
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2010

Biogeography and Microhabitat Distribution of
Myxomycetes in High-Elevation Areas of the
Neotropics
Carlos Alonso Rojas-Alvarado
University of Arkansas

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Biology Commons, and the Microbiology Commons

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by
an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu.

Recommended Citation
Rojas-Alvarado, Carlos Alonso, "Biogeography and Microhabitat Distribution of Myxomycetes in High-Elevation Areas of the
Neotropics" (2010). Theses and Dissertations. 197.
http://scholarworks.uark.edu/etd/197

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=scholarworks.uark.edu%2Fetd%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/48?utm_source=scholarworks.uark.edu%2Fetd%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/197?utm_source=scholarworks.uark.edu%2Fetd%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BIOGEOGRAPHY AND MICROHABITAT DISTRIBUTION OF MYXOMYCETES 
IN HIGH-ELEVATION AREAS OF THE NEOTROPICS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



BIOGEOGRAPHY AND MICROHABITAT DISTRIBUTION OF MYXOMYCETES 
IN HIGH-ELEVATION AREAS OF THE NEOTROPICS 

 
 
 
 
 
 
 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy in Biology 
 
 
 
 
 
 

By 
 
 
 
 
 

Carlos Alonso Rojas Alvarado 
Universidad de Costa Rica 

Bachillerato en Biología, 2002 
Universidad de Costa Rica 

Licenciatura en Biología con énfasis en Botánica, 2005 
 
 
 
 
 
 
 
 
 
 
 
 

May 2010 
University of Arkansas



ABSTRACT 

Myxomycetes are a group of amoeboid organisms with the capacity of forming 

fruiting bodies that resemble some macrofungi. The ecology and global distribution of 

species within the group have been studied only during the last half century. For this 

reason, a number of questions regarding the nature of the interactions that exist between 

myxomycetes and their environment still lack the empirical evidence required to obtain 

complete answers. In the Neotropical region, species assemblages have been moderately 

well studied, but their biogeography and macroecology have received little attention. In 

high-elevation areas of this region, the situation is especially precarious, due the lack of 

formal studies that have considered these potentially threatened ecosystems. In order to 

fill in some of the information gaps for which previous studies had not provided 

conclusive evidence, a number of projects outlined in this dissertation were carried out.  

The main objective of the research described herein was to study the 

biogeography and ecology of the myxomycete assemblages associated with high-

elevation areas of the northern Neotropics. However, an appreciable effort was directed 

towards other ecosystems in order to obtain comparative data that could be used to assess 

other specific questions formulated during the course of the research. With the data 

generated in this investigation, a number of patterns could be detected at different 

ecological levels. Among these were that myxomycetes respond to differences in macro- 

and microenvironmental characteristics of the ecosystems in which they occur. In the first 

case, myxomycetes seem to respond more or less collectively to some of the parameters 

that could be measured or determined. However, at the microhabitat level, the selective 

responses seem to be specific for particular species. This general pattern appears to be 



consistent and independent of the geographical and historical characteristics of the area. 

However, the latter seem to have a strong effect on the composition of the assemblage of 

species present in a particular area.  

These observations support the idea that myxomycetes are not neutrally 

distributed across biomes and ecosystems on earth. In fact, structural differences in the 

assemblages studied along a latitudinal gradient from the United States to Costa Rica 

suggest that some myxomycetes have regional distributions. As specific results of this 

study, the first comprehensive ecological analysis of myxomycetes for a tropical country, 

a series of updated species diversity lists for three Neotropical countries and a 

comparison of myxomycete assemblages across three different biogeographical provinces 

were carried out. It is envisioned that the data generated during this investigation will be 

used in future studies relating to both myxomycetes and the ecosystems studied. In any 

case, the data presented herein represent valuable contribution to what is known about the 

threatened high-elevation forests in the Neotropics.
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Chapter 1 

Introduction 

 

Myxomycetes and research on these organisms in the Neotropics 

 

The myxomycetes (plasmodial slime molds or myxogastrids) comprise a group of 

amoebae that form part of the super group Amebozoa (Adl et al. 2005). Their 

phylogenetic position is currently supported by molecular studies that show their 

monophyletic character within that super group (see Pawlowski and Burki 2009). In the 

past, they have been considered members of a group known as the Eumycetozoa (Olive 

1975). This hypothetical group included, along with the myxomycetes, two other groups 

of amoebae known as dictyostelids and protostelids. However, the integrity of the 

Eumycetozoa as a natural group has been recently questioned on the basis of molecular 

evidence showing that the protostelids are probably not monophyletic (Shadwick et al. 

2009).  

This fact does not affect the current recognized position of myxomycetes within 

the Amebozoa but it changes the concepts and nomenclatural treatments of the particular 

subgroups of organisms to which they are related. Given this scenario and for the purpose 

of this dissertation, myxomycetes will simply be treated as a group of amebozoans that is 

taxonomically distinct from both dictyostelid and protostelid amoebae. 
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Life cycle 

 

The life cycle of myxomycetes has been described in detail by a number of 

authors (e.g., Martin and Alexopoulos 1969, Stephenson and Stempen 1994, Everhart and 

Keller 2008). Most of these descriptions, however, seem to be incomplete in the sense 

that they depict only some of the observed stages or conversions that myxomycetes can 

undergo during their life. In general, these descriptions serve the purpose of illustrating 

the most important life cycle stages of these organisms; however, the absence of 

complete life cycles has implications for a complete ecological understanding of the 

group. 

The first aspect to consider regarding the life cycle of myxomycetes is that these 

organisms have three important life stages that differ dramatically from one another. 

These stages are represented by one reproductive phase and two vegetative ones that will 

be explained in the following paragraphs. In this way, individuals undergo a process of 

modifications over their life span in order to complete the entire cycle. 

Although myxomycetes are amoeboid organisms, they have the capacity to 

produce spores (Martin and Alexopoulos 1969, Stephenson and Stempen 1994).This 

capacity is also shared with dictyostelid, protostelioid amoebae and the genus 

Copromyxa, the only other “fruiting-capable” groups within the Amebozoa (Cavalier-

Smith 2003, Adl et al. 2005). The spores produced by myxomycetes are contained within 

a spore-holding structure known as a fruiting body. There are several types of fruiting 

bodies or sporocarps (Figure 1); however, the most common one is a stalked globose  
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Figure 1. Myxomycete fruiting bodies and associated structures. A. Sporangia of Arcyria 

insignis; B. Aethalium of Lycogala epidendrum; C. Plasmodiocarp of Hemitrichia 

serpula; D. Sporangia of Cribraria intricata; E. Peridial net of C. intricata; F. Sporangia 

of Stemonitis axifera; G. Sporangia of Lamproderma scintillans; H. Capillitium of A. 

denudata; I. Sporangium of Echinostelium minutum; J. Sporangia of Physarum stellatum 

and K. Sporangia of Physarum brunneolum. Images not at the same scale. 
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structure known as a sporangium. This type of structure depicts the typical reproductive 

stage in myxomycetes. As the fruiting body develops (Figure 2A), the process of spore 

formation takes place as well. The newly formed spores, which are produced by meiotic 

divisions, are released to the environment once the fruiting body develops completely 

(Figure 2B). It is because of this capacity to produce spores within fruiting bodies that 

myxomycetes were once considered part of the Fungi (Alexopoulos et al. 1996). 

These spores, with typical diameters ranging between 5 and 15 µm (Tesmer and 

Schnittler 2007), are dispersed with the aid of a number of environmental factors 

including wind and rain. However, it has also been observed that insects (e.g., Blackwell 

1984) and even vertebrates (e.g., Townsend et al. 2005) can act as dispersion vectors. 

Once the spores reach a suitable substrate, they germinate (Figure 2C) and give rise to a 

haploid ameboid cell known as a myxamoeba (Figure 2E). Apparently, as a product of 

environmental conditions, among which the most important is high moisture, these 

myxamoebae can undergo a process of transformation in which two anterior flagella are 

produced. When this occurs, the resulting individuals are known as swarm cells (Figure 

2F). The inter-conversion between myxamoebae and swarm cells occurs in both 

directions. If environmental conditions are not favorable for these vegetative cells, 

myxamoebae can enter a resting stage in which they divide and produce microcysts 

(Figure 2G), which can in turn form myxamoebae once conditions are favorable again. 

If conditions favor the free-living style of both myxamoebae and swarm cells, 

these cell types can act as gametes. Thus far, studies show that both myxamoebae and 

swarm cells mate only with other individuals of the same cell type that carry compatible 

reproductive alleles (Figure 2H, e.g., Clark 1995) in a process known as heterothallism. 
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However, non-heterothallic strains for species with heterothallic systems are known to be 

very common as well (Clark et al. 2004). In fact, it has been observed that these systems 

can inter-convert (Collins 1980) and that some morphospecies are a mixture of 

heterothallic and non-heterothallic lineages (Clark and Stephenson 2003). Non-

heterothallic lineages of myxomycetes seem to continue their life cycle via apomixis 

(Figures 2M, N and O, e.g., Haskins and Therrien 1978). These lineages are characterized 

by the lack of genetic crossing and ploidy changes between vegetative and reproductive 

stages (Clark et al. 2003). 

