Skip to main content
Log in

Different Degrees of Niche Differentiation for Bacteria, Fungi, and Myxomycetes Within an Elevational Transect in the German Alps

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We used direct DNA amplification from soil extracts to analyze microbial communities from an elevational transect in the German Alps by parallel metabarcoding of bacteria (16S rRNA), fungi (ITS2), and myxomycetes (18S rRNA). For the three microbial groups, 5710, 6133, and 261 operational taxonomic units (OTU) were found. For the latter group, we can relate OTUs to barcodes from fruit bodies sampled over a 4-year period. The alpha diversity of myxomycetes was positively correlated with that of bacteria. Vegetation type was found to be the main explanatory parameter for the community composition of all three groups and a substantial species turnover with elevation was observed. Bacteria and fungi display similar community responses, driven by symbiont species and plant substrate quality. Myxamoebae show a more patchy distribution, though still clearly stratified between taxa, which seems to be a response to both structural properties of the habitat and interaction with specific bacterial and fungal taxa. Finally, we report a high number of myxomycete OTUs not represented in a reference database from fructifications, which might represent novel species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abarenkov K, Henrik Nilsson R, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Ursing BM, Vrålstad T, Liimatainen K, Peintner U, Kõljalg U (2010) The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol 186:281–285

    Article  PubMed  Google Scholar 

  2. Adl MS, Gupta VVSR (2006) Protists in soil ecology and forest nutrient cycling. Can J For Res 36:1805–1817

    Article  Google Scholar 

  3. Adl SM, Simpson AGB, Lane CE et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:1–45

    Article  Google Scholar 

  4. Anderson MJ (2001) A new method for non parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  5. Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K, Tedersoo L (2016) Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J 10:885–896

    Article  PubMed  Google Scholar 

  6. Bailey VL, Fansler SJ, Stegen JC, McCue LA (2013) Linking microbial community structure to β-glucosidic function in soil aggregates. ISME J 7:2044–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  8. Bjørnlund L, Rønn R (2008) “David and Goliath” of the soil food web – flagellates that kill nematodes. Soil Biol Biochem 40:2032–2039

    Article  CAS  Google Scholar 

  9. Bjørnlund L, Mørk S, Vestergård M, Rønn R (2006) Trophic interactions between rhizosphere bacteria and bacterial feeders influenced by phosphate and aphids in barley. Biol Fertil Soils 43:1–11

    Article  CAS  Google Scholar 

  10. Boenigk J, Ereshefsky M, Hoef-Emden K, Mallet J, Bass D (2012) Concepts in protistology: species definitions and boundaries. Eur J Protistol 48:96–102

    Article  PubMed  Google Scholar 

  11. Bonkowski M (2002) Protozoa and plant growth: trophic links and mutualism. Eur J Protistol 37:363–365

    Google Scholar 

  12. Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631

    Article  PubMed  Google Scholar 

  13. Borg Dahl M, Priemé A, Brejnrod A et al (2017) Warming, shading and a moth outbreak reduce tundra carbon sink strength dramatically by changing plant cover and soil microbial activity. Sci Rep 7:16035

    Article  CAS  Google Scholar 

  14. Borg Dahl M, Brejnrod AD, Unterseher M, Hoppe T, Feng Y, Novozhilov Y, Sørensen SJ, Schnittler M (2018a) Genetic barcoding of dark-spored myxomycetes (Amoebozoa) – identification, evaluation and application of a sequence similarity threshold for species differentiation in NGS studies. Mol Ecol Resour 18:306–318

    Article  CAS  PubMed  Google Scholar 

  15. Borg Dahl M, Shchepin ON, Schunk C et al (2018b) A four year survey reveals a coherent pattern between occurrence of fruit bodies and soil amoebae populations for nivicolous myxomycetes. Sci Rep 8:11662

    Article  CAS  Google Scholar 

  16. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  PubMed  Google Scholar 

  17. Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491

    Article  CAS  PubMed  Google Scholar 

  18. Chase JM, Kraft NJB, Smith KG et al (2011) Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2:art24

    Article  Google Scholar 

  19. Choma M, Bárta J, Šantrůčková H, Urich T (2016) Low abundance of Archaeorhizomycetes among fungi in soil metatranscriptomes. Sci Rep 6:38455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Churchman K (2015) Brock Biology of Microorganisms14th edn. Pearson Higher Education, New York

