Skip to main content

Volatile Compounds and Oils from Mosses and Liverworts

  • Living reference work entry
  • First Online:
Bioactive Compounds in Bryophytes and Pteridophytes

Abstract

Bryophytes are small, non-vascular plants, such as mosses, liverworts, and hornworts. They play a vital role in regulating ecosystems; some bryophyte species are among the first to colonize open ground. Bryophytes do not have seeds or flowers; instead, they reproduce via spores, and these species are also very good indicators of habitat quality. Volatile compounds and essential oils have been extracted by hydrodistillation and by solvent from some species of bryophytes. The chemical composition of the isolated oils and the nature of the volatile compounds have been determined by gas chromatography coupled to mass spectrometry and gas chromatography coupled to the flame initiation detector. This chapter presents the chemical composition of 76 essential oils from mosses and liverworts, identifying a significant variety of compositions. These findings open new potential research trends to investigate the biological activity of these essential oils. The growing demand for natural products by pharmaceutical, cosmetic, and food markets points to new opportunities for the protection and sustainable use of natural resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

a.l.s.:

above sea level

CF:

Chemical Formula

CN:

Compound number

DH:

Diterpene hydrocarbons

EAE:

Ethyl acetate extract

EE:

Ethanol extract

EO:

Essential oil

FID:

Flame ionization detector

GC:

Gas chromatography

HR:

High-resolution

IR:

Infrared spectroscopy

ME:

Methanol extract

MH:

Monoterpenes hydrocarbons

MM:

Monoisotopic mass

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

OD:

Oxygenated diterpenes

OM:

Oxygenated monoterpenes

OS:

Oxygenated sesquiterpenes

OT:

Other compounds

RI:

Retention indices

RIf:

Reference Retention indices

SPME:

Solid-phase microextraction

TLC:

Thin-layer chromatography

tr:

trace (< 0.05%)

UV:

Ultraviolet-visible spectroscopy

References

  1. Frego KA (2007) Bryophytes as potential indicators of forest integrity. For Ecol Manag 242:65–75. https://doi.org/10.1016/j.foreco.2007.01.030

    Article  Google Scholar 

  2. Smithsonian Tropical Research Institute (2021) Bryophytes tiny plants in a big changing world. https://stri.si.edu/story/bryophytes. Accessed 23 Jan 2022

  3. Glime JM, Chavoutier L (2017) Glossary. Bryophyte ecology. Michigan Technological University and the International Association of Bryologists, Houghton

    Google Scholar 

  4. Morales Baquero CP, Ospino Cerpa JD, Jiménez Vásquez JA, Berbén Henriquez AM, Negritto MA (2017) Briófitos: un mundo en miniatura. INFOFLORA Bol Bot 1:12

    Google Scholar 

  5. Burrows BA, McCubbin AG (2018) Reproduction, overview by phylogeny: plant. In: Skinner MK (ed) Encyclopedia of reproduction, 2nd edn. Academic, Oxford

    Google Scholar 

  6. Schofield WB (2019) Bryophyte. https://www.britannica.com/plant/bryophyte. Accessed 05 Jan 2022

  7. León-Martínez G, Vielle-Calzada J-P (2019) Chapter Twenty: Apomixis in flowering plants: developmental and evolutionary considerations. In: Grossniklaus U (ed) Current topics in developmental biology. Academic

    Google Scholar 

  8. Frangedakis E, Shimamura M, Villarreal JC, Li F-W, Tomaselli M, Waller M et al (2021) The hornworts: morphology, evolution and development. New Phytol 229:735–754. https://doi.org/10.1111/nph.16874

    Article  Google Scholar 

  9. Sabovljević MS, Ćosić MV, Jadranin BZ, Pantović JP, Giba ZS, Vujičić MM et al (2022) The conservation physiology of bryophytes. Plan Theory 11:1282–1294. https://doi.org/10.3390/plants11101282

    Article  Google Scholar 

  10. Ćosić M, Vujičić MM, Sabovljević MS, Sabovljević AD (2019) What do we know about salt stress in bryophytes? Plant Biosyst 153:478–489. https://doi.org/10.1080/11263504.2018.1508091

    Article  Google Scholar 

  11. Benítez Á, Prieto M, Aragón G (2015) Large trees and dense canopies: key factors for maintaining high epiphytic diversity on trunk bases (bryophytes and lichens) in tropical montane forests. Forestry 88:521–527. https://doi.org/10.1093/forestry/cpv022

  12. Glime JM (2017) Household and personal uses. Bryophyte ecology, vol 1-1. Michigan Technological University and the International Association of Bryologists, Houghton