Assuming that the cycle is heterothallic, after two compatible gametes undergo 

somatogamy, their nuclei fuse and a zygote is formed (Figure 2I). The zygote starts 

growing and its nucleus divides rapidly to finally form a macroscopic unicellular 

multinucleate structure known as a plasmodium (Figure 2J). During this vegetative stage, 

myxomycetes can grow as large as one meter or more in diameter and become very 

conspicuous even for the untrained eye. Due the gelatinous texture of the plasmodium, 

myxomycetes are colloquially referred to as plasmodial slime molds (Stephenson and 

Stempen 1994) or simply slime molds. 

Depending on environmental conditions, the plasmodium can undergo a 

transformation into a resting structure known as a sclerotium (Figure 2K), in which 

myxomycetes can survive until favorable conditions return. In that case, the sclerotium 

usually re-transforms and re-generates a plasmodium. The process of sporocarp 

formation (Figure 2L) takes place once the plasmodium matures or it is old. In this way, 

fruiting bodies are formed, the life cycle is completed and myxomycetes are able to 

produce spores again. 
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Classification 

 The current view on the phylogenetic position of myxomycetes is that the group 

should be treated as a clade within the super group Amebozoa (see Pawlowski and Burki 

2009, Shadwick et al. 2009). Contrary to the situation with other taxonomic groups 

within the Amebozoa, most myxomycete genera and species have remained in the group 

since they were described. Over time, a large number of corrections have been made on 

both the taxonomic and nomenclatural treatments (e.g., Keller and Brooks 1976, 

Nannenga-Bremekamp 1984, Gams 2005, Lado et al. 2005) but the integrity of the 

myxomycetes as a group has been unquestioned. 

Even though this situation has been the general pattern, there are particular cases that 

represent exceptions. The genus Ceratiomyxa J.Schröt., for example, was traditionally 

considered a myxomycete by a number of authors (e.g., Martin and Alexopoulos 1969), 

until L. S. Olive (1970) proposed the genus belongs to the group of protostelioid amoebae 

that he called protostelids at that time and which were thought to be paraphyletic. Almost 

40 years later, molecular evidence shows that this genus is neither a protostelioid amoeba 

nor a myxomycete but a deeply diverging sister group to the latter (Fiore-Donno et al. 

2010). A similar situation occurred with the genus Schenella, which was originally 

thought to be a myxomycete (Macbride 1911) but is now considered to be a fungus (see 

Estrada-Torres et al. 2005). 

 In spite of this constant process of classification changes, Hernández-Crespo and 

Lado (2005) reported about 915 formally accepted names of myxomycetes in 59 different 

genera. Whether or not all those names correspond to actual biological species or some of 

them are examples of species complexes is an issue to be resolved by myxomycete 
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taxonomists in the future. The fact is that a similar scenario is observed in most groups of 

protists. For this reason, some authors have argued that a nested classification system is 

not appropriate at the moment (see Adl et al. 2005) and that phylogenetic relationships 

among groups should be elucidated or clarified before a proper system is established. 

 For myxomycetes, only recently has a higher order classification of the group 

been carried out using molecular analysis (see Fiore-Donno et al. 2005). This study 

provided evidence supporting an older classification of myxomycetes based on spore 

color (Lister and Lister 1925). In this system, species with light-colored spores are 

separate from species with dark-colored spores. Lister and Lister (1925) gave these two 

groups the category of orders but more recent authors have considered that myxomycetes 

are composed of up to six different orders (e.g., Martin and Alexopoulos 1969).  

With this scenario is clear that there is still more work to be done at the higher 

category level in myxomycetes before a clearer picture is available. Before that, perhaps 

the best way to classify myxomycetes is that proposed by Adl et al. (2005) in which a 

non-categorical system is used. The only problem with this is that most modern 

myxomycete researchers have used the system proposed by Martin and Alexopoulos 

(1969), which is also the most commonly used system today (e.g., Stephenson 2003). For 

that reason, a reference in publications to this system is still needed regarding 

myxomycetes. That approach has been followed in this dissertation. 

 According to Martin and Alexopoulos (1969), myxomycetes are classified into 

two main groups depending on the position of the spores in relation to the fruiting body. 

Those species with spores borne outside of the fruiting body are considered part of the 

order Ceratiomyxales, the group that includes the genus Ceratiomyxa, as already 
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discussed. The rest of the species belong to the orders Echinosteliales, Liceales, 

Trichiales, Physarales and Stemonitales, which are groups characterized by bearing the 

spores borne inside the fruiting body. The main differences between the latter groups are 

based on morphological characters such as spore color, presence, shape and 

ornamentation of the internal structures of the fruiting body and presence of calcium 

carbonate. However, it is anticipated that the relationships among orders and genera will 

undergo a number of changes when fine-scale molecular analyses are carried out on a 

wide range of species. For instance, the recently studied relationship between 

physaraceous and stemonitaceous myxomycetes has already led to some changes in 

classification being proposed (see Fiore-Donno et al. 2008). 

 

Ecological study 

 Historically, myxomycetes have been studied by a larger number of trained 

taxonomists than ecologists. Even though in earlier publications there is some basic 

ecological information about myxomycete species (e.g., Lister 1894, Fries 1899), most of 

the ecological analyses of the group have been carried out during the last decades (e.g., 

Maimoni-Rodella and Gottsberger 1980, Eliasson 1981, Stephenson 1988, Stephenson et 

al. 2003). 

 The majority of the studies on myxomycetes to date have been conducted in the 

temperate areas of the Northern Hemisphere (Stephenson et al. 2004b), notably Europe 

and North America. The most comprehensive treatments of the group (e.g., de Bary 1859, 

Lister 1894, Martin and Alexopoulos 1969) are a testimony of that fact. Even though 

some other geographical locations of the world have been studied more intensively in the 



10 
 

last 50 years or so, there are still some areas that are highly underrepresented (see Figure 

3). Unfortunately, this is a pattern that can be generalized to most groups of organisms as 

well. 

 Most of the current ecological patterns known for the myxomycetes are based on 

this highly skewed research scheme followed in the past. For this reason, whether or not 

the ecological information currently available is enough to provide reasonably supported 

hypotheses remains problematic. For example, when the currently available geospatial 

information on myxomycete distribution is used to generate niche models, it is obvious 

that a similar research effort in underrepresented areas (e.g., the tropics, see Stephenson 

et al. 2004b) is necessary before a more accurate and biologically meaningful distribution 

map can be generated (Figure 4). 

In any case, based on the best available information, myxomycetes are known to 

occur in most terrestrial ecosystems (Stephenson 2003). The general latitudinal pattern 

shows that the diversity of these organisms is higher in temperate than in tropical or 

boreal areas (Schnittler 2001a). However, as recently mentioned, due the discrepancy that 

exists among the research efforts carried out at the different latitudes in the world, this 

pattern is still highly arguable.  

Myxomycetes have long been known to occur on decaying wood, litter, soil, 

herbivore dung and the bark surface of living trees in the forest (Stephenson and Stempen 

1994). Each of these substrates is known to support a different assemblage of species 

(Stephenson 2003). In recent years they have been documented on less traditional 

substrates such as inflorescences (e.g., Schnittler and Stephenson 2002), twigs 

(Stephenson et al. 2008), bryophytes (e.g., Schnittler 2001c) and lianas (e.g., Wrigley de 
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Basanta et al. 2008). These types of non-traditional substrates have been reported from 

tropical areas of the world. 

In a similar manner, modern trends in myxomycete research have included the 

study of desert areas (e.g., Schnittler 2001b, Lado et al. 2007), islands (e.g., Eliasson 

2004, Stephenson et al. 2007b, Rojas and Stephenson 2008) and mountains (e.g., Rojas 

and Stephenson 2007, Novozhilov and Schnittler 2008, Ronikier and Ronikier 2009), all 

of which are areas that had received little attention in the past. The study of these areas 

has increased not only the number of known species for some countries in the world, but 

also the capacity to conduct ecological comparisons. These were hard to carry out in the 

past due the lack of information about certain habitat types and geographical areas. With 

the information obtained from these projects, it seems that myxomycetes show 

distribution patterns that are associated with forest type, precipitation and elevation as 

described for abudant species by Stephenson et al. (2007a). In the first comprehensive 

ecological analysis for a tropical country, Rojas et al. (2009) found that the distribution 

pattern for the myxomycetes in Costa Rica supports this hypothesis. 

