Skip to main content

Advertisement

Log in

Green synthesis of the Ag/Al2O3 nanoparticles using Bryonia alba leaf extract and their catalytic application for the degradation of organic pollutants

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In our present work, for the first time we reported an easy, inexpensive and eco-friendly method for the preparation of silver nanoparticles (Ag NPs) supported on nano aluminum oxide (Al2O3) using Bryonia alba leaf extract. The plant extract as a mild, renewable, non-toxic reducing and stabilizing agent has an important role in anchoring of Ag NPs on the nano Al2O3. The formation of Ag/Al2O3 NPs were proved through FT-IR, XRD, TEM, EDS and FE-SEM. The catalytic activity of the Ag/Al2O3 NPs has been tested as an affective and heterogeneous catalyst for the reduction of 4-nitrophenol (4-NP), 2,4-dinitrophenylhydrazine (2,4-DNPH) and degradation of the congo red (CR), methyl orange (MO), methylene blue (MB) and Rhodamine B (RhB) in the presence of sodium borohydride (NaBH4) at room temperature. The catalyst can be recovered and recycled multiple times without losing of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Scheme 3
Scheme 4
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Dai, J. Chen, J. Lin, S. Xiao, S. Chen, Y. Deng, Reduction of nitro phenols using nitroreductase from E. coli in the presence of NADH. J. Hazard. Mater. 170, 141–143 (2009)

    Article  Google Scholar 

  2. W. Zhang, X. Xiao, T. An, Z. Song, J. Fu, G. Sheng, M. Cui, Kinetics, degradation pathway and reaction mechanism of advanced oxidation of 4-nitrophenol in water by a UV/H2O2 process. J. Chem. Technol. Biotechnol. 78, 788–794 (2003)

    Article  Google Scholar 

  3. M. Nakagawa, D. Crosby, Photodecomposition of nitrofen. J. Agric. Food Chem. 22, 849–853 (1974)

    Article  Google Scholar 

  4. I. Banat, P. Nigam, D. Singh, R. Marchant, Microbial decolorization of textile-dyecontaining effluents: a review. Bioresour. Technol. 58, 217–227 (1996)

    Article  Google Scholar 

  5. N.L. Gavade, A.N. Kadam, Y.B. Gaikwad, M.J. Dhanavade, K.M. Garadkar, Decoration of biogenic Ag NPs on template free ZnO nanorods for sunlight driven photocatalytic detoxification of dyes and inhibition of bacteria. J. Mater. Sci. Mater. Electron. 27, 11080–11091 (2016)

    Article  Google Scholar 

  6. M. Nasrollahzadeh, E. Mehdipour, M. Maryami, Efficient catalytic reduction of nitroarenes and organic dyes in water by synthesized Ag/diatomite nanocomposite using Alocasia macrorrhiza leaf extract. J. Mater. Sci. Mater. Electron. 29, 17054–17066 (2018)

    Article  Google Scholar 

  7. V. Vidhu, D. Philip, Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 56, 54–62 (2014)

    Article  Google Scholar 

  8. L.A. Alfonso-Herrera, A.M. Huerta-Flores, L.M. Torres-Martínez, J.M. Rivera-Villanueva, D.J. Ramírez-Herrera, Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye. J. Mater. Sci. Mater. Electron. 29, 10395–10410 (2018)

    Article  Google Scholar 

  9. M. Qin, K. Lin, Q. Shuai, H. Liang, J. Peng, C. Mao, Y. Ji, H. Wu, Facile synthesis of 2D single-phase Ni0.9Zn0.1O and its application in decolorization of dye. J. Mater. Sci. Mater. Electron. 29, 9740–9744 (2018)

    Article  Google Scholar 

  10. S. Saha, A. Pal, S. Kundu, S. Basu, T. Pal, Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26(4), 2885–2893 (2010)

    Article  Google Scholar 

  11. P. Wilhelm, D. Stephan, Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres. J. Photochem. Photobiol. A 185, 19–25 (2007)

    Article  Google Scholar 

  12. B. Manu, S. Chaudhari, Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresour. Technol. 82, 225–231 (2002)

    Article  Google Scholar 

  13. E. Abdel-Halim, M. El-Rafie, S. Al-Deyab, Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles. Carbohydr. Polym. 85, 692–697 (2011)

    Article  Google Scholar 

  14. X. Huang, H. Wu, S. Pu, W. Zhang, X. Liao, B. Shi, One-step room-temperature synthesis of Au@Pd core-shell nanoparticles with tunable structure using plant tannin as reductant and stabilizer. Green Chem. 13, 950–957 (2011)

