Skip to main content

Coastal Lichens

Distribution Patterns and Adaptive Strategies

  • Reference work entry
  • First Online:
Handbook of Halophytes

Abstract

Lichens are a symbiotic complex of autotrophic (algae, Cyanobacteria) and heterotrophic (fungi) components that have developed during evolution in coastal ecosystems in the process of adaptation of algae and fungi to terrestrial habitats. Lichens are highly adapted to extreme habitats including the littoral (or intertidal) zones of coasts. In this chapter, we present developmental stages of aquatic lichen investigations: freshwater and marine lichens. The issues of species diversity of coastal lichens, their ecology, and adaptations to the coastal marine environment are described. The leading factors affected the epilithic lichen cover of coasts, and freshwater habitats are at a distance from the waterline and substrate characteristics. Substrate characteristics, especially near the waterline, depend on the wave rhythm. On the coasts of freshwater bodies, four zones are recognized based on flooding duration and lichen ecology. Lichen zones of fresh and marine coasts are distinguished by their species composition: on sea coasts halophytes are predominant and on freshwater shores – hydrophilic lichens. Marker species of lichens were identified for each zone. For the littoral zone, the intrazonal structure of lichen flora was shown. In the adaptation of symbiotic organisms, such as lichens, both symbionts take part: mycobiont and photobiont. Morphological and structural adaptations are mainly associated with mycobiont variability: the presence of morphotypes, structural features of the reproductive organs, and anatomical layers. Photobiont is responsible for functional adaptations: the variability of the amount of photosynthetic pigments and the synthesis of various substances that ensure the resistance of lichen to salt stress. The photobiont provides synthesis of osmolytes, and these process patterns can change depending on the photobiont species (strain), as well as for one photobiont in different coastal conditions. The distribution of epilithic lichen species on the coasts is therefore also ensured by the functions of the photobiont. The important component of the lichen association is the microbial complex; however its role in adapting lichens to coastal environment is still not clear. The perspective of studying coastal lichens is determined by a rather poor knowledge of species diversity and ecology of this group, including physiology, biochemistry, and genetics based on modern research methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aptroot, A. (1998). New lichens and lichen records from Papua New Guinea, with the description of Crustospathula, a new genus in the Bacidiaceae. Tropical Bryology, 14, 25–39.

    Google Scholar 

  • Aptroot, A., & Seaward, M. R. D. (2003). Freshwater lichens. Fungal Diversity Research, 10, 101–110.

    Google Scholar 

  • Bjelland, T., Grube, M., Hoem, S., Jorgensen, S. L., Daae, F. L., Thorseth, I. H., & Øvreảs, L. (2011). Microbial metacommunities in the lichen-rock habitat. Environmental Microbiology Reports, 3, 334–442.

    Article  Google Scholar 

  • Chu, F. J., Seaward, M. R. D., & Hodgkiss, I. J. (2000). Effects of wave exposure and aspect on Hong Kong supralittoral lichens. Lichenologist, 32(2), 155–170.

    Google Scholar 

  • Coste, C. (2009). New ecology and new classification for phytosociology of hydrophilic lichens in acid watercourses in France. Acte du colloque des 3e rencontres Naturalistes de Midi-Pyrénées, pp. 157–168.

    Google Scholar 

  • Coste, C., Chauvet, E., Grieu, P., & Lamaze, T. (2016). Photosynthetic traits of freshwater lichens are consistent with the submersion conditions of their habitat. International Journal of Limnology, 52, 235–242.

    Article  Google Scholar 

  • Delmail, D., Grube, M., Parrot, D., Cook-Moreau, J., Boustie, J., Labrousse, P., & Tomasi, S. (2013). Halotolerance in lichens: Symbiotic coalition against salt stress. In P. Ahmad, M. M. Azooz, & M. N. V. Prasad (Eds.), Ecophysiology and responses of plants under salt stress (pp. 115–148). New York/Heidelberg/Dordrecht/London: Springer.