Due to this new tendency of data acquisition from underrepresented geographical 

areas in the world, there seems to be a trend towards the publication of results from such 

areas. Just recently, for example, published reports have been made for New Zealand 

(Stephenson 2003), the Neotropics (Lado and Wrigley de Basanta 2008), Africa (Ndiritu 

et al. 2009) and the North American grasslands (Rollins 2009). Also, a revision of the 

myxomycetes from Costa Rica is in progress (Rojas, Schnittler and Stephenson, in 

preparation). 
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Figure 3. Geographical distribution of myxomycete records at different time intervals, 

beginning in 1800 and based on data obtained from the Global Biodiversity Information 

Facility online portal (http://www.gbif.org) on October 11, 2009 (a total of 147,792 

records). 
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Figure 4. Probable distribution of the fundamental niche of myxomycetes calculated from 

(a) the current geographical distribution of records as retrieved from the Global 

Biodiversity Information Facility and (b) assuming a more even distribution of the 

research effort in tropical areas. Maps generated using openModeller (Muñoz et al. 

2009). 
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There is no doubt that these studies largely represent the current tendency of 

incorporating ecological aspects into the myxomycete research. However, it seems that in 

years to come, the use of molecular techniques to evaluate ecological aspects of the group 

will become more common, especially since it has the potential to generate important 

information that otherwise would be impossible to obtain. Examples of the latter are the 

recent studies of Win Ko Ko et al. (2009) and Kamono et al. (2009). 

 

Research in Neotropical areas 

The Neotropics, or New World Tropics, are sensu stricto the area that occurs 

between the Tropic of Cancer and the Tropic of Capricorn on the American continents. 

Some authors have considered, however, that when used to refer to the biogeographical 

province, the term also should include some of the subtropical areas in Mexico and South 

America (e.g., Udvary 1975). More recently, the term has been used in the same way 

when considering information on endemic taxa and movement of species (Olson et al. 

2001). The latter meaning is an operational definition used for a number of practical 

purposes, including biogeographical, palaeoecological and climate change research as 

well as the distribution of conservation efforts and international consideration of the 

ecological regions of the world. For this reason, and for the purpose of this dissertation, 

the term Neotropics or Neotropic/Neotropical region will be used in this sense of Olson et 

al. (2001, see Figure 5). 

Research on myxomycetes has been carried out in the Neotropical region for more 

than 100 years, as diagramed on Figure 3. According to Lado and Wrigley de Basanta 

(2008), the first known reports of a myxomycete in the Neotropical area were 
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from Chile and Peru in 1828 and 1829, respectively (Bertero 1828, Rudolphi 1829). Even 

though research efforts at that time were limited, myxomycetes have continued to be 

collected in the Neotropics since then. In a similar way to the history of other types of 

scientific research in the New World, European investigators took the lead in Neotropical 

myxomycete research. A former French soldier from Napoleon Bonaparte’s army, Jean 

Pierre François Camille Montagne, was the first to report a series of myxomycetes from 

Brazil, Chile, Cuba, Puerto Rico and Guyana (Montagne 1837, 1852, 1855) after retiring 

from the military service and dedicating himself to the study of cryptogams in South 

America. Similarly, another French mycologist, Joseph Henri Levéillé, was the 

responsible for the first reports of myxomycetes in Colombia (Levéillé 1863). 

In spite of these isolated efforts, it was not until the decade of the 1880’s that 

more serious fungal surveys were carried out in the southern Neotropics. A number of 

recognized mycologists such as the Italians Carlos Luis Spegazzini and Augusto 

Napoleone Berlese, the British George Edward Massee and the French Narcisse 

Théophile Patouillard generated important information on the distribution and taxonomy 

of myxomycetes in Argentina, Brazil, Colombia, Cuba, Guyana, Paraguay, Uruguay, 

Venezuela and the Caribbean (e.g., Spegazzini 1880a, 1880b, 1880c, 1881, 1882, 1886, 

1887, 1889; Berlese 1888, Massee 1889, Patouillard and Gaillard 1888). These types of 

exploratory surveys continued in other countries in South America for the next decades. 

It was not until the end of the 19th century that the first American mycologist 

published a report on Neotropical myxomycetes. With his study in Nicaragua, Thomas 

Houston Macbride also reported the first myxomycetes for the Central American region 

(Macbride 1893). Two years later, the recognized Italian mycologist Pier Andrea 
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Saccardo published his 11th volume of the Sylloge Fungorum and recognized the new 

species described by Macbride for Central America (Saccardo 1895), thus giving the 

former credit for his study. 

From that moment on, myxomycete research in the Neotropics began to take 

place more systematically in the Northern countries of Latin America, while it 

consolidated in South America. In the early years of the 20th century, myxomycete 

exploration finally took place in countries such as Costa Rica and Mexico (e.g., Hennings 

1902, Saccardo and Sydow 1902). With the establishment of Panama as a country and the 

completion of the canal by the United States in 1914, the period of biological exploration 

in the next few decades included the study of myxomycetes in that area as well (Standley 

1927, 1933). 

By that time, the incipient study of Fungi and myxomycete occurrence and 

distribution in the Neotropics had already taken researchers to virtually all major regions 

within the area. This period of exploration continued until the mid-20th century. By 1950, 

the only countries in the whole Neotropics for which there were no published reports of 

myxomycetes were Belize, Guatemala, French Guiana, Haiti and Honduras (see Lado and 

Wrigley de Basanta 2008). The first published report of myxomycetes from these areas 

occurred as late as the end of the 20th century in the case of Belize (Ing and Haynes 

1999). 

 In spite of this, information on myxomycetes from the Neotropical area was 

somehow available for the majority of the countries by the decade of the 1970s. For that 

reason, Marie Leonore Farr, an American myxomycologist generated a monograph for 

Neotropical myxomycetes at the end of that decade (Farr 1976). Her work, published by 
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the New York Botanical Garden, became the point of reference for myxomycete 

occurrence and distribution in the Neotropics for years to come. During the next decade, 

recognized myxomycete studies in the Neotropics were practically absent in all countries 

except for Brazil, Ecuador and Mexico. These studies were principally carried out by 

Laise Cavalcanti from the University of Pernambuco in Brazil (e.g., Cavalcanti and 

Oliveira 1985, Cavalcanti and Pôrto 1985), Elly Nannenga-Bremekamp from the 

National Botanic Garden of Belgium (e.g., Eliasson and Nannenga-Bremekamp 1983, 

Nannenga-Bremekamp 1989) and Gastón Guzmán from the Xalapa Institute of Ecology 

in Mexico (e.g., Guzmán and Guzmán-Dávalos 1981, Guzman and Villareal 1984).  

 During the past 20 years, the research effort in the Neotropics has had different 

objectives in different areas. For example, the Neotropical area that has received most of 

the effort in relation to occurrence of myxomycetes is Mexico. Lado and Wrigley de 

Basanta (2008) calculated that approximately 72% of all the published articles about 

Mexican myxomycetes have been produced since 1990. The first complex ecological 

studies have taken place during the late part of this time period as well. Most of the 

ecological analyses on Neotropical myxomycetes have occurred in Costa Rica (e.g., 

Schnittler and Stephenson 2000, Schnittler 2001c, Schnittler and Stephenson 2002, Rojas 

and Stephenson 2007, 2008), Ecuador (e.g., Schnittler 2001c, Schnittler and Stephenson 

2002, Schnittler et al. 2002, Stephenson et al. 2004a) and Puerto Rico (e.g., Novozhilov 

et al. 2000, Schnittler and Stephenson 2002, Wrigley de Basanta et al. 2008). 

 Most areas of South America have not been studied in the last two decades. This 

of course, is not conclusive; some exceptions include the already mentioned studies in 

Ecuador, some projects in Chile (e.g., Lado et al. 2007, Wrigley de Basanta et al. 2009) 
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and Argentina (e.g., Crespo and Lugo 2003, Wrigley de Basanta et al. 2009) and a series 

of regional studies in Brazil (e.g., Cavalcanti and Mobin 2002, Maimoni-Rodella and 

Cavalcanti 2006). There are also some other ecological studies currently going on in 

some areas of the Peruvian Amazon and Andes and the Aburrá Valley in Colombia 

(Rojas and Stephenson, unpublished data). 

 Previous to this dissertation work there were no comparative studies for high-

elevation myxomycete communities in the Neotropics, no comprehensive ecological 

analyses for any tropical country in the world and only limited information on the 

biogeography of myxomycetes in the northern Neotropical area.  

 

High-elevation Neotropical forests and the contextual framework of this dissertation 

 

 Most of the information available for high-elevation forests in the Neotropical 

area refers to these ecosystems as Neotropical cloud forests. The problem with the use of 

this term is that “cloud forests” per se encompass a series of environments that vary 

dramatically in elevation, precipitation and temperature regimes (Brown and Kappelle 

2001). If latitudinal differences are considered as well, it is not surprising that there are a 

number of regional terms that have been used to refer to these forests. For example, they 

are referred to “bosque mesófilo de montaña” (mountain mesophyll forest) in Mexico 

(e.g., Ponce-Vargas et al. 2006), “bosque nuboso” (cloud forest) in Costa Rica (e.g., 

Vargas 1990), “selva andina” (andean jungle) in Colombia (e.g., Cleef et al. 2003) and 

“yunga” (yunga) in Argentina (e.g., Hilgert and Gil 2006.). 
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 Due this discrepancy in terms, some authors prefer to use the term “montane 

cloud forests” (see Bubb et al. 2004) to delimit those tropical forests located at elevations 

above the premontane level. Following the Holdridge system of forest classification in 

the Neotropical region (Holdridge et al. 1971), these “montane cloud forests” are limited 

to the lower montane, montane and subalpine levels. In the Northern section of the 

Neotropics, however, some regions such as central Panama, Nicaragua, Belize and most 

Caribbean islands do not have this forest type (see Figure 6) as a result of their 

topographic characteristics. 