    Google Scholar 

  21. Crump BC, Amaral-Zettler LA, Kling GW (2012) Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. ISME J 6:1629–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dagamac NHA, Rojas C, Novozhilov YK et al (2017) Speciation in progress? A phylogeographic study among populations of Hemitrichia serpula (Myxomycetes). PLoS One 12:1–22

    Article  CAS  Google Scholar 

  23. Day A (2012) Heatmap.plus: Heatmap with more sensible behavior. R package version 1.3

  24. de Boer W, Folman LB, Summerbell RC et al (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  CAS  PubMed  Google Scholar 

  25. de Vries FT, Manning P, Tallowin JRB, Mortimer SR, Pilgrim ES, Harrison KA, Hobbs PJ, Quirk H, Shipley B, Cornelissen JHC, Kattge J, Bardgett RD (2012) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol Lett 15:1230–1239

    Article  PubMed  Google Scholar 

  26. Deslippe JR, Hartmann M, Simard SW, Mohn WW (2012) Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol Ecol 82:303–315

    Article  CAS  PubMed  Google Scholar 

  27. Edgar R (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  28. Edgar R (2016) SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv. 074161

  29. Edgar R, Flyvbjerg H (2014) Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31:3476–3482

    Article  CAS  Google Scholar 

  30. Feng Y, Schnittler M (2015) Sex or no sex? Group I introns and independent marker genes reveal the existence of three sexual but reproductively isolated biospecies in Trichia varia (Myxomycetes). Org Divers Evol 15:631–650

    Article  Google Scholar 

  31. Feng Y, Klahr A, Janik P, Ronikier A, Hoppe T, Novozhilov YK, Schnittler M (2016) What an intron may tell: several sexual biospecies coexist in Meriderma spp. (Myxomycetes). Protist 167:234–253

    Article  CAS  PubMed  Google Scholar 

  32. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  33. Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126

    Article  CAS  PubMed  Google Scholar 

  34. Finlay RD, Read DJ (1986) The structure and function of the vegetative mycelium of ectomycorrhizal plants: I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytol 103:143–156

    Article  Google Scholar 

  35. Fiore-Donno AM, Kamono A, Meyer M, Schnittler M, Fukui M, Cavalier-Smith T (2012) 18S rDNA phylogeny of Lamproderma and allied genera (Stemonitales, myxomycetes, Amoebozoa). PLoS One 7:e35359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fiore-Donno AM, Clissmann F, Meyer M, Schnittler M, Cavalier-Smith T (2013) Two-gene phylogeny of bright-spored myxomycetes (slime-moulds, superorder Lucisporidia). PLoS One 8:e62586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fiore-Donno AM, Weinert J, Wubet T, Bonkowski M (2016) Metacommunity analysis of amoeboid protists in grassland soils. Sci Rep 6:19068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Franklin RB, Mills AL (2003) Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol Ecol 44:335–346

    Article  CAS  PubMed  Google Scholar 

  39. Fukasawa Y, Hyodo F, Kawakami S (2018) Foraging association between myxomycetes and fungal communities on coarse woody debris. Soil Biol Biochem 121:95–102

    Article  CAS  Google Scholar 

  40. Geisen S, Bonkowski M (2017) Methodological advances to study the diversity of soil protists and their functioning in soil food webs. Appl Soil Ecol. https://doi.org/10.1016/j.apsoil.2017.05.021

  41. Geisen S, Cornelia B, Jörg R et al (2014) Soil water availability strongly alters the community composition of soil protists. Pedobiologia 57:205–213

    Article  Google Scholar 

  42. Geisen S, Laros I, Vizcaíno A, Bonkowski M, de Groot GA (2015a) Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa. Mol Ecol 24:4556–4569