    Article  Google Scholar 

  15. C. Noguez, Surface Plasmons on Metal Nanoparticles, the influence of shape and physical environment. J. Phys. Chem. C 111, 3806–3819 (2007)

    Article  Google Scholar 

  16. X. Zhou, X. Huang, X. Qi, S. Wu, C. Xue, F. Boey, Q. Yan, P. Chen, H. Zhang, In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 113, 10842–10846 (2009)

    Article  Google Scholar 

  17. A. Lowe, B. Sumerlin, M. Donovan, C. McCormick, Facile preparation of transition metal nanoparticles stabilized by well-defined (Co)polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization. J. Am. Chem. Soc. 124, 11562–11563 (2002)

    Article  Google Scholar 

  18. J. He, T. Kunitake, A. Nakao, Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem. Mater. 15, 4401–4406 (2003)

    Article  Google Scholar 

  19. A. Troupis, A. Hiskia, E. Papaconstantinou, Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew. Chem. Int. Ed. 41, 1911–1914 (2002)

    Article  Google Scholar 

  20. M. Nasrollahzadeh, S.M. Sajadi, A. Hatamifard, Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites. Appl. Catal. B 191, 209–227 (2016)

    Article  Google Scholar 

  21. M. Nasrollahzadeh, M. Atarod, S.M. Sajadi, Biosynthesis, characterization and catalytic activity of Cu/RGO/Fe3O4 for direct cyanation of aldehydes with K4[Fe(CN)6]. J. Colloid Interface Sci. 486, 153–162 (2017)

    Article  Google Scholar 

  22. M. Maryami, M. Nasrollahzadeh, E. Mehdipour, S.M. Sajadi, Preparation of the Ag/RGO nanocomposite by use of Abutilon hirtum leaf extract: a recoverable catalyst for the reduction of organic dyes in aqueous medium at room temperature. Int. J. Hydrog. Energy 41, 21236–21245 (2016)

    Article  Google Scholar 

  23. B. Khodadadi, M. Bordbar, M. Nasrollahzadeh, Achillea millefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: application of the nanoparticles for catalytic reduction of a variety of dyes in water. J. Colloid Interface Sci. 493, 85–93 (2017)

    Article  Google Scholar 

  24. B. Khodadadi, M. Bordbar, M. Nasrollahzadeh, Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: catalytic activity for reduction of organic dyes. J. Colloid Interface Sci. 490, 1–10 (2017)

    Article  Google Scholar 

  25. N. Vigneshwaran, N.P. Nachane, R.H. Balasubramanya, P.V. Varadarajan, A novel one-pot green synthesis of stable silver nanoparticles using soluble starch. Carbohydr. Res. 341, 2012–2018 (2006)

    Article  Google Scholar 

  26. P. Banerjee, M. Satapathy, A. Mukhopahayay, P. Das, Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioprocess. 1(3), 1–10 (2014)

    Google Scholar 

  27. P. Raveendran, J. Fu, S.L. Wallen, Completely green synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125, 13940–13941 (2003)

    Article  Google Scholar 

  28. J. Choi, D. Reddy, M. Islam, B. Seo, S. Joo, T. Kim, Green synthesis of the reduced graphene oxide-CuI quasi-shell-core nanocomposite: a highly efficient and stable solar-light-induced catalyst for organic dye degradation in water. Appl. Surf. Sci. 358, 159–167 (2015)

    Article  Google Scholar 

  29. G. Khade, M. Suwarnkar, N. Gavade, K. Garadkar, Green synthesis of TiO2 and its photocatalytic activity. J. Mater. Sci. Mater. Electron. 26, 3309–3315 (2015)

    Article  Google Scholar 

  30. L.Z. Fekri, M. Nikpassand, K.H. Pour, Green aqueous synthesis of mono, bis and trisdihydropyridines using nano Fe3O4 under ultrasound irradiation. Curr. Org. Synth. 12, 76–79 (2015)

    Article  Google Scholar 

  31. J. Sharma, M. Akhtar, S. Ameen, P. Srivastava, G. Singh, Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J. Alloys Compd. 632, 321–325 (2015)

    Article  Google Scholar 

  32. D. Philip, Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim. Acta A 73, 374–381 (2009)

    Article  Google Scholar 

  33. B.M. Yashwanth, S. Shanker Rai, K.P. Shivalinge Gowda, Effect of Bryonia alba homeopathic formulation in mono sodium urate induced gouty arthritis and potassium oxonate induced hyperuricemia in experimental animals. World J. Pharm. Pharm. Sci. 4, 1120–1134 (2014)