 Most researchers agree that on oceanic islands the elevation at which “cloud 

forests” occur is dramatically lower (Brown and Kappelle 2001). This has been attributed 

to the “Massenerhebung” effect (Grubb 1971). When mountains are isolated, the effect of 

winds and drastic temperature differences between the mountain and the atmosphere is 

accentuated by the isolation of the mountain, thus generating colder environments at 

lower elevations in relation to mountains that are surrounded by land masses and/or other 

mountains (Barry 1992). Because of this, some mountain environments in oceanic islands 

(e.g., Ascension Island in the South Atlantic) have “cloud forests” just like their 

continental counterparts.  

However, given the ambiguity associated with the terms “cloud forest” and 

“montane cloud forest” when regional or global studies are conducted, it is more 

convenient to define the operational unit in which the study is carried out. Since the 

majority of definitions are used in a colloquial way to refer to different forest types, a 

different approach should be used to avoid confusion. Unfortunately, mountain forests 
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cannot be defined only using elevation as a parameter. Most researchers agree that the 

concept of mountain should also include the characteristic steep slopes that generate the 

highly energetic instability in the environment (Kapos et al. 2000). Since this approach is 

not standard in biological investigations, the term montane forest is ambiguous as well. 

For this dissertation, habitat characteristics such as cloud coverage and slope degree are 

not as important as other factors such as forest structure and geographic location of the 

areas. 

For this reason, in order to avoid confusions with terms that are associated with 

other meanings, the term high-elevation Neotropical forest is used herein to refer to 

those montane habitats in the Neotropics that represent the highest extreme of the forest 

extension before the tree line is reached.  

 For the Neotropical region, these high-elevation forests occur over a wide 

latitudinal range from Mexico to Argentina (Brown and Kappelle 2001). The accepted 

northernmost remnant of this type of forest occurs in the Cumbres de Monterrey National 

Park, which is located in the Mexican state of Nuevo León at approximately 31˚N (Luna 

et al. 2001). In South America, the southernmost section of this forest type is found in the 

Sierra del Aconquija at approximately 29˚S in the provinces of Catamarca in Argentina 

(Brown et al. 2001).  

As expected, distinct high-elevation areas along the Neotropics have been 

influenced in various ways by different historical and biological factors, thus shaping the 

forests in diverse ways. For example, it is believed that the vegetation in the Mexican 

high-elevation forests has a clear Neartic and Paleartic origin (Rzedowski 1991b) but a 

strong Neotropical influence, especially at the herbaceous level (Rzedowski 1991a). 
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Approximately 46% of the plant genera present in these forests are distributed across the 

Neotropics (Luna et al. 2001). At the other extreme, the vegetation of the yungas in 

Argentina is known to have common elements of Neotropical distribution but 

characteristic species of Gondwanic origin (Brown et al. 2001). In the middle of the 

Americas, the vegetation of the high-elevation forests of Costa Rica shows that 

approximately 46% of the genera originated in the Neotropics but around 28% of them 

are either Asian or Arctic in origin (Kappelle 2001). 

 

Research questions in this dissertation 

 This dissertation was designed to study the biogeography and ecology of 

myxomycete assemblages in high-elevation areas of the northern Neotropics. However, 

in order to obtain comparative data, an appreciable effort was directed towards other 

types of forest and research objectives as well. 

 The main objective of the overall project was to investigate the distribution of 

myxomycetes in tropical areas in order to compare the results obtained with known 

patterns in myxomycete ecology and general ecological theories. For this, three basic 

questions were formulated at the beginning of this project. The first question is 

biogeographical in nature and considers whether myxomycete species with a Nearctic 

affinity or those with a Palearctic affinity are more common than Neotropical species in 

the temperate-like environments represented by high-elevation forests in the Neotropics. 

For this question, the two basic hypotheses are given below. 
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Ho: There are no differences in the species composition of myxomycete communities 

between temperate and high-elevation Neotropical forests. 

Ha: There are differences in the species composition of myxomycete communities 

between temperate and high-elevation Neotropical forests. 

 

The prediction of this question is based on preliminary studies carried out in the 

Talamanca Range in Costa Rica (Rojas 2005). According to these studies, it seems that 

myxomycete assemblages in high-elevation Neotropical forests more closely resemble 

the assemblages found in temperate forests with a strong Nearctic affinity than species 

assemblages characteristic of low-elevation Neotropical forests. 

 The second question, ecological in this case, examines the distribution of 

myxomycete species in high-elevation and low-elevation Neotropical forests by studying 

the macro- and microenvironments within which these species occur. These macro- and 

microenvironments are defined by a series of environmental conditions and determine 

which of the two hypotheses listed below explain the presence of myxomycetes in the 

high-elevation communities. 

 

Ho: There are no specific macro- and microenvironmental conditions correlated with the 

presence of myxomycetes in high-elevation forests as opposed to low-elevation forests in 

the Neotropics. 

Ha: There are specific macro- and microenvironmental conditions correlated with the 

presence of myxomycetes in high-elevation forests as opposed to low-elevation forests in 

the Neotropics. 
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 In this case, the prediction is that different myxomycete species show different 

levels of association with different sets of macro- and microenvironmental conditions, 

thus making the species assemblages in low-elevation areas different from those in high-

elevation areas. This is based on previous patterns of distribution reported for other areas 

of the Neotropics (see Stephenson et al. 2004b). 

 The third question is intended to evaluate more carefully the interaction (in terms 

of niche overlap) among closely related species in a taxonomic group with a known 

Neotropical affinity in order to determine if this approach is useful in explaining their 

distribution across the region. For this question, the two hypotheses are given below. 

 

Ho: There are no differences in the niche overlap among closely related species with high 

Neotropical affinity that help explain their distribution across the region. 

Ha: There are differences in the niche overlap among closely related species with high 

Neotropical affinity that help explain their distribution across the region. 

 

 For this question the prediction is that even at this fine level, differences in the 

interaction among species should be detectable and can be observed using a niche-based 

approach. This is supported by the fact that for some genera with Neotropical species, 

differences in distribution reported in the literature indicate they may be associated with 

particular conditions of their environment (see Martin and Alexopoulos 1969). This can 

mean that those species could show separation of niches by means of resource 

partitioning. 
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 Even though the study of the three questions mentioned above represent the basis 

of this dissertation, a number of different other problems are treated within each the 

chapters that follow. Due the highly heterogenic methodologies used in different chapters 

to find evidence addresing the different hypotheses, a number of different other issues 

related to current myxomycete research are treated separately in the chapters as well. 

However, as mentioned earlier, all of these approaches were used to provide evidence to 

answer the three basic questions explained above. 

 

Study areas 

 For the study of the research questions explained in the last section, a series of 

study areas were selected in different parts of the world, especially across the Americas 

(Figure 7). These areas are different in terms of forest composition and structure as would 

be expected, given the different influencing elements that have shaped the different 

forests worldwide. However, they all represent forest habitats with similar characteristics 

for the study of the particular aspects that this dissertation addresses. 

With the only purpose of keeping the information organized, all the study areas 

from which data were collected have been arranged into groups. These groups correspond 

to the Chapter organization of this dissertation and follow the objective-centered set of 

three research questions explained in the last section. With the exception of some non-

visited study sites included in two external complementary datasets used for Chapters 2, 5 

and 9, the study areas investigated by the author of this dissertation follow the 

arrangement given in Table 1.
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A brief overview of the study areas is provided below. Dissertation chapters 

indicate for how long these areas were surveyed and what type of information has been 

obtained from them. Study areas have been organized by biogeographical provinces using 

the scheme in Figure 5 and arrangement in Table 1. 

 

Nearctic Province – high-elevation temperate forest of the United States 

 As explained earlier, this dissertation focuses on myxomycete dynamics in high-

elevation Neotropical forests. However, since the climatic characteristics of these areas 

resemble those of temperate areas, they have often been considered temperate islands in a 

tropical landscape. In fact, for certain areas in the Neotropics and some groups of 

organisms, high-elevation Neotropical ecosystems seem to act as biogeographical islands 

(see Cleef and Chaverri 2005) and explain patterns proposed by the theory of island 

biogeography (MacArthur and Wilson 1967). 

 For this reason, one true temperate area was selected to establish adequate 

comparisons with the other study areas in the Neotropics. This temperate study area 

corresponds to part of the higher portions of the Great Smoky Mountain National Park 

known as Andrews Bald, located in the state of North Carolina, United States at 

35°32'19" N and 83°29'38" W, with an elevation of approximately 1750 m (Figure 8). 