    Google Scholar 

  13. Ali B, Al-Wabel NA, Shams S, Ahamad A, Khan SA, Anwar F (2015) Essential oils used in aromatherapy: a systemic review. Asian Pac J Trop Biomed 5:601–611. https://doi.org/10.1016/j.apjtb.2015.05.007

    Article  Google Scholar 

  14. Aramrueang N, Asavasanti S, Khanunthong A (2019) Chapter 10: Leafy vegetables. In: Pan Z, Zhang R, Zicari S (eds) Integrated processing technologies for food and agricultural by-products. Academic, London

    Google Scholar 

  15. Sharifi-Rad J, Sureda A, Tenore GC, Daglia M, Sharifi-Rad M, Valussi M et al (2017) Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules 22:70–102. https://doi.org/10.3390/molecules16121047110.3390/molecules22010070

    Article  Google Scholar 

  16. Ibrahim TA, El-Hela AA, El-Hefnawy HM, Al-Taweel AM, Perveen S (2017) Chemical composition and antimicrobial activities of essential oils of some coniferous plants cultivated in Egypt. Iran J Pharm Sci 16:328–337

    CAS  Google Scholar 

  17. Valarezo E, Ojeda-Riascos S, Cartuche L, Andrade-González N, González-Sánchez I, Meneses MA (2020) Extraction and study of the essential oil of copal (Dacryodes peruviana), an amazonian fruit with the highest yield worldwide. Plan Theory 9:1658–1671. https://doi.org/10.3390/plants9121658

    Article  CAS  Google Scholar 

  18. Perveen S (2018) Introductory chapter: terpenes and terpenoids. In: Perveen S, Al-Taweel A (eds) Terpenes and terpenoids. IntechOpen, London

    Chapter  Google Scholar 

  19. Başer KHC, Buchbauer G (2016) Handbook of essential oils. Science, technology and applications, Chromatographia, 2nd edn. Springer, Berlin

    Google Scholar 

  20. Micić D, Ostojić S, Pezo L, Blagojević S, Pavlić B, Zeković Z et al (2019) Essential oils of coriander and sage: investigation of chemical profile, thermal properties and QSRR analysis. Ind Crop Prod 138:111438. https://doi.org/10.1016/j.indcrop.2019.06.001

    Article  CAS  Google Scholar 

  21. Ramawat KG, Dass S, Mathur M (2009) The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. In: Ramawat KG (ed) Herbal drugs: ethnomedicine to modern medicine. Springer, Berlin/Heidelberg

    Chapter  Google Scholar 

  22. Asakawa Y (2007) Biologically active compounds from bryophytes. Pure Appl Chem 79:557–580. https://doi.org/10.1351/pac200779040557

    Article  CAS  Google Scholar 

  23. Sabovljevic A, Sabovljevic M (2008) Bryophytes, a source of bioactive and new compounds. In: Govil JN, Singh VK (eds) Phytopharmacology and therapeutic values IV. Studium Press LLC, Houston

    Google Scholar 

  24. Magill RE (2010) Moss diversity: new look at old numbers. Phytotaxa 9:167–174. https://doi.org/10.11646/phytotaxa.9.1.9

    Article  Google Scholar 

  25. Britannica, The Editors of Encyclopaedia (2022) Moss. https://www.britannica.com/plant/moss-plant. Accessed 03 May 2022

  26. Salazar Allen N (2011) El mundo de las plantas pequeñas: Las Briofitas. Impreso por Editora Novo Art, S.A., Pánama

    Google Scholar 

  27. Harris ESJ (2008) Ethnobryology: traditional uses and folk classification of bryophytes. Bryologist 111:169–217

    Article  Google Scholar 

  28. Vanderpoorten A, Goffinet B (2009) Introduction to bryophytes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  29. New Hampshire PBS, Squam Lakes Natural Science Center (2022) NatureWorks: bryophytes. https://nhpbs.org/natureworks/. Accessed 12 Feb 2022

  30. Ávila-Pérez P, Longoria-Gándara LC, García-Rosales G, Zarazua G, López-Reyes C (2018) Monitoring of elements in mosses by instrumental neutron activation analysis and total X-ray fluorescence spectrometry. J Radioanal Nucl Chem 317:367–380. https://doi.org/10.1007/s10967-018-5896-z

    Article  CAS  Google Scholar 

  31. Ray S, Bhattacharya S (2022) Manual for bryophytes: morphotaxonomy, diversity, spore germination, conservation. CRC Press, Boca Raton

    Google Scholar 

  32. Crandall-Stotler BJ, Bartholomew-Began SE (2022) Morphology of mosses (Phylum Bryophyta). http://www.efloras.org/index.aspx. Accessed 02 Apr 2022