    Google Scholar 

  34. C. Montoliu, S. Valles, J. Renau Piqueras, C. Guerri, Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain: effect of chronic alcohol consumption. J. Neurochem. 63, 1855–1862 (1994)

    Article  Google Scholar 

  35. M.P. Gard, G.P. Garg, Evaluation of pharmacognostical parameters and hepatoprotective activity in Bryonia alba Linn. J. Chem. Pharm. Res. 3, 99–109 (2011)

    Google Scholar 

  36. A.G. Panosyan, G.M. Avetissian, V.A. Mnattsakanian, S.G. Batrakov, S.A. Vartanian, E.S. Gabrielian, E.A. Amroyan, Unsaturated polyhydroxy acids having prostaglandin-like activity from Bryonia alba II. Major components. Plant Medica 47, 17–25 (1983)

    Article  Google Scholar 

  37. L.M. Gogilashvili, E.P. Kemertelidze, Lectin from Bryonia alba roots. Chem. Nat. Compd. 36, 399–401 (2000)

    Article  Google Scholar 

  38. S.V. Bhat, B.A. Nagasampagi, M. Sivakumar, Chemistry of Natural Products, (Narosa Publishing House, New Delhi, 2005), p. 585

    Google Scholar 

  39. H.A.K. Kumar, B.K. Mandal, K.M. Kumar, S.B. Maddinedi, T.S. Kumar, P. Madhiyazhagan, A.R. Ghosh, Antimicrobial and antioxidant activities of Mimusops elengi seed extract mediated isotropic silver nanoparticles. Spectrochim. Acta A 130, 13–18 (2014)

    Article  Google Scholar 

  40. E. Soleimani, N. Zamani, Surface modification of alumina nanoparticles: a dispersion study in organic media. Acta Chim. Slov. 64, 644–653 (2017)

    Article  Google Scholar 

  41. A. Rostami-Vartooni, M. Nasrollahzadeh, M. Alizadeh, Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes. J. Colloid Interface Sci. 470, 268–275 (2016)

    Article  Google Scholar 

  42. B.K. Ghosh, S. Hazra, B. Nak, N.N. Ghosh, Preparation of Cu nanoparticle loaded SBA-15 and their excellent catalytic activity in reduction of variety of dyes. Powder Technol. 269, 371–378 (2015)

    Article  Google Scholar 

  43. P. Zhang, Y. Sui, C. Wang, Y. Wang, G. Cui, C. Wang, B. Liu, B. Zou, A one-step green route to synthesize copper nanocrystals and their applications in catalysis and surface enhanced Raman scattering. Nanoscale 6, 5343–5350 (2014)

    Article  Google Scholar 

  44. X. Wang, J. Fu, M. Wang, Y. Wang, Z. Chen, J. Zhang, J. Chen, Q. Xu, Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol. J. Mater. Sci. 49, 5056–5065 (2014)

    Article  Google Scholar 

  45. M. Xie, F. Zhang, Y. Long, J. Ma, Pt nanoparticles supported on carbon coated magnetic microparticles: an efficient recyclable catalyst for hydrogenation of aromatic nitro-compounds. RSC Adv. 3, 10329–10334 (2013)

    Article  Google Scholar 

  46. B. Sreedhar, D.K. Devi, D. Yada, Selective hydrogenation of nitroarenes using gum acacia supported Pt colloid an effective reusable catalyst in aqueous medium. Catal. Commun. 12, 1009–1014 (2011)

    Article  Google Scholar 

  47. P. Wang, F. Zhang, Y. Long, M. Xie, R. Li, J. Ma, Stabilizing Pd on the surface of hollow magnetic mesoporous spheres: a highly active and recyclable catalyst for hydrogenation and Suzuki coupling reactions. Catal. Sci. Technol. 3, 1618–1624 (2013)

    Article  Google Scholar 

  48. K. Layek, M.L. Kantam, M. Shirai, D. Nishio-Hamane, T. Sasaki, H. Maheswaran, Gold nanoparticles stabilized on nanocrystalline magnesium oxide as an active catalyst for reduction of nitroarenes in aqueous medium at room temperature. Green Chem. 14, 3164–3174 (2012)

    Article  Google Scholar 

  49. Y.S. Feng, J.J. Ma, Y.M. Kang, H.J. Xu, PdCu nanoparticles supported on graphene: an efficient and recyclable catalyst for reduction of nitroarenes. Tetrahedron 70, 6100–6105 (2014)