The “balds” in this part of the Appalachians are treeless areas covered by grasses, sedges, 

and forbs (Jenkins 2007). Even though the origin of these open grassy areas has been a 

matter of debate for a long time (e.g., Lindsay and Bratton 1979), they resemble 

structurally the grassy areas found in tropical mountains beyond the tree line. 
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 The area of the Appalachians where Andrews Bald is located consists of rocks of 

Precambrian age (King et al. 1958) that formed the Appalachian Range during the 

Alleghenian orogeny after the North American plate collided with the African plate (Rast 

1984). The area seems to have escaped the Wisconsin glaciation. Evidence shows that the 

glacial border was less than 250 miles to the north of this area, but current vegetation 

seems to have been highly influenced by this period (Braun 1951). 

Whether or not the “balds” of the Smoky Mountains are a natural product or the 

result of anthropogenic influence, the structure of the plant layer is very different from 

that in the forested areas surrounding the open areas (Linday and Bratton 1980). At 

present, in Andrews Bald the dominant plant is the mountain oat grass, Danthonia 

compressa; however, other common plants found in this area include Potentilla 

canadensis, Rumex acetosella and Cinna latifolia (Jenkins 2007). Two of the common 

non-herbaceous plants that occur in this area include serviceberry, Amelanchier laevis 

and fir, Abies fraseri (Linday and Bratton 1980).  

 

Indo-Malay Province – high-elevation tropical forest in Thailand 

 In a similar way to the selection of a temperate area for comparison with the 

Neotropical study sites selected, one tropical area was selected outside of the Neotropics. 

This area is within Doi Inthanon National Park in northwestern Thailand, located 

approximately between 18°31' - 18°33' N and 98°28' - 98°31' E. This mountain represents 

the highest peak in Thailand at 2562 m and it is part of the Shan Highlands complex 

(Gupta 2005), which is considered by some as an eastern extension of the foothills of the 

Himalayas. 
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The latest evidence shows that the Doi Inthanon core complex was formed during 

the Late Triassic (Dunning et al. 1995) and the final development occurred between the 

Late Cretaceous and the Miocene (Macdonald et al. 1993). Apparently, the forests of 

these high-elevation areas in Southeast Asia did not change as much as those in low-

elevation areas as a product of the last glacial maximum around 18,000 years ago 

(Heaney 1991). Today, the forest vegetation is dominated by the oak tree Quercus 

eumorpha and the myrtaceous tree Syzygium angkae, which together seem to represent 

around 40% of the plants in the area (Khamyong et al. 2004). However, other plants such 

as Litsea martabanica, Helicia nilagirica, Lindera caudate and Schima wallichi are 

common. At lower elevations, the pine tree Pinus kesiya is a common species in the pine-

oak mixed forest assemblage (see Turnbull et al. 1980). 

In the Doi Inthanon area, two study sites were selected on the basis of tree species 

assemblages in the forest (Figure 9). The first study site corresponds to the oak-

dominated higher elevation parts of the forest on the road to the Napamaytanidol Chedi 

temples and is located at 18°31'34" N and 98°29'44" E approximately 1700 m above sea 

level. The second study site is located at 18°31'9" N and 98°31'4" E in the pine-oak 

mixed forest area around 1400 m above sea level. Both areas are located along the road 

number 1009 in the territory protected by the National Park. 

 

Neotropic province – high-elevation tropical forests in Mexico 

 The majority of the study sites used during the course of this dissertation are 

located in the Neotropics. As explained in a previous section, this biogeographical area 

encompasses all the territories of South and Central America as well as the Caribbean,
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and includes a large portion of the Mexican territories (see Figure 5). For practical 

purposes, all the study sites in this region will be described in order from north to south 

(see Figure 7). 

 In Mexico, two high-elevation study areas on the Trans-Mexican Volcanic Belt 

(TMVB) were selected. The TMVB is a partial consequence of the subduction of the 

Cocos plate underneath the North American plate along the middle America trench 

(Nixon 1982) and it is composed by a series of volcanoes of late Tertiary and Quaternary 

origin (Castro-Govea and Siebe 2007). Due its active nature, it has been suggested that 

volcanic cones along this belt have been formed as recently as 0.2 million years (García-

Palomo et al. 2002). The TMVB is very important in the regional context as it 

encompasses the area where the highest peaks of Mexico are located (de Blij 2005).  

The two study areas selected in Mexico are located in the eastern section of the 

TMVB. The first one is the La Malinche National Park (Figure 10). This area surrounds a 

non-active volcano of the same name and it is located between the states of Puebla and 

Tlaxcala in the central part of the country at approximately 19˚14'00'' N and 98˚01'55'' W 

at elevations of ca 3000-4600 m (Castro-Govea and Siebe 2007). The park covers 46,093 

hectares, of which 12,932 belong to the state of Puebla and 33,161 to Tlaxcala (López-

Dominguez and Acosta-Pérez 2005). In the past this mountain has been referred to 

Matlalcueyetl but is now more commonly called La Malintzin or La Malinche (Riley 

2002). 

 The oldest rocks in the vicinity of La Malinche are dated at 9.7 million years 

(Carrazco-Núñez et al. 1997); however, due the stratovolcanic nature of this mountain, 

soils are formed by a series of sediment layers radiocarbon-dated between 102 and 
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46,000 years old (Castro-Govea and Siebe 2007). Evidence shows that glaciers and 

moraines were common in higher parts of the mountain (Heyne 1994) and that 

temperature changes since the last glaciation have shaped the vegetation present at 

different times (see D’Antoni 1993). For example, at elevations higher than 3100 m, it 

seems that the vegetation and forest structure has changed from alpine grasslands around 

10,000 years ago to the typical forests found in most areas today (Straka and Ohngemach 

1989). 

 The current vegetation of the La Malinche forests is dominated by pine trees. The 

two most common species are Pinus montezumae in the lower elevations and P. 

hartwegii in the highest areas; however, other trees such as Alnus jorullensis, Quercus 

laurina and Abies religiosa are common in certain areas of the mountain (Montoya et al. 

2004). For example, in particular areas A. religiosa dominates the vegetation but the 

species usually forms mixed patches with P. hartwegii and Juniperus monticola. The 

highest parts of La Malinche are characterized by the dominance of grasses and lack of 

trees. The typical vegetation in these areas is dominated by the tussock grasses Festuca 

tolucensis and Calamagrostis tolucensis. However, sometimes individuals of Juniperus 

monticola and P. hartwegii, the only tree species that resist under the prevailing 

environmental conditions (Villers-Ruiz et al. 2006), are found in these areas as well. 

 The second study site in Mexico is the Cofre de Perote National Park area (Figure 

11). In a similar way to La Malinche, this area surrounds a volcano of the same name. 

Located in the state of Veracruz between 19˚26' - 19˚31' N and 97˚07' - 97˚11' W at 

elevations between ca 3100 – 4100 m, this shield volcano is the result of a complex 
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geological process that started around 1.3 million years ago (Carrasco-Núñez et al. 2009). 

However, in comparison to La Malinche or other volcanoes in the TMVB, the geology of 

Cofre de Perote has been poorly studied (Ferrari 2000). 

Cofre de Perote shows an elevational vegetation pattern similar to that of La 

Malinche. At lower elevations a mixture of species of pine trees or a mixed pine-oak 

forest dominates the landscape; however, at higher elevations Pinus hartwegii is the only 

species found in the pine forest ecosystem that occurs just below the tree line (Narave 

1985). Around 3000 m in elevation, a belt that constitutes the fir (Abies religiosa) forest 

is also present. In this sense, it has been noticed that the floristic resemblance between the 

understory plants of this and the fir forest in La Malinche is very low (Sánchez-González 

2005). Beyond the tree line, the only habitat present is what Narave (1985) denominated 

“high altitude moors”. This vegetation type corresponds to the tussock grass-dominated 

environment found at La Malinche as well. 

 

Neotropic province – high-elevation tropical forests in Guatemala 

 In Guatemala, two study areas were selected in the western part of the country. 

These areas are located between 15˚27' - 15˚30' N and 91˚27' - 91˚28' W on the 

Cuchumatanes Plateau (Figure 12), a high-elevation formation with a complex geological 

history (see Anderson et al. 1973). This area has received the most profound human 

impact in Guatemala in the last 50 years (Islebe and Véliz 2001) and since 1989 is under 

special protection by the Guatemalan government (see article 90 of the Guatemalan Law 

of Protected Areas).
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The selected sites in the Cuchumatanes are located along the Chixoy-Polochic 

fault in the Todos Santos formation, an area characterized by rocks of Cretaceous origin 

(Anderson et al. 1973). This area supported an ice cap of approximately 60 km2 during 

the last glaciation and represents, along with the Talamanca Range in Costa Rica, the 

only glaciated areas that occurred at that time in Central America (Lachniet 2004). 