    Chapter  Google Scholar 

  • Dolnik, Ch., & Petrenko, D. E. (2003). Lichens of the southern Curonian spit in the Baltic Sea. Botanical Journal, 88(2), 41–59.

    Google Scholar 

  • Fałtynowicz, W., & Kossowska, M. (2016). The lichens of Poland. A fourth checklist. Acta Botanica Silesiaca, 8, 3–122.

    Google Scholar 

  • Fletcher, A. (1980). Marine and maritime lichens of rocky shores: Their ecology, physiology and biological interactions. In H. Price, D. E. G. Irvine, & W. F. Famham (Eds.), The shore environment (Vol. 2, pp. 789–842). London: Academic.

    Google Scholar 

  • Garrido-Benavent, I., Pérez-Ortega, S., & de los Ríos, A. (2017). From Alaska to Antarctica: Species boundaries and genetic diversity of Prasiola (Trebouxiophyceae), a foliose chlorophyte associated with the bipolar lichen-forming fungus Mastodia tessellata. Molecular Phylogenetics and Evolution, 107, 117–131.

    Article  PubMed  Google Scholar 

  • Gasulla, F., Guéra, A., Ríos, A., & Pérez-Ortega, S. (2019). Differential responses to salt concentrations of lichen photobiont strains isolated from lichens occurring in different littoral zones. Plant and Fungal Systematics, 64(2), 149–162.

    Article  Google Scholar 

  • Giavarini, V. J. (1990). Lichens of the Dartmoor rocks. The Lichenologist, 22(4), 367–396.

    Article  Google Scholar 

  • Gilbert, O. (2001). The lichen flora of coastal saline lagoons in England. The Licenologist, 33(5), 409–417.

    Article  Google Scholar 

  • Gilbert, O. L. (2003). The lichen flora of unprotected soft sea cliffs and slopes. The Lichenologist, 35(3), 245–254.

    Article  Google Scholar 

  • Gilbert, O. L., & Giavarini, V. J. (1993). The lichens of high ground in the English like district. The Lichenologist, 25(2), 147–164.

    Article  Google Scholar 

  • Gilbert, O. L., & Giavarini, V. J. (1997). The lichen vegetation of acid watercourses in England. The Lichenologist, 29, 347–367.

    Article  Google Scholar 

  • Grube, M., & Blaha, J. (2005). Halotolerance and lichen symbioses. In N. Gunde-Cimerman, A. Oren, & A. Plemenitaš (Eds.), Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya (Cellular origin, life in extreme habitats and astrobiology, Vol. 9). Dordrecht: Springer.

    Google Scholar 

  • Gueidan, C., Savić, S., Thüs, H., Roux, C., Keller, C., Tibell, L., Prieto, M., Heiðmarsson, S., Breuss, O., Orange, A., Fröberg, L., Wynns, A. A., Navarro-Rosinés, P., Krzewicka, B., Pykälä, J., Grube, M., & Lutzoni, F. (2009). Generic classification of the Verrucariaceae (Ascomycota) based on molecular and morphological evidence: Recent progress and remaining challenges. Taxon, 58, 184–208.

    Article  Google Scholar 

  • Gueidan, C., Thüs, H., & Pérez-Ortega, S. (2011). Phylogenetic position of the brown algae-associated lichenized fungus Verrucaria tavaresiae (Verrucariaceae). Bryologist, 114, 563–569.

    Article  Google Scholar 

  • Hale, M. E. (1984). The lichen line and high water levels in a freshwater stream in Florida. Bryologist, 87, 261–265.

    Article  Google Scholar 

  • Hansen, E. S. (2010). Lichens from five inland and coastal localities in South-West Greenland and their present climatic preferences in Greenland as regards oceanity and continentality. Bibliotheca Lichenologica, 104, 143–154.

