Skip to main content
Log in

Sedimentation velocity of myxomycete spores

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Sedimentation velocities were measured for seven myxomycete species and one fungus. Values for these first measurements for Myxomycetes were fitted with the formula of Stoke’s law for the terminal velocity of small spherical bodies in air. The obtained correlation coefficient of R=0.939 indicates that sedimentation velocities of myxomycete spores follow Stoke’s law well. With spore density as a parameter, the fit estimated a mean density of 0.74 g/cm3 for air-dried spores. The importance of the stalked spore case as well as the spore diameter for dispersal abilities of Myxomycetes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aylor DE (1999) Biophysical scaling and the passive dispersal of fungus spores: relationship to integrated pest management strategies. Agri For Meteorol 97:275–292

    Article  Google Scholar 

  • Blackwell M, Laman TG, Gilbertson R (1982) Spore dispersal in Fuligo septica (Myxomycetes) by Lathridiid Beetles. Mycotaxon 14:58–60

    Google Scholar 

  • Buxton PA (1954) British Diptera assosiated with fungi. 2. Diptera bred from Myxomycetes. Proc Roy Entomol Soc London 29:163–171

    Google Scholar 

  • Carter MV (1965) Ascospore deposition in Eutypa armeniacae. Australian J Agri Res 16:825–836

    Article  Google Scholar 

  • Cavender JC (1990) Phylum Dictyostelida. In: Cavender JC, Margulis L, Corliss JO, Melkonian M and Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 88–101

    Google Scholar 

  • Chamberlain AC (1967) Transport of Lycopodium spores and other small particles to rough surfaces. Proc Roy Soc London Ser A296:45–70

    Google Scholar 

  • Chassain M (1973) Capture d’un insecte collembole par deux myxomycetes. Doc Mycol 8:37–38

    Google Scholar 

  • Davis JM, Eisner AD, Wiener RW, Main CE (1997) A flow visualization study of spore release using a wind tunnel-mounted laser light sheet. Plant Dis 81:1057–1065

    Article  Google Scholar 

  • Digiovanni F, Kevan PG, Nasr ME (1995) The variability in settling velocities of some pollen and spores. Grana 34:39–44

    Google Scholar 

  • Dixon PA (1963) Spore liberation by water drops in some Myxomycetes. Trans British Mycol Soc 46:615–619

    Article  Google Scholar 

  • Edmonds RL (1979) Aerobiology: the ecological systems approach. Dowden, Stroudsburg, PA, USA

    Google Scholar 

  • Evenson AE (1962) A preliminary report of the Myxomycetes of southern Arizona. Mycologia 53:137–144

    Article  Google Scholar 

  • Farr ML (1976) Flora Neotropica, monograph no. 16: Myxomycetes. New York Botanical Gardens, Bronx, New York

    Google Scholar 

  • Ferrandino FJ, Aylor DE (1984) Settling speed of clusters of spores. Phytopathology 74:969–972

    Google Scholar 

  • Gregory PH (1957) Electrostatic charges on spores of fungi in air. Nature 180:330

    Article  Google Scholar 

  • Gregory PH (1961) The microbiology of the atmosphere. Interscience, New York

    Google Scholar 

  • Gregory PH (1973) The microbiology of the atmosphere. Hill, London

  • Griffiths WD, Vaughan NP (1986) The aerodynamic behaviour of cylindrical and spheroidal particles when settling under gravity. J Aerosol Sci 17:53–65

    Article  Google Scholar 

  • Harrington JB, Metzger K (1963) Ragweed pollen density. Am J Bot 50:532–539

    Article  Google Scholar 

  • Ingold CT (1971) Fungal spores: their liberation and dispersal. Clarendon, Oxford, UK

  • Jackson ST, Lyford ME (1999) Pollen dispersal models in quaternary plant ecology: assumptions, parameters, and prescriptions. Bot Rev 65:39–75

    Google Scholar 

  • Keller HW, Smith DM (1978) Dissemination of myxomycete spores trough the feeding activities (ingestion–defecation) of an acarid mite. Mycologia 70:1239–1241

    Article  Google Scholar 

  • Keller HW, Snell KL (2002) Feeding activities of slugs on Myxomycetes and macrofungi. Mycologia 94:757–760

    Article  Google Scholar 

  • Kylin JH (1991) On the feeding habits of a tardigrade: selective foraging on Myxomycetes. The Mycologist 5:54–55

    Article  Google Scholar 

  • Lado C (2001) Nomenmyx: a nomenclatural database of Myxomycetes. Cuadernos Trabajo Flora Micol Iberica 16:1–221

    Google Scholar 

  • McCartney HA, Schmechel D, Lacey ME (1993) Aerodynamic diameter of conidia of Alternaria species. Plant Pathol 42:280–286

    Article  Google Scholar 

  • Mitchell DW (2004) A key to corticolous Myxomycota. Syst Geogr Plants 74:261–285