 As was the case in Mexico, two study sites in this area were selected. They 

correspond to the villages of La Ventoza and Llanos de San Miguel located at 15˚27'46'' 

N and 91˚32'00'' W at approximately 3400 m and 15˚30'10'' N and 91˚29'50'' W at 

approximately 3300 m, respectively. However, due the more or less homogeneous 

climate of the Cuchumatanes plateau and its general topographic and edaphic 

characteristics, these two areas are usually considered part of the same biological unit. In 

this common environment, a number of different plant associations have been described. 

The dominant taxonomic groups of these forests have been found to be very similar to 

those in the mountains of Mexico, thus supporting the concept of a phytogeographical 

unit for high-elevation environments denominated Megamexico (Islebe and Velázquez 

1994). For the Cuchumanates areas some of the most characteristic plant associations are 

Relbunium microphyllum – Agrostis tolucensis, Hypnum cypressiforme – Juniperus 

standleyi, Lachemilla vulcanica – Pinus hartwegii and the Agave hurteri – Alnus 

firmifolia (Islebe et al. 1995).  

 

Neotropic province – high-elevation tropical forests in Costa Rica 

 The southernmost high-elevation sites selected for this dissertation are located on 

the Talamanca Range in Costa Rica. This geologic formation is the largest and highest 
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mountain belt in southern Central America and is located on the Chorotega tectonic block 

between northern Costa Rica and the Panama Canal Zone (Coates and Obando 1996). 

The Talamanca Range seems to be the product of the rapid uplifting of one of the 

youngest exposed plutonic suites in the world around 5 million years ago, which is 

related to the subduction of the Cocos Plate underneath the Caribbean plate (Drummond 

et al. 1995). 

As mentioned earlier, there is evidence that some areas in the Talamanca Range 

supported glaciers in the Late Pleistocene (Lachniet 2004). The presence of cirques, U-

shaped valleys and moraines, is especially evident on Cerro Chirripó and Cerro de la 

Muerte, two of the highest peaks in Costa Rica (Kappelle 2001). For the first of these, 

glaciers are thought to have retreated after the Young Dryas event, around 9,700 years 

ago (Orvis and Horn 2005). At present, both areas are protected by the Costa Rican 

government in the form of National Parks. 

 The two study sites selected in Costa Rica correspond to the two already 

mentioned peaks of the Talamanca Range. The first of these areas, the Cerro de la Muerte 

also known as Cerro Buenavista, Macizo de la Muerte or Death’s Massif, is located at 

9˚33' N and 83˚45' W and reaches a maximum elevation of 3491 m (Lachniet et al. 2005, 

Figure 13). This area was annexed to the already existing Tapantí National Park in the 

year 2000 by presidential decree number 28307-MINAE with the objective of protecting 

the fragile paramo ecosystem present in the highest elevations. The dominant vegetation 

of this paramo includes the bamboo Chusquea subtessellata, the ericaceous shrub 

Pernettya coriacea and the asteraceous herb Gamochaeta americana (Chaverri and Cleef 

2005). However, below the tree line, the Cerro de la Muerte is well recognized for the 
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plant communities formed by Quercus costaricensis – Myrsine pittieri around 3100 m 

and Quercus costaricensis – Quercus copeyensis around 2900 m (Kappelle 1996). 

 The second study area in Costa Rica corresponds to the Chirripó National Park 

(Figure 14). This protected area includes the Cerro Chirripó, the highest mountain in 

Costa Rica, which is located around 9˚28' and 83˚29' W, and reaches an official elevation 

of 3819 m (Lachniet et al. 2005). In a similar way to Cerro de la Muerte, the highest parts 

of Chirripó are dominated by the paramo vegetation already mentioned and the forested 

areas immediately below the tree line by oak forests. For Chirripó, the oak forests 

immediately below the tree line are dominated in the canopy by a mixture of Quercus 

costaricensis and Q. copeyensis, but the understory is clearly dominated by the bamboo 

Chusquea (Kappelle 1996). 

 

Neotropic province – intermediate elevation tropical forests in Costa Rica 

 In addition to the high-elevation sites explained before, a series of secondary 

study sites was selected at intermediate and low elevations in Costa Rica and Peru. The 

objective of the selection of these areas was to acquire comparative datasets for the effort 

carried out in high-elevation areas in order to obtain more information about the ecology 

of myxomycetes in the Neotropics. 

 In this manner, two intermediate elevation areas were studied in Costa Rica. Even 

though these areas are located in the premontane belt according to Holdridge et al. 

(1971), they are located in different mountain ranges and represent different life zones in 

the country. The first of these areas is the Monteverde Cloud Forest Preserve (Figure 15), 

which is located on the Tilarán Range in northwestern Costa Rica at 10˚17'49'' N and 
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84˚47'0'' W and approximately 1500 m in elevation. The mountains of Monteverde are 

the product of the volcanic activity in the Guanacaste Volcanic Range and have been 

dated to be 1-2 million years old (Gillot et al. 1994). The forests present in this area are 

conspicuously rich in mosses and epiphytes. They have even been considered the area of 

the highest known orchid diversity on earth (Haber 2000). In spite of this, the most 

representative plant families at Monteverde are the Lauraceae, Rubiaceae, Fabaceae, 

Moraceae and Meliaceae (see Kappelle 2001). 

The other intermediate elevation site in Costa Rica corresponds to the Las Cruces 

Biological Station/Wilson Botanical Gardens (Figure 16), an area administered by the 

Organization for Tropical Studies. This site is located in southwestern Costa Rica on the 

Cruces Pacific Coastal Range at 8˚47'7'' N and 82˚57'32'' W and approximately 1200 m in 

elevation. The formation of this area apparently occurred during the late Eocene-Miocene 

and the common sedimentary rocks of the region are mixed with gabbroic sills, which 

have been dated at about 12 million years old (MacMillan et al. 2001). Even though the 

Wilson Botanical Gardens are a mixture of exotic and native plants, they represent one of 

the most important ex-situ conservation efforts for palm trees worldwide. In fact, the 

Arecaceae (the palm tree family) along with the Araceae and Bromeliaceae are the most 

represented plant families in the herbarium of Las Cruces (Quirós 2009). 

 

Neotropical province – low-elevation tropical forests in Costa Rica 

In a manner similar to what was described for the last study sites, three low-

elevation forests were studied in Costa Rica. Two of these sites represent lowland 

rainforests, whereas the third is a lowland seasonal dry forest. The first site is the La 
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Selva Biological Station, which is located on the Caribbean slope of Costa Rica at 

10˚25'54'' N and 84˚00'47'' W with an elevation of approximately 50 m (Figure 17). La 

Selva is one of the most widely recognized tropical biological stations in the world and is 

completely administered by the Organization for Tropical Studies. Most of the geological 

features in this area are formed by lower Pleistocene lava flows, alluvial deposits and 

Tertiary volcanic hills (Sanford et al. 2000). The forests in this area correspond to 

lowland tropical rain forests and are distinctive because of the abundance of Pentaclethra 

macroloba and the palm trees Socratea exorrhiza, Welfia georgii and Iriartea deltoidea 

(see Hartshorn and Hammel 2000). 

The second low-elevation site selected corresponds to the Cahuita National Park. 

This area is located on the Caribbean coast of Costa Rica at 9˚44' N and 82˚49' W and 

approximately 10-15 m in elevation (Figure 18). This area is the product of moderately 

weathered rocks formed during the late Miocene-early Pleistocene (Sprechmann 1984) 

and is characterized by sedimentary soils with high contents of calcium (Salazar et al. 

2004). The marine sector of this National Park contains the most developed coral reef 

along the Caribbean coast of Costa Rica (Cortés and Risk 1985). The vegetation in this 

area is typical of the Caribbean coast of Central America with families such as the 

Arecaceae, Moraceae, Combretaceae, Euphorbiaceae and Malvaceae as the most 

common groups in the forest (see Sánchez 1983). 

The last low-elevation site in Costa Rica is the Palo Verde National Park, which is 

located in the Tempisque basin in northwestern Costa Rica at 10˚20' N and 85˚20' W and 

an elevation of approximately 20 m (Figure 19). This area is under a joint administration 

from the Costa Rican National Park Service and the Organization for Tropical Studies 
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and is located in one of the oldest geological regions of Costa Rica. The rocks of this area 

are thought to have originated in the upper Paleocene-lower Eocene around 56 million 

years ago (Jaccard et al. 2001). The forest present in this area is a seasonal tropical dry 

forest with Acacia, Bombacopsis, Enterolobium, Hymenaea and Tabebiua as common 

genera (Chavarría et al. 2001). 

 

Neotropic province – insular forests in Costa Rica 

 In order to study the ecology of Neotropical myxomycetes in the context of a true 

oceanic island, one more territory of Costa Rica was selected. This is Cocos Island, an 

oceanic island in the eastern tropical pacific that gave rise to a National Park of the same 

name. This island is located approximately 550 km southeast from the Pacific coast of 

Costa Rica between 5º30' - 5º33' N and 87º01' - 87º05' W (Figure 20, Montoya 2007) and 

it is the summit of a seamount that lies on the Cocos plate (Castillo et al. 1988). 