  33. Delgadillo-Moya C (2014) Biodiversity of Bryophyta (mosses) in Mexico. Rev Mex Biodivers 85:S100–S1S5. https://doi.org/10.7550/rmb.30953

    Article  Google Scholar 

  34. The Bryophyte Groups (2015) What is a moss? https://www.anbg.gov.au/bryophyte/what-is-moss.html. Accessed 05 Apr 2022

  35. Shaw J, Anderson LE (1988) Peristome development in mosses in relation to systematics and evolution. II. Tetraphis pellucida (Tetraphidaceae). Am J Bot 75:1019–1032. https://doi.org/10.1002/j.1537-2197.1988.tb08809.x

    Article  Google Scholar 

  36. Pejin B, Vujisic L, Sabovljevic M, Tesevic V, Vajs V (2011) Preliminary data on essential oil composition of the moss Rhodobryum ontariense (Kindb.) Kindb. Cryptogam Bryol 32:113–117. https://doi.org/10.7872/cryb.v32.iss1.2011.113

    Article  Google Scholar 

  37. Saritas Y, Sonwa MM, Iznaguen H, König WA, Muhle H, Mues R (2001) Volatile constituents in mosses (Musci). Phytochemistry 57:443–457. https://doi.org/10.1016/S0031-9422(01)00069-3

    Article  CAS  Google Scholar 

  38. Li L, Zhao J (2009) Determination of the volatile composition of Rhodobryum giganteum (Schwaegr.) Par. (Bryaceae) using solid-phase microextraction and gas chromatography/mass spectrometry (GC/MS). Molecules 14. https://doi.org/10.3390/molecules14062195

  39. Kahriman N, Ozdemir T, BeyzaCansu T, Volga C, Yaylı N (2009) Essential oils in mosses (Brachythecium salebrosum, Eurhynchium pulchellum and Plagiomnium undulatum) grown in Turkey. Asian J Chem 21:5505–5509

    Google Scholar 

  40. Üçüncü O, Cansu TB, Ozdemir T, Alpay Karaoğlu Ş, Yayli N (2010) Chemical composition and antimicrobial activity of the essential oils of mosses (Tortula muralis Hedw., Homalothecium lutescens (Hedw.) H. Rob., Hypnum cupressiforme Hedw., and Pohlia nutans (Hedw.) Lindb.) from Turkey. Turk J Chem 34:825–834. https://doi.org/10.3906/che-1002-62

    Article  Google Scholar 

  41. Yucel TB (2021) Chemical composition and antimicrobial and antioxidant activities of essential oils of Polytrichum commune (Hedw.) and Antitrichia curtipendula (Hedw.) Brid. grown in Turkey. Int J Second Metab 8:272–283. https://doi.org/10.21448/ijsm.945405

    Article  Google Scholar 

  42. Ozdemir T, Ucuncu O, Cansu TB, Kahriman N, Yayli N (2010) Volatile constituents in mosses (Brachythecium albicans (Hedw.) Schimp., Bryum pallescens Schleich. ex Schwagr and Syntrichia intermedia Brid.) grown in Turkey. Asian J Chem 22:7285–7290

    CAS  Google Scholar 

  43. Özdemir T, Yayli N, Cansu TB, Volga C, Yayli N (2009) Essential oils in mosses (Bracizythecium salebrosum, Eurhynchium puichellum and Plagiomnium undulatum) grown in Turkey. Asian J Chem 21:5505–5509

    Google Scholar 

  44. Churchill SP, Linares C. EL (1995) Prodromus Bryologiae Novo-Granatensis: introducción a la flora de musgos de Colombia. vol Parte 2. Universidad Nacional de Colombia-Instituto de Ciencias Naturales, Museo de Historia Natural, Bogotá

    Google Scholar 

  45. Gradstein S, Churchill S, Salazar Allen N (2001) Guide to the bryophytes of tropical America. New York Botanical Garden Press, Bronx

    Google Scholar 

  46. Tosun G, Yaylı B, Özdemir T, Batan N, Bozdeveci A, Yaylı N (2015) Volatiles and antimicrobial activity of the essential oils of the mosses Pseudoscleropodium purum, Eurhynchium striatum, and Eurhynchium angustirete grown in Turkey. Rec Nat Prod 9:237–242

    Google Scholar 

  47. Bendz G, Svensson L (1971) Volatile compounds from Fontinalis antipyretica. Phytochemistry 10:3283–3285. https://doi.org/10.1016/S0031-9422(00)97391-6