    Article  Google Scholar 

  50. Z. Duan, G. Ma, W. Zhang, Preparation of copper nanoparticles and catalytic properties for the reduction of aromatic nitro compounds. Bull. Korean Chem. Soc. 33, 4003–4006 (2012)

    Article  Google Scholar 

  51. Y. Choi, H.S. Bae, E. Seo, S. Jang, K.H. Park, B.S. Kim, Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes. J. Mater. Chem. 21, 15431–15436 (2011)

    Article  Google Scholar 

  52. M. Islam, P. Mondal, A.S. Roy, K. Tuhina, Synthesis, characterization and catalytic activities of a reusable polymer-anchored palladium(II) complex: effective catalytic hydrogenation of various organic substrates. Transit. Met. Chem. 35, 427–435 (2010)

    Article  Google Scholar 

  53. Z. Wang, C. Xu, G. Gao, X. Li, Facile synthesis of well-dispersed Pd-graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. RSC Adv. 4, 13644–13651 (2014)

    Article  Google Scholar 

  54. H. Yang, S. Li, X. Zhang, X. Wang, J. Ma, Imidazolium ionic liquid-modified fibrous silica microspheres loaded with gold nanoparticles and their enhanced catalytic activity and reusability for the reduction of 4-nitrophenol. J. Mater. Chem. A 2, 12060–12067 (2014)

    Article  Google Scholar 

  55. J. Li, C.Y. Liu, Y. Liu, Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 22, 8426–8430 (2012)

    Article  Google Scholar 

  56. N. Sahiner, O. Ozay, Enhanced catalytic activity in the reduction of 4-nitrophenol and 2-nitrophenol by p(AMPS)-Cu(0) hydrogel composite materials. Curr. Nanosci. 8, 367–374 (2012)

    Article  Google Scholar 

  57. N. Sahiner, H. Ozay, O. Ozay, N. Aktas, New catalytic route: hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Appl. Catal. A 385, 201–207 (2010)

    Article  Google Scholar 

  58. T. Babita Devi, M.D. Ahmaruzzaman, S. Begum, A rapid, facile and green synthesis of Ag@AgCl nanoparticles for the effective reduction of 2, 4-dinitrophenyl hydrazine. New J. Chem. 40, 1497–1506 (2016)

    Article  Google Scholar 

  59. Z. Deng, H. Zhu, B. Peng, H. Chen, Y. Sun, X. Gang, P. Jin, J. Wang, Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl. Mater. Interfaces 4, 5625–5632 (2012)

    Article  Google Scholar 

  60. L. Ai, C. Zeng, Q. Wang, One-step solvothermal synthesis of Ag-Fe3O4 composite as a magnetically recyclable catalyst for reduction of Rhodamine B. Catal. Commun. 14, 68–73 (2011)

    Article  Google Scholar 

  61. X. Yang, H. Zhong, Y. Zhu, H. Jiang, J. Shen, J. Huang, C. Li, Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. J. Mater. Chem. A 2, 9040–9047 (2014)

    Article  Google Scholar 

  62. B. Zhang, B. Zhao, S. Huang, R. Zhang, P. Xu, H.L. Wang, One-pot interfacial synthesis of Au nanoparticles and Au-polyaniline nanocomposites for catalytic applications. CrystEngComm 14, 1542–1544 (2012)

    Article  Google Scholar 

  63. S. Xuan, Y.X. Wang, J.C. Yu, K.C.F. Leung, Preparation, characterization, and catalytic activity of core/shell Fe3O4@polyaniline@Au nanocomposites. Langmuir 25(19), 11835–11843 (2009)

    Article  Google Scholar 

  64. C. Wang, K. Tang, D. Wang, Z. Liu, L. Wang, Simple self-assembly of HLaNb2O7 nanosheets and Ag nanoparticles/clusters and their catalytic properties. J. Mater. Chem. 22, 22929–22934 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank the Iran National Science Foundation (INSF) for supporting this Project Numbered 96004945. We also gratefully acknowledge the University of Qom for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Nasrollahzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrollahzadeh, M., Issaabadi, Z. & Sajadi, S.M. Green synthesis of the Ag/Al2O3 nanoparticles using Bryonia alba leaf extract and their catalytic application for the degradation of organic pollutants. J Mater Sci: Mater Electron 30, 3847–3859 (2019). https://doi.org/10.1007/s10854-019-00668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00668-8

Navigation