This island is thought to be around 2 million years old (Castillo et al. 1988) and 

contains one of most pristine insular forests in the world. The number of vascular plants 

is close to 235 species, around 30% of which are endemic to the island (Trusty et al. 

2006). Even though the terrestrial section of the national park is very understudied, some 

previous investigations have treated the flora (e.g., Gómez 1975, Dauphin 1999, 

Bernecker-Lücking 2000) and the mycoflora (e.g., Gómez 1983) of the island.  

 

Neotropic province – low elevation tropical forests in Peru 

 The last study area established for this dissertation is located in the southwestern 

portion of the Amazon Basin in South America. The specific site corresponds to the Los 
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Amigos Biological Station which is located at 12˚34' N and 70˚06' W, with an elevation 

of approximately 250 m (Figure 21). This area is administered by Amazon Conservation 

Association by means of a public land concession from the Peruvian government. 

This station is located on the Madre de Dios geological formation in Peru, an area 

that seems to have been finally shaped during the late Cenozoic (Campbell et al. 2001). 

In general, this area is formed by a series of alluvial, lacustrine, and tidal deposits, some 

of which have been dated as recent as 30,000 years old (see Pitman 2008). The vegetation 

present in this area is associated to lowland tropical moist forests with a strong influence 

of the Madre de Dios River system watershed. Some of the more commonly represented 

plant families in this area include the Arecaceae, Myristicaceae, Moraceae, and Violaceae 

(Pitman 2000). A current ongoing inventory project of the biota present at Los Amigos is 

taking place in this area. 

 

Dissertation structure 

 For practical purposes this dissertation has been divided in a series of chapters, 

each of which deals with specific aspects of myxomycete ecology and biogeography in 

the Neotropics, with emphasis, as indicated earlier, on the northern part of the region. All 

the chapters presented herein have been structured in a peer-review journal format. 

During the course of this project, some chapters have been submitted and published in 

professional journals. Although these published chapters have included one or more 

coauthors and collaborators, all the work described in the chapters was designed, carried 

out, analyzed and presented by the author of this dissertation. The work of the 

collaborators has been limited to particular tasks within the context of the research 
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process, including such things as sharing complementary datasets, providing assistance in 

the field, logistic or technical support and editing of manuscripts to be submitted for 

publication. Working with other people in this fashion is a common practice of 

professionals in all branches of science. However, the complementary datasets mentioned 

above were compiled, corrected and double-checked with the original authors (unless 

deceased) by the author of this dissertation. 

Following the working scheme of the present dissertation, all chapters have been 

written so as to provide answers to the questions mentioned in a previous section. In this 

way, Chapter 2 gives a general overview of myxomycete ecology in Costa Rica. This 

chapter represents, to our knowledge, the first comprehensive published study of 

myxomycete ecology for a tropical country and includes a dataset of records that has 

been compiled from the best information sources available today. This information has 

been carefully examined using a Geographic Information System (GIS) approach and 

analyzed using both macro- and micro-ecological methods. This chapter provides a solid 

basis for comparative studies involving other tropical areas of the world, including those 

considered in other chapters of this dissertation. For this chapter, the senior author 

collected some of the examined material in the field, compiled and corrected the entire 

dataset, analyzed the data and wrote the manuscript submitted for publication. The role of 

the coauthors was limited to logistical help in the field and during visits to herbaria, help 

during the field component of the research and checking and suggesting edits to the final 

manuscript. 

Once an overview of the ecology of Costa Rican myxomycetes was available, it 

was possible to carry out a finer analysis for a particular area of the country. This 
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approach has been followed in order to provide information related to the 

microenvironments in which myxomycetes are found in the Neotropics, one of the main 

three questions of this project. In this way, Chapter 3 summarizes one of the studies 

carried out during the course of this dissertation. This chapter analyzes the importance of 

a series of microenvironmental parameters in the sporulation patterns of myxomycetes 

for an oak forest in the Talamanca Range in south-central Costa Rica. An introduction to 

the study of resource partitioning in myxomycetes by means of niche analyses is included 

in this chapter as well. For this chapter, the senior author collected all the data in the 

field, carried out the laboratory work, generated and analyzed the dataset and wrote the 

manuscript to be submitted for publication. The coauthor contributed with logistical help 

during the research and checked and suggested edits in the final manuscript. 

Following a similar approach, but also with the purpose of studying ecological 

factors that might account for biogeographical patterns, Chapter 4 introduces the study of 

myxomycetes in oceanic islands by means of an ecological analysis along an elevational 

transect on Cocos Island of the western coast of Costa Rica. This chapter analyzes the 

similarity of the species assemblages found in this island at different elevations with 

previous studies in other oceanic tropical islands and similar forests in mainland Costa 

Rica. An introduction to the concept of ecological isolation in tropical myxomycetes is 

presented in this chapter. This constitutes an important contribution to future studies of 

myxomycete biogeography. For this chapter, the roles of the senior author and the 

coauthor of the published manuscript were the same as indicated above for the previous 

chapter. 
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The third question of study in this dissertation is related with the interaction 

among closely related species. For this, a microenvironmental niche-based approach has 

been followed to produce Chapter 5. In this chapter, a solid database constructed with 

information on three species of a myxomycete-like organism has been used to study the 

process of separation of niches. The chapter compares and contrasts the ecology and the 

distributional patterns of the three species in question, for which very few ecological data 

were available prior to this dissertation. In this case, the senior author collected some of 

the data in the field, carried out most of the laboratory work, compiled and analyzed the 

dataset and wrote the manuscript to be submitted for publication. The coauthors 

contributed logistical support during the research process, provided a complimentary 

dataset for analysis and checked and suggested edits to the final version of the 

manuscript. 

The following two chapters (6 and 7) focus on the results obtained from the series 

of high-elevation study areas selected for this dissertation. In this way, Chapter 6 

compares the structure of the different high-elevation myxomycete assemblages 

considered in this dissertation. This chapter incorporates the analysis of data in a 

macroecological frame in which a series of both macro- and microenvironmental 

conditions are analyzed in order to generate data relevant to myxomycete distribution in 

the region. A comparison with some of the previously presented chapters of this 

dissertation is also incorporated in this analysis. The entire process involved in generating 

the data that yielded this chapter was carried out by the author of this dissertation. 

In a similar manner, Chapter 7 summarizes the biogeographical aspects of the 

assemblages studied by comparing the species composition of all the Neotropical study 



60 
 

sites and the two external areas. This chapter also introduces the analysis of results in the 

context of ecological theories that are related to the distribution and biogeography of 

organisms. Particular emphasis on the use of neutral models and niche-based models of 

community structure and species distribution is found in this chapter. For this, the 

analysis has been carried out taking in consideration the results presented in the previous 

chapters of this dissertation. As was the case for Chapter 6, the entire process involved in 

generating the data that yielded this chapter was carried out by the author of this 

dissertation. 

All the analyses carried out in the last chapters have generated two byproducts 

during the course of this dissertation. The first one of these, is the review of Costa Rican 

myxomycetes that is presented in Chapter 8, which summarizes the most important 

studies carried out during the past century in this region of Central America. In order to 

make the review more meaningful for future projects in the area, a series of basic 

ecological annotations and specimen locations have been included for each of the species 

presented in this chapter. The second byproduct is the report on the new species of 

myxomycetes from Mexico and Guatemala that is presented in Chapter 9. In a similar 

way to the last chapter, this report includes basic ecological information regarding the 

microhabitats in which the different species of myxomycetes were found. In both 

instances, the author of this dissertation was responsible for the entire process involved in 

generating the manuscript. 

With exception of the present introductory chapter, the other chapters of this 

dissertation represent considerations of various aspects of the body of data generated for 

the selected study areas during the period of my graduate study. The process of research 



61 
 

involved in generating these data has been carried out under the premise of studying the 

ecology and biogeography of myxomycetes in high-elevation areas of the Neotropics. For 

this reason, a final section containing general observations and concluding remarks has 

been included in Chapter 10. In this final chapter, a series of general comments relating 

to the ecology and biogeography of tropical myxomycetes, with particular emphasis on 

the high-elevation areas, has been included. 
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Abstract: Ecological patterns of tropical myxomycetes have been subjected to study only 

during the last decade. However, an exhaustive analysis of an extensive dataset for a 

single tropical country is lacking. For this reason, the present study was designed with the 

primary objective of examining the ecological distribution patterns of myxomycetes in 

Costa Rica. A database that includes historical records was compiled, and factors such as 

forest type and substrate preference were analyzed in an effort to understand these 

patterns at both the macro- and microenvironmental levels. Microenvironmental 

parameters that may drive abiotic preferences were analyzed. The ecological distribution 

of species showed a complex pattern; however, elevation seemed to be a key factor in 

determining the distribution of the group of species analyzed. In the same way, 

nonwoody substrates seemed to represent the most important factor explaining the niches 

occupied by myxomycetes in lowland regions of the country.  
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Index descriptors: Central America, community ecology, eumycetozoans, Neotropics. 