    Article  CAS  Google Scholar 

  48. Cansu TB, Yayli B, Özdemir T, Batan N, Karaoǧlu SA, Yayli N (2013) Antimicrobial activity and chemical composition of the essential oils of mosses (Hylocomium splendens (Hedw.) Schimp. and Leucodon sciuroides (Hedw.) Schwägr.) growing in Turkey. Turk J Chem 37:213–219. https://doi.org/10.3906/kim-1204-72

    Article  CAS  Google Scholar 

  49. Cansu TB, Özdemir T, Batan N, Yayli B, Karaoglu SA, Yayli N (2014) Essential oil analysis and antimicrobial activity of Neckera complanata (Hedw.) huebener and Neckera crispa Hedw. (Neckeraceae) grown in Turkey. Asian J Chem 26:2005–2008. https://doi.org/10.14233/ajchem.2014.15618A

    Article  CAS  Google Scholar 

  50. Klegin C, de Moura NF, Oliveira de Sousa MH, Frassini R, Roesch-Ely M, Bruno AN et al (2021) Chemical composition and cytotoxic evaluation of the essential oil of Phyllogonium viride (Phyllogoniaceae, Bryophyta). Chem Biodivers 18:e2000794. https://doi.org/10.1002/cbdv.202000794

    Article  CAS  Google Scholar 

  51. Toyota M, Kimura K, Asakawa Y (1998) Occurrence of ent-sesquiterpene in the Japanese moss-Plagiomnium acutum : first isolation and identification of the ent-sesqui-and dolabellane-type diterpenoids from the musci. Chem Pharm Bull 46:1488–1489. https://doi.org/10.1248/cpb.46.1488

    Article  CAS  Google Scholar 

  52. Tosun G, Yayli B, Özdemir T, Batan N, Yayli N, Karaoglu SA (2014) Chemical composition and antimicrobial activity of essential oils from Tortella inclinata var. Densa, T. tortusa and Pleurochaete squarrosa. Asian J Chem 26:2001–2004. https://doi.org/10.14233/ajchem.2014.15618

    Article  CAS  Google Scholar 

  53. Boris P, Ljubodrag V, Marko S, Vele T, Vlatka V (2011) Preliminary data on essential oil composition of the moss Rhodobryum ontariense (Kindb.) Kindb. Cryptogam Bryol 32:113–117. https://doi.org/10.7872/cryb.v32.iss1.2011.113

    Article  Google Scholar 

  54. Sim-Sim M, Abreu M, Garcia C, Sérgio C, Figueiredo AC (2017) Essential oil composition of two Sphagnum species grown in Portugal and their in vitro culture establishment. Nat Prod Commun 12. https://doi.org/10.1177/1934578X1701200839

  55. Von Konrat M, Soderstrom L, Renner MAM, Hagborg A, Briscoe L, Engel JJ (2010) Early land plants today (ELPT): how many liverwort species are there? Phytotaxa 9:22–40. https://doi.org/10.11646/phytotaxa.9.1.5

    Article  Google Scholar 

  56. Britannica, The Editors of Encyclopaedia (2019) Liverwort. https://www.britannica.com/plant/liverwort. Accessed 22 Jan 2022

  57. Jan-Peter F (2004) Recent developments of commercial products from bryophytes. Bryologist 107:277–283. https://doi.org/10.1639/0007-2745(2004)107[0277:RDOCPF]2.0.CO;2

    Article  Google Scholar 

  58. Simpson MG (2010) Chapter 3: Evolution and diversity of green and land plants. In: Simpson MG (ed) Plant systematics, 2nd edn. Academic, San Diego

    Google Scholar 

  59. Linde J, Combrinck S, Vuuren SV, Rooy JV, Ludwiczuk A, Mokgalaka N (2016) Volatile constituents and antimicrobial activities of nine South African liverwort species. Phytochem Lett 16:61–69. https://doi.org/10.1016/j.phytol.2016.03.003

    Article  CAS  Google Scholar 

  60. Asakawa Y, Ludwiczuk A, Nagashima F (2013) Phytochemical and biological studies of bryophytes. Phytochemistry 91:52–80. https://doi.org/10.1016/j.phytochem.2012.04.012

    Article  CAS  Google Scholar 

  61. Asakawa Y, Ludwiczuk A, Nagashima F (2013) Chemical constituents of bryophytes: bio- and chemical diversity, biological activity, and chemosystematics. Progress in the chemistry of organic natural products. Springer, New York

    Book  Google Scholar 

  62. Nagashima F, Asakawa Y (2011) Terpenoids and bibenzyls from three Argentine liverworts. Molecules 16:10471–10478. https://doi.org/10.3390/molecules161210471