    Google Scholar 

  • Hansen, E. S., Dawes, P. R., & Thomassen, B. (2006). Epilithic lichen communists in High Arctic Greenland: Physical, environmental, and geological aspects of their ecology in Inglefield Land. Arctic, Antarctic and Alpine Research, 1, 72–81.

    Article  Google Scholar 

  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K. & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499.

    Google Scholar 

  • Hawksworth, D. L. (1980). Lichens of the south Devon coastal schists. Field Studies, 5, 195–227.

    Google Scholar 

  • Hawksworth, D. L. (2000). Freshwater and marine lichen-forming fungi. Fungal Diversity, 5, 1–7.

    Google Scholar 

  • Hawksworth, D. L., & Honegger, R. (1994). The lichen thallus: A symbiotic phenotype of nutritionally specialized fungi and its response to gall producers. In M. A. J. Williams (Ed.), Plant galls (pp. 77–98). Oxford, UK: Clarendon Press.

    Google Scholar 

  • Honegger, R., Edwards, D., & Axe, L. (2013). The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytologist, 197, 264–275.

    Article  Google Scholar 

  • John, E., & Dale, M. R. T. (1990). Environmental correlates of species distributions in a saxicolous lichen community. Journal of Vegetation Science, 1, 385–392.

    Article  Google Scholar 

  • Kulikova, N. N., Suturin, A. N., Boyko, S. M., et al. (2008). The first information on the diversity, ecology and chemical composition of aquatic and near-water lichens (lichens) of the rocky littoral of Lake Baikal. Siberian Journal of Ecology, 3, 399–406.

    Google Scholar 

  • Lamb, I. M. (1973). Further observations on Verrucaria serpuloides M. Lamb, the only known permanently submerged marine lichen. Occasional Papers of the Farlow Herbarium of Cryptogamic Botany, 6, 1–5.

    Google Scholar 

  • Lange, O. L., Kilian, E., & Ziegler, H. (1986). Water vapor uptake and photosynthesis of lichens: Performance differences in species with green and blue-green algae as phycobionts. Oecologia, 71, 104–110.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, J. R. (1964). The ecology of rocky shores. London: English University Press.

    Google Scholar 

  • Macry, T. V. (1990). Lichens of the Baikal ridge. Novosibirsk: Science, Sib. Div.

    Google Scholar 

  • Markovskaya, E. F., Sergienko, L. A., Shklyarevich, G. A., Sonina, A. V., Starodubtseva, A. A., & Smolkova, O. V. (2010). Natural complex of the White Sea coasts. Petrozavodsk: Karelian Research Centre RAS.

    Google Scholar 

  • Matthes, U., Ryan, B. D., & Larson, D. W. (2000). Community structure of epilithic lichens on the cliffs of the Niagara Escarpment, Ontario, Canada. Plant Ecology, 148, 233–244.

    Article  Google Scholar 

  • Matura, N., Krzewicka, B., & Flakus, A. (2017). Seven species of freshwater lichen forming fungi newly recorded from Poland. Polish Botanical Journal, 62(2), 273–278.

    Article  Google Scholar 

  • McCarthy, P. M. (1999). Three new species of Porina (Trichotheliaceae) from Thailand. The Lichenologist, 31, 239–246.

    Article  Google Scholar 

  • Nascimbene, J., & Nimis, P. L. (2006). Freshwater lichens of the Italian Alps: A review. Annales de Limnologie – International Journal of Limnology, 42(1), 27–32.

    Article  Google Scholar 

  • Nascimbene, J., Nimis, P. L. (2007). Freshwater lichens in a small riparian Nature Reserve of Northern Italy: species richness and conservation issues. Cryptogamie, Mycologie, 28(4), 339–342.

    Google Scholar 

  • Orange, A. (2012). Semi-cryptic marine species of Hydropunctaria (Verrucariaceae, lichenized Ascomycota) from north-west Europe. The Lichenologist, 44, 299–320.

    Article  Google Scholar 

  • Ortiz-Álvarez, R., de Los Ríos, A., Fernández-Mendoza, F., Torralba-Burrial, A. & Pérez-Ortega, S. (2015). Ecological specialization of two photobiont-specific maritime cyanolichen species of the genus Lichina. https://doi.org/10.1371/journal.pone.0132718. Accessed 27 Jan 2020.

  • Parra, O. O., & Redon, J. (1977). Aislamento de Heterococcus caespitosus Vischer ficobionte de Verrucaria maura Wahlenb. Boletín de la Sociedad de Biología de Concepción, 51, 219–224.

    Google Scholar 

  • Pentecost, A. (1977). A comparison of the lichens of two streams in Gwynedd. The Lichenologist, 9, 107–111.

    Article  CAS  Google Scholar 

  • Pérez-Ortega, S., Miller, K. A., & de Los Ríos, A. (2018). Challenging the lichen concept: Turgidosculum ulvae (Verrucariaceae) represents an independent photobiont shift to a multicellular blade-like alga. The Lichenologist, 50, 341–356.

    Article  Google Scholar 

  • Raghukumar S. (2017). Fungi in coastal and oceanic marine ecosystems. Marine fungi. http://www.springer.com/978-3-319-54303-1. Accessed 21 Jan 2020.

  • Räsänen, V. (1927). Uber Flechtenstandorte und Flechtenvegetetion in westlichen Nordfinland. Annales Botanici Societatis Zoologicae-Botanicae Fennicae Vanamo, 7, 1–202.

    Google Scholar 

  • Rosentreter, R. (1984). The zonation of mosses and lichens along the Salmon River in Idaho. Northwest Science, 58, 108–117.

    Google Scholar 

  • Sanders, W. B., Moe, R. L., & Ascaso, C. (2004). The intertidal marine lichen formed by the pyrenomycete fungus Verrucaria tavaresiae (Ascomycotina) and the brown alga Petroderma maculiforme (Phaeophyceae): Thallus organization and symbiont interaction. American Journal of Botany, 91, 511–522.

    Article  PubMed  Google Scholar 

  • Santesson, R. (1939). Über der Zonationverhältnisse der Lacustrinen Flechten einiger Seen in Anebodegebeit. Medd. Lunds. Limnel. Inst., Lund, 1, 1–70.

    Google Scholar 

  • Savich V. P. (1950). Underwater lichens. In: Proceedings of the Botanical Institute of V.L. Komarov Academy of Sciences of the USSR (Series 2. Spore plants, Vol. 5, pp. 148–170). Moscow/Leningrad: Publishing house of the Academy of Sciences of the USSR.

    Google Scholar 

  • Scott, O. D. (1967). Studies of the lichen symbiosis: 3. The water relations of lichens on granite kopjes in Central Africa. The Lichenologist, 3, 368–385.

    Article  Google Scholar 

  • Sedelnikova, N. V. (2001). Lichens of the Western and Eastern Sayan. Novosibirsk: Siberian Branch of the Russian Academy of Sciences.

    Google Scholar 

  • Smith, A. L. (1921). Lichens. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Sonina, A. V. (2009). Morphological adaptations of coastal epilithic lichens in the conditions of the northern seas. Natural and Technical Sciences, 6, 113–117.

    Google Scholar 

  • Sonina, A. V. (2012). Epilithic lichens and their morphological adaptation to the conditions of the White and Barents Seas coast (Russian Arctic). Czech Polar Reports, 2(2), 109–116.

    Article  Google Scholar 

  • Sonina, A. V. (2014). Epilithic lichens in ecosystems of the North-West of Russia: Species diversity, ecology. Theses of the dissertation of a Doctor of Biological Sciences, Petrozavodsk.

    Google Scholar 

  • Sonina, A. V., & Tsunskaya, A. A. (2016). Structural and functional adaptations of epilithic lichens of Umbilicaria genus in the White Sea coastal conditions. Czech Polar Reports, 6(2), 169–179.