    Article  CAS  PubMed  Google Scholar 

  43. Geisen S, Tveit AT, Clark IM, Richter A, Svenning MM, Bonkowski M, Urich T (2015b) Metatranscriptomic census of active protists in soils. ISME J 9:2178–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Geisen S, Mitchell EAD, Wilkinson DM, Adl S, Bonkowski M, Brown MW, Fiore-Donno AM, Heger TJ, Jassey VEJ, Krashevska V, Lahr DJG, Marcisz K, Mulot M, Payne R, Singer D, Anderson OR, Charman DJ, Ekelund F, Griffiths BS, Rønn R, Smirnov A, Bass D, Belbahri L, Berney C, Blandenier Q, Chatzinotas A, Clarholm M, Dunthorn M, Feest A, Fernández LD, Foissner W, Fournier B, Gentekaki E, Hájek M, Helder J, Jousset A, Koller R, Kumar S, la Terza A, Lamentowicz M, Mazei Y, Santos SS, Seppey CVW, Spiegel FW, Walochnik J, Winding A, Lara E (2017) Soil protistology rebooted: 30 fundamental questions to start with. Soil Biol Biochem 111:94–103

    Article  CAS  Google Scholar 

  45. Glücksman E, Bell T, Griffiths RI, Bass D (2010) Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol 12:3105–3113

    Article  PubMed  Google Scholar 

  46. Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  PubMed  Google Scholar 

  47. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Article  Google Scholar 

  48. Harris JK, Sahl JW, Castoe TA, Wagner BD, Pollock DD, Spear JR (2010) Comparison of normalization methods for construction of large, multiplex amplicon pools for next-generation sequencing. Appl Environ Microbiol 76:3863–3868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hess S, Sausen N, Melkonian M (2012) Shedding light on vampires: the phylogeny of vampyrellid amoebae revisited. PLoS One 7:e31165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21:548–554

    Article  PubMed  Google Scholar 

  51. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  52. Hünninghaus M, Koller R, Kramer S, Marhan S, Kandeler E, Bonkowski M (2017) Changes in bacterial community composition and soil respiration indicate rapid successions of protist grazers during mineralization of maize crop residues. Pedobiologia 62:1–8

    Article  Google Scholar 

  53. Iriberri J, Azúa I, Labirua-Iturburu A, Artolozaga I, Barcina I (1994) Differential elimination of enteric bacteria by protists in a freshwater system. J Appl Bacteriol 77:476–483

    Article  CAS  PubMed  Google Scholar 

  54. Jacquiod S, Stenbæk J, Santos SS, Winding A, Sørensen SJ, Priemé A (2016) Metagenomes provide valuable comparative information on soil microeukaryotes. Res Microbiol 167:436–450

    Article  CAS  PubMed  Google Scholar 

  55. Kamono A, Kojima H, Matsumoto J, Kawamura K, Fukui M (2009) Airborne myxomycete spores: detection using molecular techniques. Naturwissenschaften 96:147–151

    Article  CAS  PubMed  Google Scholar 

  56. Kamono A, Meyer M, Cavalier-Smith T et al (2012) Exploring slime mould diversity in high-altitude forests and grasslands by environmental RNA analysis. FEMS Microbiol Ecol 84:98–109

    Article  CAS  PubMed  Google Scholar 

  57. Katoh K, Misawa K, Kuma K et al (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. King AJ, Freeman KR, McCormick KF et al (2010) Biogeography and habitat modelling of high-alpine bacteria. Nat Commun 1:1–6

    Article  CAS  Google Scholar 

  59. Kohler A, Kuo A, Nagy LG et al (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415

    Article  CAS  PubMed  Google Scholar 

  60. Kowalski DT (1975) The myxomycete taxa described by Charles Meylan. Mycologia 67:448–494

    Article  Google Scholar 

  61. Krashevska V, Bonkowski M, Maraun M, Ruess L, Kandeler E, Scheu S (2008) Microorganisms as driving factors for the community structure of testate amoebae along an altitudinal transect in tropical mountain rain forests. Soil Biol Biochem 40:2427–2433

    Article  CAS  Google Scholar 

  62. Lado C (2004) Nivicolous myxomycetes of the Iberian Peninsula: considerations on species richness and ecological requirements. Syst Geogr Plants 74:143–157

    Google Scholar 

  63. Lado C (2005-2019). An on line nomenclatural information system of Eumycetozoa. www.nomen.eumycetozoa.com. Accessed Nov 2017

  64. Lanzén A, Epelde L, Blanco F, Martín I, Artetxe U, Garbisu C (2016) Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Sci Rep 6:28257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lazzaro A, Hilfiker D, Zeyer J (2015) Structures of microbial communities in alpine soils: seasonal and elevational effects. Front Microbiol 6:1–13