    Google Scholar 

  • Murray PM, Feest A, Madelin MF (1985) The numbers of viable myxomycete cells in the alimentary tracts of earthworms and in earthworm casts. Bot J Linnean Soc 91:359–366

    Google Scholar 

  • Nagarajan S, Singh DV (1990) Long-distance dispersion of rust pathogens. Ann Rev Phytopathol 28:139–153

    Article  Google Scholar 

  • Nowotny W (2000) Myxomyceten (Schleimpilze) und Mycetozoa (Pilztiere): Lebensformen zwischen Pflanze und Tier. Stapfia 73:7–38

    Google Scholar 

  • Olive LS (1975) The Mycetozoans. Academic Press, New York

  • Petterson B (1940) Experimentelle Untersuchungen über die euanemochore Verbreitung der Sporenpflanzen. Acta Botan Fenn 25:1–103

    Google Scholar 

  • Piepenbring M, Hagedorn G, Oberwinkler F (1998) Spore liberation and dispersal in smut fungi. Botan Acta 111:444–460

    Google Scholar 

  • Sawyer AJ, Griggs MH, Wayne R (1994) Dimensions, density, and settling velocity of Entomophthoralean conidia: Implications for aerial dissemination of spores. J Invert Pathol 63:43–55

    Article  Google Scholar 

  • Schnittler M (2001a) Foliicolous liverworts as a microhabitat for Neotropical Myxomycetes. Nova Hedwigia 72:259–270

    Google Scholar 

  • Schnittler M (2001b) Ecology and biogeography of Myxomycetes. PhD Thesis, Friedrich-Schiller-University, Jena, Germany, 315 pp. Available at http://www.urmel-dl.de/servlets/DerivateServlet/Derivate-1083/Habil.html. Cited 20 May 2007

  • Schnittler M, Mitchell DW (2000) Species diversity in Myxomycetes based on the morphological species concept: a critical examination. Stapfia 73:55–61

    Google Scholar 

  • Schnittler M, Stephenson SL, Novozhilov YK (2000) Ecology and world distribution of Barbeyella minutissima (Myxomycetes). Mycol Res 104:1518–1523

    Article  Google Scholar 

  • Schnittler M, Unterseher M, Tesmer J (2006) Species richness and ecological characterization of Myxomycetes and myxomycete-like organisms in the canopy of a temperate deciduous forest. Mycologia 98:223–232

    PubMed  Google Scholar 

  • Spiegel FW, Stephenson SL, Keller HW, Moore DL, Cavender JC (2004) Mycetozoans. In: Mueller GM, Bills GF and Foster MS (eds). Biodiversity of fungi: inventory and monitoring methods. Elsevier, Amsterdam, pp 547–576

    Google Scholar 

  • Stephenson SL, Schnittler M, Novozhilov YK (2007) Myxomycete diversity and distribution from the fossil record to the present. Biodivers Conserv (in press)

  • Sutherland JB (1979) Gray Jay feeding on slime mold. The Murrelet 60:122

    Google Scholar 

  • Swanson AR, Spiegel FW, Cavender JC (2002) Taxonomy, slime molds, and the questions we ask. Mycologia 94:968–979

    Article  Google Scholar 

  • Takahashi Y, Sasaki K, Nakamura S, Mikihirosige H, Nitta H (1995) Aerodynamic size distribution of the particles emitted from the flowers of allergologically important plants. Grana 34:45–49

    Article  Google Scholar 

  • Thompson K (1993) Buoyancy in air. In: Hendry GFA and Grime JP (eds) Methods in comparative plant ecology. Chapman and Hall, London, pp 176–181

    Google Scholar 

  • Townsend JH, Aldrich HC, Wilson LD, McCranie JR (2005) First report of sporangia of a myxomycete (Physarum pusillum) on the body of a living animal, the lizard Corytophanes cristatus. Mycologia 97:346–348

    Article  PubMed  Google Scholar 

  • Troll R (1987) The endozoic dispersal of myxomycete spores by Onicus acellus L. (Crustacea). Trans Ill Acad Sci 80:349–350

    Google Scholar 

  • Vogel S (1981) Live in moving fluids: the physical biology of flow. Princeton University Press, Princeton, NY, USA

    Google Scholar 

Download references

Acknowledgements

For help with the design of the experimental setting to determine sedimentation velocities, we are indebted to Holger Kersten. Thomas Horn and Uwe Rediek manufactured the glass cylinders for the sedimentation experiments. Bernd Pompe, Gerald van den Boogaart and Jörn Winter gave useful hints for the evaluation of the sedimentation data. We also owe thanks to numerous graduate students who contributed measurements within their laboratory courses that helped in the optimisation of experimental procedures. Myxomycete material came from surveys carried out in the framework of a grant from the US National Science Foundation project DEB-0316284 “PBI: Global Biodiversity of Eumycetozoans”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schnittler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesmer, J., Schnittler, M. Sedimentation velocity of myxomycete spores. Mycol Progress 6, 229–234 (2007). https://doi.org/10.1007/s11557-007-0539-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-007-0539-8

Keywords

Navigation