    Article  Google Scholar 

  • Sonina, A. V., Fadeeva, M. A., & Markovskaya, E. F. (2000). Patterns of formation of coastal epilithic lichen communities of the East coast of Lake Onega. Botanical Journal, 79(8), 98–106.

    Google Scholar 

  • Sonina, A. V., Melentiev, M. V., & Antonova, A. N. (2010). Ecotopic distribution of lichen species on the coastal cliffs of the Kandalaksha Bay of the White Sea. Transactions of the Karelian Scientific Center of the Russian Academy of Sciences, 1, 78–85.

    Google Scholar 

  • Sonina, A. V., Markovskaya, E. F., Urbanavichene, I. N., & Khanin, V. A. (2011). The species composition of epilithic lichens and some ecological features of Lecanora intricata (Ach.) Ach. and Lecanora polytropa (Ehrh. ex Hoffm.) Rabenh. under the conditions of the Murmansk coast of the Barents Sea. Natural and Technical Sciences, 3, 114–121.

    Google Scholar 

  • Sonina, A. V., Rumjantseva, A. D., Tsunskaya, A. A., & Androsova, V. I. (2017). Adaptations of epilithic lichens to the microclimate conditions of the White Sea coast. Czech Polar Reports, 7(2), 133–143.

    Article  Google Scholar 

  • Suzuki, M. T., Parrot, D., Berg, G. et al. (2015). Lichens as natural sources of biotechnologically relevant bacteria. Applied Microbiology Biotechnology, 100, 583–595. https://doi.org/10.1007/s00253-015-7114-z.

  • Tarasova, V. N., Androsova, V. I., & Sonina, A. V. (2012). Lichens: Physiology, ecology, lichenoindication. Petrozavodsk: PetrSU.

    Google Scholar 

  • Thüs, H. (2002). Taxonomie, Verbreitung ond Ökologie silicicoler Subwasserflechten im ausseralpinen Mitteleuropa. Bibliotheca Lichenologica, 83, 1–214.

    Google Scholar 

  • Thüs, H., Muggia, L., Pérez-Ortega, S., Favero-Longo, S. E., Joneson, S., O’Brien, H., Nelsen, M. P., Duque-Thüs, R., Grube, M., Friedl, T., Brodie, J., Andrew, C. J., Lücking, R., Lutzoni, F., & Gueidan, C. (2011). Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). European Journal of Phycology, 46, 399–415.

    Article  Google Scholar 

  • Thüs, H., Aptroot, A., & Seaward, M. R. D. (2014). Freshwater fungi and fungal-like organisms. In E. B. G. Jones, K. D. Hyde, & K.-L. Pang (Eds.), Freshwater fungi (pp. 335–358). Boston: Walter de Gruyter GmbH.

    Google Scholar 

  • Thüs, H., Orange, A., Gueidan, C., Pykälä, J., Ruberti, C., Lo Schiavo, F., & Nascimbene, J. (2015). Revision of the Verrucaria elaeomelaena species complex and morphologically similar freshwater lichens (Verrucariaceae, Ascomycota). Phytotaxa, 197, 162–185.

    Google Scholar 

  • West, N. J., Parrot, D., Fayet, C., Grube, M., Tomasi, S., & Suzuki M. T. (2018). Marine cyanolichens from different littoral zones are associated with distinct bacterial communities. https://www.ncbi.nlm.nih.gov/pubmed/30038864. Accessed 25 Jan 2020.

  • Wirth, V., Loris, K., & Müller, J. (2007). Lichens in the fog zone of the Central Namib and their distribution along an ocean-inland transect. Bibliotheca Lichenologica, 95, 555–582.

    Google Scholar 

  • Zhdanov, I. S., & Dudoreva, T. A. (2003). Lichens of marine habitats of coasts and islands of the Kandalaksha Bay of the White Sea. Botanical Journal, 88(2), 34–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sonina, A.V., Androsova, V.I. (2021). Coastal Lichens. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-57635-6_34

Download citation

Publish with us

Policies and ethics