    Article  Google Scholar 

  66. Liu QS, Yan SZ, Chen SL (2015) Species diversity of myxomycetes associated with different terrestrial ecosystems, substrata (microhabitats) and environmental factors. Mycol Prog 14:27

    Article  CAS  Google Scholar 

  67. Margesin R, Jud M, Tscherko D, Schinner F (2009) Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol 67:208–218

    Article  CAS  PubMed  Google Scholar 

  68. Martiny JBH, Jones SE, Lennon JT, Martiny AC (2015) Microbiomes in light of traits: a phylogenetic perspective. Science 350:aac9323. https://doi.org/10.1126/science.aac9323

    Article  CAS  PubMed  Google Scholar 

  69. McMurdie JP, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Metzing D, Garve E, Matzke-Hajek G et al (2018) Rote Liste und Gesamtartenliste der Farn- und Blütenpflanzen (Tracheophyta) Deutschlands. Natursch Biol Vielfalt 70:313–358

    Google Scholar 

  71. Mueller RC, Paula FS, Mirza BS, Rodrigues JLM, Nüsslein K, Bohannan BJM (2014) Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. ISME J 8:1548–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Murase J, Noll M, Frenzel P (2006) Impact of protists on the activity and structure of the bacterial community in a rice field soil. Appl Environ Microbiol 72:5436–5444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Naether A, Foesel BU, Naegele V, Wüst PK, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G, Gockel S, Hemp A, Kalko EKV, Linsenmair KE, Pfeiffer S, Renner S, Schöning I, Weisser WW, Wells K, Fischer M, Overmann J, Friedrich MW (2012) Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ Microbiol 78:7398–7406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Article  Google Scholar 

  75. Novozhilov YK, Schnittler M, Erastova DA, Okun MV, Schepin ON, Heinrich E (2013) Diversity of nivicolous myxomycetes of the Teberda State Biosphere Reserve (Northwestern Caucasus, Russia). Fungal Divers 59:109–130

    Article  Google Scholar 

  76. Novozhilov YK, Rollins AW, Schnittler M (2017) Ecology and distribution of myxomycetes. In: Stephenson SL, Rojas C (eds) Myxomycetes – biology, systematics, biogeography and ecology. Elsevier, Academic, pp 253–298

  77. Oksanen J, Guillaume FB, Friendly M et al. (2013) R package vegan: ecological diversity. R package version 2.4-2

  78. Osono T, Takeda H (2002) Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia 94:421–427

    Article  CAS  PubMed  Google Scholar 

  79. Pawlowski J, Burki F (2009) Untangling the phylogeny of amoeboid protists. J Eukaryot Microbiol 56:16–25

    Article  CAS  PubMed  Google Scholar 

  80. Peay KG, Baraloto C, Fine PVA (2013) Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J 7:1852–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Philippot L, Bru D, Saby NPA, Čuhel J, Arrouays D, Šimek M, Hallin S (2009) Spatial patterns of bacterial taxa in nature reflect ecological traits of deep branches of the 16S rRNA bacterial tree. Environ Microbiol 11:3096–3104

    Article  CAS  PubMed  Google Scholar 

  82. Portillo MC, Leff JW, Lauber CL et al. (2013) Cell size distributions of soil bacterial and archaeal taxa. Appl Environ Microbiol 79:7610–7617

  83. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rahanandeh H, Khodakaramian G, Hassanzadeh N et al (2013) Evaluation of antagonistic Pseudomonas against root lesion nematode of tea. Int J Biosci 3:32–40

    Article  Google Scholar 

  85. R Core Team (2013) R: A language and environment for statistical computing. R Found Stat Comput

  86. Rixen C, Stoeckli V, Ammann W (2003) Does artificial snow production affect soil and vegetation of ski pistes? A review. Perspect Plant Ecol Evol Syst 5:219–230

    Article  Google Scholar 

  87. Robeson MS, King AJ, Freeman KR, Birky CW, Martin AP, Schmidt SK (2011) Soil rotifer communities are extremely diverse globally but spatially autocorrelated locally. PNAS 108:4406–4410

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rohlfs M, Albert M, Keller NP, Kempken F (2007) Secondary chemicals protect mould from fungivory. Biol Lett 3:523–525

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ronikier A, Ronikier M (2009) How “alpine” are nivicolous myxomycetes? A worldwide assessment of altitudinal distribution. Mycologia 101:1–16

    Article  CAS  PubMed  Google Scholar 

  90. Rønn R, Mccaig AE, Griffiths BS et al (2002) Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol 68:6094–6105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M (2009) Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J 3:675–684

    Article  CAS  PubMed  Google Scholar 

  92. Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet GA, Lindahl BD, Menkis A, James TY (2011) Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333:876–879

    Article  CAS  PubMed  Google Scholar 

  93. Roux-Fouillet P, Wipf S, Rixen C (2011) Long-term impacts of ski piste management on alpine vegetation and soils. J Appl Ecol 48:906–915

    Article  Google Scholar 

  94. Ruggiero MA, Gordon DP, Orrell TM et al (2015) A higher level classification of all living organisms. PLoS One 10:1–60

    Google Scholar 

  95. Russel J (2016) MicEco: various functions for analysis for microbial community data. Available from: www.github.com/Russel88/MicEco

  96. Schadt CW, Martin AP, Lipson DA et al (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361

    Article  CAS  PubMed  Google Scholar 

  97. Schmidt SK, Lipson DA (2004) Microbial growth under the snow: implications for nutrient and allelochemical availability in temperate soils. Plant Soil 259:1–7

    Article  CAS  Google Scholar 

  98. Schnittler M, Tesmer JA (2008) A habitat colonisation model for spore-dispersed organisms – does it work with eumycetozoans? Mycol Res 112:697–707

    Article  PubMed  Google Scholar 

  99. Schnittler M, Novozhilov YK, Romeralo M et al (2012) Myxomycetes and myxomycete-like organisms. In: Frey W (ed) Englers syllabus of plant families, vol 4. Bornträger, Stuttgart, pp 40–88

    Google Scholar 

  100. Schnittler M, Erastova DA, Shchepin ON, Heinrich E, Novozhilov YK (2015) Four years in the Caucasus – observations on the ecology of nivicolous myxomycetes. Fungal Ecol 14:105–115

    Article  Google Scholar 

  101. Shang Y, Sikorski J, Bonkowski M et al (2017) Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters. PLoS One 12:e173765

    Google Scholar 

  102. Shchepin O, Novozhilov Y, Schnittler M (2014) Protistology Nivicolous myxomycetes in agar culture: some results and open problems. Potistology 8:53–61

    Google Scholar 

  103. Shchepin ON, Novozhilov YK, Schnittler M (2016) Disentangling the taxonomic structure of the Lepidoderma chailletii-carestianum species complex (Myxogastria, Amoebozoa): genetic and morphological aspects. Protistology 10:120–129

    Article  Google Scholar 

  104. Shchepin ON, Schnittler M, Erastva DA et al (2019) Community of dark-spored myxomycetes in ground litter and soil of taiga forest (Nizhne-Svirskiy Reserve, Russia) revealed by DNA metabarcoding. Fungal Ecol 39:80–93. https://doi.org/10.1016/j.funeco.2018.11.006

  105. Stephenson SL, Feest A (2012) Ecology of soil eumycetozoans. Acta Protozool 51:201–208

    Google Scholar 

  106. Stephenson SL, Schnittler M (2017) Myxomycetes. In: Archibald JM, Simpson AGB, Slamovits CH et al (eds) Handbook of the Protists. Springer, Berlin, pp 1405–1432

    Chapter  Google Scholar 

  107. Stephenson SL, Novozhilov YK, Schnittler M (2000) Distribution and ecology of myxomycetes in high-latitude regions of the northern hemisphere. J Biogeogr 27:741–754

    Article  Google Scholar 

  108. Stephenson SL, Schnittler M, Novozhilov YK (2008) Myxomycete diversity and distribution from the fossil record to the present. Biodivers Conserv 17:285–301

    Article  Google Scholar 

  109. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tansley IB (1994) Review no. 62. The phytosociology of myxomycetes. New Phytol 126:175–201