    Article  Google Scholar 

  63. Gradstein SR (2020) Checklist of the liverworts and hornworts of Ecuador. Frahmia 17:1–40

    Google Scholar 

  64. Gradstein SR (2021) The liverworts and hornworts of Colombia and Ecuador. Memoirs of The New York Botanical Garden. Springer Cham, Cham

    Book  Google Scholar 

  65. Sakurai K, Tomiyama K, Yaguchi Y, Asakawa Y (2020) Characteristic odor of the Japanese liverwort (Leptolejeunea elliptica). J Oleo Sci 69:767–770. https://doi.org/10.5650/jos.ess19262

    Article  CAS  Google Scholar 

  66. Song C, Zhu T, Lu R, König WA (2007) Essential oil composition of liverwort Lophozia ventricosa. Chin J Appl Environ Biol 13:458–460

    CAS  Google Scholar 

  67. Nagashima F, Murakami Y, Asakawa Y (1999) Aromatic compounds from the Ecuadorian liverwort Marchesinia brachiata: a revision. Phytochemistry 51:1101–1104. https://doi.org/10.1016/S0031-9422(99)00146-6

    Article  CAS  Google Scholar 

  68. Adio AM, von Reuß SH, Paul C, Muhle H, König WA (2007) Sesquiterpenoid constituents of the liverwort Marsupella aquatica. Tetrahedron Asymmetry 18:1245–1253. https://doi.org/10.1016/j.tetasy.2007.05.020

    Article  CAS  Google Scholar 

  69. von Reuß SH, Wu C-L, Muhle H, König WA (2004) Sesquiterpene constituents from the essential oils of the liverworts Mylia taylorii and Mylia nuda. Phytochemistry 65:2277–2291. https://doi.org/10.1016/j.phytochem.2004.04.039

    Article  CAS  Google Scholar 

  70. Adio AM, König WA (2005) Sesquiterpene constituents from the essential oil of the liverwort Plagiochila asplenioides. Phytochemistry 66:599–609. https://doi.org/10.1016/j.phytochem.2005.01.015

    Article  CAS  Google Scholar 

  71. Figueiredo AC, Sim-Sim M, Costa MM, Barroso JG, Pedro LG, Esquível MG et al (2005) Comparison of the essential oil composition of four Plagiochila species: P. bifaria, P. maderensis, P. retrorsa and P. stricta. Flavour Fragr J 20:703–709. https://doi.org/10.1002/ffj.1627

    Article  CAS  Google Scholar 

  72. Figueiredo AC, Garcia C, Sim-Sim M, Sérgio C, Pedro LG, Barroso JG (2010) Volatiles from Plicanthus hirtellus (F. Weber) R.M. Schust. and Radula boryana (F. Weber) Nees (Hepaticae) grown in São Tomé e Príncipe Archipelago. Flavour Fragr J 25:219–222. https://doi.org/10.1002/ffj.1998

    Article  CAS  Google Scholar 

  73. Figueiredo AC, Sim-Sim M, Barroso JG, Pedro LG, Esquível MG, Fontinha S et al (2009) Liverwort Radula species from Portugal: chemotaxonomical evaluation of volatiles composition. Flavour Fragr J 24:316–325. https://doi.org/10.1002/ffj.1943

    Article  CAS  Google Scholar 

  74. Tesso H, König WA, Asakawa Y (2005) Composition of the essential oil of the liverwort Radula perrottetii of Japanese origin. Phytochemistry 66:941–949. https://doi.org/10.1016/j.phytochem.2005.03.003

    Article  CAS  Google Scholar 

  75. Bukvicki D, Gottardi D, Tyagi AK, Veljic M, Marin PD, Vujisic L et al (2014) Scapania nemorea liverwort extracts: investigation on volatile compounds, in vitro antimicrobial activity and control of Saccharomyces cerevisiae in fruit juice. LWT Food Sci Technol 55:452–458. https://doi.org/10.1016/j.lwt.2013.09.029

    Article  CAS  Google Scholar 

  76. Adio AM, Paul C, König WA, Muhle H (2003) Volatile constituents in the liverwort Tritomaria polita. Phytochemistry 64:637–644. https://doi.org/10.1016/S0031-9422(03)00298-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Valarezo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Valarezo, E., Meneses, M.A., Jaramillo-Fierro, X., Radice, M., Benítez, Á. (2022). Volatile Compounds and Oils from Mosses and Liverworts. In: Murthy, H.N. (eds) Bioactive Compounds in Bryophytes and Pteridophytes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-97415-2_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97415-2_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97415-2

  • Online ISBN: 978-3-030-97415-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics