M. H., Lee, O. K., & Lee, E. Y. (2021). Valorization of industrial lignin to value-added chemicals by chemical depolymerization and biological conversion. Industrial Crops and Products, 161, 113219.

    Article  CAS  Google Scholar 

  4. Wang, H., Pu, Y., Ragauskas, A., & Yang, B. (2019). From lignin to valuable products-strategies, challenges, and prospects. Bioresource Technology, 271, 449–461.

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki, Y., Otsuka, Y., Araki, T., Kamimura, N., Masai, E., Nakamura, M., & Katayama, Y. (2021). Lignin valorization through efficient microbial production of β-ketoadipate from industrial black liquor. Bioresource Technology, 337, 125489.

    Article  CAS  PubMed  Google Scholar 

  6. Liu, Z. H., Le, R. K., Kosa, M., Yang, B., Yuan, J., & Ragauskas, A. J. (2019). Identifying and creating pathways to improve biological lignin valorization. Renewable and Sustainable Energy Reviews, 105, 349–362.

    Article  CAS  Google Scholar 

  7. Biko, O. D. V., Viljoen-Bloom, M., & van Zyl, W. H. (2020). Microbial lignin peroxidases: Applications, production challenges and future perspectives. Enzyme and Microbial Technology, 141, 109669.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, J., Li, L., Xu, H., Zhang, Y., Liu, Y., Zhang, F., Shen, G., Yan, L., Wang, W., Tang, H., Qiu, H., Gu, J. D., & Wang, W. (2022). Construction of a fungal consortium for effective degradation of rice straw lignin and potential application in bio-pulping. Bioresource Technology, 344, 126168.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, S. T., Xiao, J. L., Wang, G., & Chen, G. (2020). Enzymatic hydrolysis of lignin by ligninolytic enzymes and analysis of the hydrolyzed lignin products. Bioresource Technology, 304, 122975.

    Article  CAS  PubMed  Google Scholar 

  10. Khatami, S., Deng, Y., Tien, M., & Hatcher, P. G. (2019). Formation of water-soluble organic matter through fungal degradation of lignin. Organic Geochemistry, 135, 64–70.

    Article  CAS  Google Scholar 

  11. Asina, F. N. U., Brzonova, I., Kozliak, E., Kubátová, A., & Ji, Y. (2017). Microbial treatment of industrial lignin: Successes, problems and challenges. Renewable and Sustainable Energy Reviews, 77, 1179–1205.

    Article  CAS  Google Scholar 

  12. Kersten, P., & Cullen, D. (2007). Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genetics & Biology, 44(2), 77–87.

    Article  CAS  Google Scholar 

  13. Mustafa, A. M., Poulsen, T. G., & Sheng, K. (2016). Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Applied Energy, 180, 661–671.

    Article  CAS  Google Scholar 

  14. Akyol, Ç., Ince, O., Bozan, M., Ozbayram, E. G., & Ince, B. (2019). Biological pretreatment with Trametes versicolor to enhance methane production from lignocellulosic biomass: A metagenomic approach. Industrial Crops and Products, 140, 111659.

    Article  CAS  Google Scholar 

  15. Wu, F. F., Jia, X., Yin, L. J., Cheng, Y. Q., Miao, Y. X., & Zhang, X. Q. (2019). The effect of hemicellulose and lignin on properties of polysaccharides in Lentinus edodes and their antioxidant evaluation. Molecules, 24(9), 1834.

    Article  CAS  PubMed Central  Google Scholar 

  16. Deswal, D., Gupta, R., Nandal, P., & Kuhad, R. C. (2014). Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydrate Polymer, 99, 264–269.

    Article  CAS  Google Scholar 

  17. Salvachúa, D., Prieto, A., López-Abelairas, M., Lu-Chau, T., Martínez, A. T., & Martínez, M. J. (2011). Fungal pretreatment: An alternative in second-generation ethanol from wheat straw. Bioresource Technology, 102(16), 7500–7506.

    Article  PubMed  Google Scholar 

  18. Daâssi, D., Prieto, A., Zouari-Mechichi, H., Martínez, M. J., Nasri, M., & Mechichi, T. (2016). Degradation of bisphenol A by different fungal laccases and identification of its degradation products. International Biodeterioration & Biodegradation, 110, 181–188.

    Article  Google Scholar 

  19. Agrawal, N., & Shahi, S. K. (2017). Degradation of polycyclic aromatic hydrocarbon (pyrene) using novel fungal strain Coriolopsis byrsina strain APC5. International Biodeterioration & Biodegradation, 122, 69–81.

    Article  CAS  Google Scholar 

  20. Eraghi, K. A., & Fatehi, P. (2020). Technical lignin and its potential modification routes: A mini-review. Industrial Crops and Products, 154, 112732.

    Article  Google Scholar 

  21. Agarwal, A., Jo, Y. T., & Park, J. H. (2021). Hybrid microwave-ultrasound assisted catalyst-free depolymerization of Kraft lignin to bio-oil. Industrial Crops and Products, 162, 113300.

    Article  CAS  Google Scholar 

  22. Shao, L. P., Zhang, X. M., Chen, F. S., & Xu, F. (2017). Fast pyrolysis of Kraft lignins fractionated by ultrafiltration. Journal of Analytical and Applied Pyrolysis, 128, 27–34.

    Article  CAS  Google Scholar 

  23. Zhou, J., Hu, L. H., Liang, B. C., Bo, C. Y., Jia, P. Y., & Zhou, Y. H. (2015). Preparation and characterization of novolac phenol-formaldehyde resins with enzymatic hydrolysis lignin. Journal of the Taiwan Institute of Chemical Engineers, 54, 178–182.

    Article  Google Scholar 

  24. Zhao, G. F., Liu, X. L., Ren, S. X., Tan, W. Y., & Fang, G. Z. (2018). Quantitative comparison of surface properties of enzymatic hydrolysis lignin before and after degradation. Industrial Crops and Products, 125, 468–472.

    Article  CAS  Google Scholar 

  25. Lu, X. Y., Dai, P., Zhu, X. J., Guo, H. Q., Que, H., Wang, D. D., Liang, D. X., He, T., Dong, Y. G., Li, L., Hu, C. J., Xu, C. Z., Luo, Z. Y., & Gu, X. L. (2020). Thermal behavior and kinetics of enzymatic hydrolysis lignin modified products. Thermochimica Acta, 688, 178593.

    Article  CAS  Google Scholar 

  26. Jia, Z., Wan, G. C., Li, M. F., Luo, B., Wang, S. F., & Min, D. (2018). Fractionation and characterization of sugarcane bagasse Kraft lignin. Chemistry and Industry of Forest Products, 38(5), 107–114.

    CAS  Google Scholar 

  27. Park, N., & Park, S. S. (2014). Purification and characterization of a novel laccase from Fomitopsis pinicola mycelia. International Journal of Biological Macromolecules, 70, 583–589.

    Article  CAS  PubMed  Google Scholar 

  28. Wariishi, H., Akileswaran, L., & Gold, M. H. (1988). Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: Spectral characterization of the oxidized states and the catalytic cycle. Biochemistry, 27(14), 5365–5370.

    Article  CAS  PubMed  Google Scholar 

  29. Bonugli-Santos, R. C., Durrant, L. R., Da Silva, M., & Sette, L. D. (2010). Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme and Microbial Technology, 46(1), 32–37.

    Article  CAS  Google Scholar 

  30. Wang, L., & Chen, H. Z. (2011). Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochemistry, 46(2), 604–607.

    Article  CAS  Google Scholar 

  31. Birhanli, E., Erdogan, S., Yesilada, O., & Onal, Y. (2013). Laccase production by newly isolated white rot fungus Funalia trogii: Effect of immobilization matrix on laccase production. Biochemical Engineering Journal, 71, 134–139.

    Article  CAS  Google Scholar 

  32. Shi, Y., Chai, L., Tang, C., Yang, Z., Zheng, Y., Chen, Y., & Jing, Q. (2013). Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess and Biosystems Engineering, 36(12), 1957–1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ibrahim, V., Mendoza, L., Mamo, G., & Hatti-Kaul, R. (2011). Blue laccase from Galerina sp.: Properties and potential for Kraft lignin demethylation. Process Biochemistry, 46(1), 379–384.

    Article  CAS  Google Scholar 

  34. Bugg, T. D. H., & Rahmanpour, R. (2015). Enzymatic conversion of lignin into renewable chemicals. Current Opinion in Chemical Biology, 29, 10–17.

    Article  CAS  PubMed  Google Scholar 

  35. Dashtban, M., Schraft, H., Syed, T. A., & Qin, W. (2010). Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry And Molecular Biology, 1(1), 36–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wesenberg, D., Kyriakides, I., & Agathos, S. N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 22(1–2), 161–187.

    Article  CAS  PubMed  Google Scholar 

  37. Illuri, R., Kumar, M., Eyini, M., Veeramanikandan, V., Almaary, K. S., Elbadawi, Y. B., Biraqdar, M. A., & Balaji, P. (2021). Production, partial purification and characterization of ligninolytic enzymes from selected basidiomycetes mushroom fungi. Saudi Journal of Biological Sciences, 28(12), 7207–7218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Senthivelan, T., Kanagaraj, J., Panda, R. C., & Narayani, T. (2019). Screening and production of a potential extracellular fungal laccase from Penicillium chrysogenum: Media optimization by response surface methodology (RSM) and central composite rotatable design (CCRD). Biotechnology Reports, 23, e00344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mei Ling, H., Qi, A., Kai Yue, M., Wen Ning, A., Wen Yao, H., Meng Yi, L., Wen Yi, S., Yang, J., & Lu Sen, B. (2021). A comparative study on the laccase activity of four basidiomycete fungi with different lignocellulosic residues via solid-state fermentation. BioResources, 16(2), 3017–3031.

    Article  Google Scholar 

  40. Shi, L., Yu, H., Dong, T., Kong, W., Ke, M., Ma, F., & Zhang, X. (2014). Biochemical and molecular characterization of a novel laccase from selective lignin-degrading white-rot fungus Echinodontium taxodii 2538. Process Biochemistry, 49(7), 1097–1106.

    Article  CAS  Google Scholar 

  41. Santana, T. T., Linde, G. A., & Colautodo Valle, N. B. J. S. (2018). Metallic-aromatic compounds synergistically induce Lentinus crinitus laccase production. Biocatalysis and Agricultural Biotechnology, 16, 625–630.

    Article  Google Scholar 

  42. Niladevi, K. N., & Prema, P. (2008). Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresource Technology, 99(11), 4583–4589.

    Article  CAS  PubMed  Google Scholar 

  43. Geng, X., & Li, K. (2002). Degradation of non-phenolic lignin by the white-rot fungus Pycnoporus cinnabarinus. Applied Microbiology and Biotechnology, 60(3), 342–346.

    Article  CAS  PubMed  Google Scholar 

  44. Verma, M., Ekka, A., Mohapatra, T., & Ghosh, P. (2020). Optimization of kraft lignin decolorization and degradation by bacterial strain Bacillus velezensis using response surface methodology. Journal of Environmental Chemical Engineering, 8(5), 104270.

    Article  CAS  Google Scholar 

  45. Shi, Y., Chai, L., Tang, C., Yang, Z., Zhang, H., Chen, R., Chen, Y., & Zheng, Y. (2013). Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnology for Biofuels, 6(1), 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, Y. S., Zhou, J. T., Lu, H., Yuan, Y. L., & Zhao, L. H. (2011). Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin. Biodegradation, 22(5), 1017–1027.

    Article  CAS  PubMed  Google Scholar 

  47. Asina, F., Brzonova, I., Voeller, K., Kozliak, E., Kubátová, A., Yao, B., & Ji, Y. (2016). Biodegradation of lignin by fungi, bacteria and laccases. Bioresource Technology, 220, 414–424.

    Article  CAS  PubMed  Google Scholar 

  48. Mishra, V., Jana, A. K., Jana, M. M., & Gupta, A. (2017). Synergistic effect of syringic acid and gallic acid supplements in fungal pretreatment of sweet sorghum bagasse for improved lignin degradation and enzymatic saccharification. Process Biochemistry, 55, 116–125.

    Article  CAS  Google Scholar 

  49. Verma, M., & Ekka, A. (2018). Decolorization and degradation of Kraft lignin discharged from pulp and paper mill industry by axenic and co-culture of Bacillus sp. Research Journal of Pharmacy and Technology, 11(10), 4386–4392.

    Article  Google Scholar 

  50. Qiu, W. H., & Chen, H. Z. (2008). FTIR spectra analysis of the reactive activity of lignin when modified by laccase. Spectroscopy and Spectral Analysis, 28, 1501–1505.

    CAS  PubMed  Google Scholar 

  51. Bui, N. Q., Fongarland, P., Rataboul, F., Dartiguelongue, C., Charon, N., Vallée, C., & Essayem, N. (2015). FTIR as a simple tool to quantify unconverted lignin from chars in biomass liquefaction process: Application to SC ethanol liquefaction of pine wood. Fuel Processing Technology, 134, 378–386.

    Article  CAS  Google Scholar 

  52. Huang, Y., Liu, H., Yuan, H., Zhuang, X., Yuan, S., Yin, X., & Wu, C. (2018). Association of chemical structure and thermal degradation of lignins from crop straw and softwood. Journal of Analytical and Applied Pyrolysis, 134, 25–34.

    Article  CAS  Google Scholar 

  53. Ibrahim, M. N. M., Iqbal, A., Shen, C. C., Bhawani, S. A., & Adam, F. (2019). Synthesis of lignin based composites of TiO2 for potential application as radical scavengers in sunscreen formulation. BMC Chemistry, 13(1), 17–30.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chow, Y. Y., & Ting, A. S. Y. (2019). Influence of fungal infection on plant tissues: FTIR detects compositional changes to plant cell walls. Fungal Ecology, 37, 38–47.

    Article  Google Scholar 

  55. Ghaffar, S., & Fan, M. (2013). Structural analysis for lignin characteristics in biomass straw. Biomass and Bioenergy, 57, 264–279.

    Article  CAS  Google Scholar 

  56. Santos, P. S. B. D., Erdocia, X., Gatto, D. A., & Labidi, J. (2014). Characterisation of Kraft lignin separated by gradient acid precipitation. Industrial Crops and Products, 55, 149–154.

    Article  Google Scholar 

  57. Faix, O. (2009). Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung, 45(s1), 21–27.

    Article  Google Scholar 

  58. Boeriu, C. G., Bravo, D., Gosselink, R. J. A., & van Dam, J. E. G. (2004). Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Industrial Crops and Products, 20(2), 205–218.

    Article  CAS  Google Scholar 

  59. Wang, G. H., & Chen, H. Z. (2013). Fractionation of alkali-extracted lignin from steam-exploded stalk by gradient acid precipitation. Separation and Purification Technology, 105, 98–105.

    Article  CAS  Google Scholar 

  60. Hoareau, W., Trindade, W., Siegmund, B., Castellan, A., & Frollini, E. (2004). Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: Characterization and stability. Polymer Degradation and Stability, 86, 567–576.

    Article  CAS  Google Scholar 

  61. Araújo, L. C. P., Yamaji, F. M., Lima, V. H., & Botaro, V. R. (2020). Kraft lignin fractionation by organic solvents: Correlation between molar mass and higher heating value. Bioresource Technology, 314, 123757.

    Article  PubMed  Google Scholar 

  62. Ehara, K., Takada, D., & Saka, S. (2005). GC-MS and IR spectroscopic analyses of the lignin-derived products from softwood and hardwood treated in supercritical water. Journal of Wood Science, 51(3), 256–261.

    Article  CAS  Google Scholar 

  63. Qiu, W. H., & Chen, H. Z. (2006). Structure, function and higher value application of lignin. Journal of Cellulose Science and Technology, 14, 52–59.

    CAS  Google Scholar 

  64. Li, X., & Zheng, Y. (2020). Biotransformation of lignin: Mechanisms, applications and future work. Biotechnology Progress, 36(1), e2922.

    Article  CAS  PubMed  Google Scholar 

  65. de Salas, F., & Camarero, S. (2021). In Encyclopedia of Mycology, (Zaragoza, Ó. and Casadevall, A., eds.), Elsevier, Oxford, pp. 233–246.

  66. Raychaudhuri, A., & Behera, M. (2022). In Development in Wastewater Treatment Research and Processes, (Shah, M. P., Rodriguez-Couto, S. and Kapoor, R. T., eds.), Elsevier, pp. 195–219.

  67. Vrsanska, M., Voberkova, S., Langer, V., Palovcikova, D., Moulick, A., Adam, V., & Kopel, P. (2016). Induction of laccase, lignin peroxidase and manganese peroxidase activities in white-rot fungi using copper complexes. Molecules, 21(11), 1553.

    Article  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Specific Projects on Basic Research Cooperation of Beijing-Tianjin-Hebei (no. B2021204034); the Beijing Natural Science Foundation (no. J210013); and the Dalian National Laboratory for Clean Energy Cooperation Fund, CAS (no. DNL180305).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Qiu Weihua: conceptualization, methodology, data curation, writing—original draft, writing—review and editing, supervision, project administration, funding acquisition; Jinru Liu: methodology, investigation, formal analysis, data curation, writing—original draft.

Corresponding author

Correspondence to Weihua Qiu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, W., Liu, J. Fermenting and Lignin Degradability of a White-Rot Fungus Coriolopsis trogii Using Industrial Lignin as Substrate. Appl Biochem Biotechnol 194, 5220–5235 (2022). https://doi.org/10.1007/s12010-022-04004-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04004-5

Keywords

Navigation