    Article  Google Scholar 

  111. Taylor AFS, Alexander I (2005) The ectomycorrhizal symbiosis: life in the real world. Mycologist 19:102–112

    Article  Google Scholar 

  112. Taylor WD, Berger J (1976) Growth responses of cohabiting ciliate protozoa to various prey bacteria. Can J Zool 54:1111–1114

    Article  Google Scholar 

  113. Taylor KM, Feest A, Stephenson SL (2015) The occurrence of myxomycetes in wood. Fungal Ecol 17:179–182

    Article  Google Scholar 

  114. Tedersoo L, Pärtel K, Jairus T, Gates G, Põldmaa K, Tamm H (2009) Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales. Environ Microbiol 11:3166–3178

    Article  CAS  PubMed  Google Scholar 

  115. Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Poldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Partel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, de Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1256688–1256689

    Article  CAS  PubMed  Google Scholar 

  116. Tiunov AV, Semenina EE, Aleksandrova AV et al (2015) Stable isotope composition (δ13 C and δ15 N values) of slime molds: placing bacterivorous soil protozoans in the food web context. Rapid Commun Mass Spectrom 29:1465–1472

    Article  CAS  PubMed  Google Scholar 

  117. Treseder KK, Kivlin SN, Hawkes CV (2011) Evolutionary trade-offs among decomposers determine responses to nitrogen enrichment. Ecol Lett 14:933–938

    Article  PubMed  Google Scholar 

  118. Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3:e2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  120. van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, van de Voorde TFJ, Wardle DA (2013) Plant-soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276

    Article  Google Scholar 

  121. von Mering C, Hugenholtz P, Raes J et al (2007) Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315:126–130

    Google Scholar 

  122. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten W, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  123. Whitaker J, Ostle N, Nottingham AT, Ccahuana A, Salinas N, Bardgett RD, Meir P, McNamara N, Austin A (2014) Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient. J Ecol 102:1058–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wickham H (2010) Ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Google Scholar 

  125. Xiong W, Jousset A, Guo S et al (2017) Soil protist communities form a dynamic hub in the soil microbiome. ISME J:1–5

  126. Yashiro E, Pinto-figueroa E, Buri A et al (2016) Local environmental factors drive divergent grassland soil bacterial communities in the western Swiss Alps. Appl Environ Microbiol 82:6303–6316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zinger L, Lejon DPH, Baptist F, Bouasria A, Aubert S, Geremia RA, Choler P (2011) Contrasting diversity patterns of crenarchaeal, bacterial and fungal soil communities in an alpine landscape. PLoS One 6:e19950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

MD thanks Dr. Martin Steen Mortensen for assistance with the robot soil extraction and Luma George Odish for laboratorial assistance in the preparation of the Illumina library. Dr. Samuel Jacquiod helped with advice and assistance for the statistical calculations. We also thank Stefan Kellerer and Klaus Kellner, the wardens of the Tröglhütte of the DAV (Deutscher Alpenverein), for making our stay at the field site pleasant. We wish to express general gratitude to researchers for sharing their data and programming codes as well as engaging in online discussion forums (particularly Stack Overflow), which has benefited the analysis in this study.

Funding

Funding for this study was provided in the frame of a Ph.D. position for MD within the Research Training Group RESPONSE (RTG 2010), supported by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Borg Dahl.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

List of primers used to amplify the three target communities. (XLSX 9 kb)

ESM 2

DNA reads of mock samples. (XLSX 32 kb)

ESM 3

Sample quality: Illumina quality statistics, OTU accumulation curves, and overview of significant relations between the numbers of DNA reads and the numbers of OTUs. (PDF 2149 kb)

ESM 4

OTU tables. (XLSX 2472 kb)

ESM 5

Maximum-likelihood phylogenetic tree of the most abundant myxomycete OTUs. (PDF 1432 kb)

ESM 6

Analysis script. (PDF 98 kb)

ESM 7

Result script. (PDF 115 kb)

ESM 8

Functional classification. (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borg Dahl, M., Brejnrod, A.D., Russel, J. et al. Different Degrees of Niche Differentiation for Bacteria, Fungi, and Myxomycetes Within an Elevational Transect in the German Alps. Microb Ecol 78, 764–780 (2019). https://doi.org/10.1007/s00248-019-01347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01347-1

Keywords

Navigation