 

Introduction 

The plasmodial slime molds (myxomycetes or myxogastrids) comprise a group of 

amoeboid protists (Fahrni et al. 2003) known worldwide. Their life cycle includes the 

particular capacity to produce meiotic spores within spore-bearing structures during the 

reproductive stage (Alexopoulos et al. 1996). In the vegetative stage, these organisms 

survive as complex macroscopic multinucleate, single-celled structures known as 

plasmodia that feed upon microorganisms and are able to move short distances across or 

within particular substrates (Stephenson & Stempen 1994).  

This combination of characteristics is thought to give myxomycetes a competitive 

advantage over other groups of amoebae with respect to their migratory rates and 

effective colonization capacity. Interestingly, most of the species in the group do not 

show the cosmopolitan distribution that is predicted by models based on these ideas (e.g., 

Finlay 2002). For example, Fenchel & Finlay (2004) proposed that organisms smaller 

than 1 mm should occur “everywhere” as long as suitable habitats permit their existence. 

However, data are still being collected to determine whether or not this pattern applies to 

myxomycetes. For instance, Schnittler & Stephenson (2000) reported a number of shared 

species between the tropical forests of Costa Rica and the temperate forests in the eastern 

United States, but within the Neotropical region it seems that some of the macroscopic 

species of the genus Ceratiomyxa are not evenly distributed in similar environments 

(Rojas et al. 2008). The more general idea, based on the most recent data available, is that 
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some species of myxomycetes seem to show clear biogeographical patterns that conform 

more closely to the predictions of mathematical models and empirical data obtained from 

field surveys made for other groups of protists (e.g., Chao et al. 2006). 

The latter pattern seems more obvious when recent ecological studies of 

myxomycetes are considered. Most such studies have found that some species of 

myxomycetes seem to be largely restricted to particular environments, apparently as a 

product of their preference for specific vegetation types (e.g., Schnittler & Stephenson 

2002), substrates (e.g., Wrigley de Basanta et al. 2008) or microenviromental conditions 

(e.g., Rojas & Stephenson 2007). However, very few efforts have been made to relate 

particular species of myxomycetes to different types of forest ecosystems, even though 

this is the first step in evaluating ecological patterns at a larger scale. The major 

constraint for this type of analysis is the availability of an exhaustive set of biological 

data along with information on the spatial distribution of forest types for the area being 

considered.  

In this sense, Costa Rica represents a good starting point for tropical areas. 

Although research on myxomycetes has not been carried out consistently and 

systematically throughout the past century, there are a number of important baseline 

studies (e.g., Welden 1954; Alexopoulos & Sáenz 1975; Farr 1976). However, even more 

relevant are the systematic studies of myxomycetes that have been carried out in the 

country during the period of 1994-2007, most of which were summarized by Stephenson 

et al. (2004b). Fortunately, a well developed system of digital geographic information 

data also exists for the country (e.g., Vaughan et al. 1998). In fact, the widely known 
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forest type classification system developed by Leslie Holdridge (Holdridge et al. 1971) 

has already been incorporated into the Digital Atlas of Costa Rica (ITCR 2004).  

The reasons that this has taken place are simple. This country represents only 

0.03% of the terrestrial surface on the Earth but contains more than 4.5% of the known 

terrestrial species on the planet (Obando 2008). The geographic position, the influence of 

wind and ocean currents and geological history of Costa Rica provide this country with a 

unique set of conditions for the establishment of life forms. The interaction of these 

abiotic conditions has given rise to 24 different forest types or life zones, each of which 

presumably has a particular assemblage of species.  

Given all these conditions, we decided to carry out the project described herein to 

develop a more complete understanding of the ecological dynamics of tropical 

myxomycetes. For that reason, the primary objectives of this project were (1) to analyze 

the distributional patterns of myxomycetes in relation to different forest types and on 

different substrates and (2) to assess microenvironmental factors as abiotic driving forces 

for myxomycete distribution in Costa Rica. This study has considerable implications for 

future projects, since it is the first comprehensive study in which an effort has been made 

to analyze the effect of both macro- (e.g., forest types) and microenvironmental (e.g., 

substrates) factors on the distribution patterns of myxomycetes in a tropical country. It 

also provides baseline ecological data on myxomycete communities that can serve as a 

starting point for future studies in the tropics. 
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Materials and methods 

This study considered specimens and information generated throughout the period 

of 1905 to 2007. These specimens were collected by a number of different individuals 

using different methodologies. However, every possible effort has been made to decrease 

the effect of this time-related constraint and to make use of the available information in 

an objective manner. Throughout this paper, the forest type classification used refers to 

the Holdridge life zone classification system (Holdridge et al. 1971), and the 

nomenclature used for myxomycetes follows Hernández-Crespo & Lado (2005). All 

species identifications are based on the morphological species concept, and for field-

collected specimens, no material still in the plasmodial stage was considered. 

 

Database construction 

Approximately 95% of the database used in this paper was compiled from records 

of specimens collected by the authors and by Dr. Martin Schnittler between 1994 and 

2007. The remaining 5% of the database was derived from older records obtained from 

the herbaria of the University of Costa Rica (USJ), the United States National Fungus 

Collections (BPI) and the National Museum of Costa Rica (CR). External records from 

the Global Biodiversity Information Facility (GBIF) primary database also were 

considered. 

The final database included 4811 records of specimens of myxomycetes collected 

between 1905 and 2007. To avoid duplication of records, all records were carefully 

examined. In addition, a thorough evaluation of the nomenclature was carried out in order 

to standardize the nomenclatural treatment of species in the database.  
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Collecting protocols 

For those specimens obtained after 1994, a combination of field and laboratory 

techniques was used. In the first instance, the opportunistic sampling protocol described 

by Cannon & Sutton (2004) was utilized. This method is highly effective in studying 

microorganisms for which ecological patterns are still poorly known. It consists of a 

randomly-based sampling effort with very few pre-defined collecting parameters. In the 

present study, specimens were collected in the forest understory from dead plant material. 

Specimens collected in this manner were curated according to the protocol described by 

Stephenson & Stempen (1994). Once collected, specimens of myxomycetes were glued 

to paper strips, placed in small pasteboard boxes and allowed to dry at room temperature. 

Specimens collected before 1994 are presumed to have been collected in a similar 

manner, since these sampling and collecting techniques have been widely used in the past 

(e.g., Martin & Alexopoulos 1969). For example, Constantine Alexopoulos and Jose 

Alberto Sáenz carried out the first major survey of myxomycetes in Costa Rica by using 

the same basic methodology described above (see Alexopoulos & Sáenz 1975). 

Laboratory isolation of myxomycetes from samples of organic material collected 

in the field and used to establish moist chamber cultures was carried out only after 1994. 

For this part of the study, a series of samples consisting of dead plant material was 

randomly collected and brought back to the laboratory. Subsamples of this material were 

placed on pieces of filter paper in Petri dishes and soaked with distilled water for 24 

hours. Afterwards, excess water was poured off the plate, and the resulting cultures were 
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maintained and examined for the presence of myxomycetes over a period of 

approximately two months.  

 

Recognition of forest types 

As already noted, forest types are referred to as life zones in the Holdridge system 

of ecosystem classification. In order to recognize the appropriate forest type for each of 

the records in the main database, an examination of the geographical coordinates was 

carried out. Both the coordinates and the elevation of all collecting localities for each 

record were manually reviewed and checked for consistency using the cartographic 

sheets of the 1:200000 ecological map of Costa Rica (Bolaños & Watson 1993). 

However, when original coordinates and/or elevation were not available for collections 

made before 1994, the geographic centroid of the closest known locality provided the 

information for the record. The locality information for these collections was obtained by 

studying the field trip records present at the USJ and CR herbaria for the collectors and 

years being evaluated. 

After the georeference evaluation, a transformation of datum from WSG84 to 

Ocotepeque was performed. The latter datum is the official reference of the National 

Geographic Institute of Costa Rica, and it was considered necessary to do this in order to 

minimize the spatial error when plotting records on official maps. According to Fallas 

(2003), when such a transformation is performed, the maximum root mean square 

positioning error oscillates around 4 m, even when low cost GPS units are used to obtain 

the original coordinates using the WSG84 datum. This degree of geographic accuracy 

exceeds the requirements of the type of biological analysis presented in this paper, but it 
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follows the protocol currently being used for the country. However, this does not mean 

that the actual accuracy of records after the transformation was in all cases less than 4 m. 

Each GPS reading carries inherent errors on its own due to atmospheric conditions, forest 

structure and position of satellites. Nevertheless, it is thought that the final database 

contains very accurate geographic information.  

After this correction, the original Holdridge life zone layer provided in the Digital 

Atlas of Costa Rica (ITCR 2004) was used to create a map of the country with 

independent data representing the different forest types. For this, a series of sub layers 

corresponding to the 24 different life zones was created by using the metadata 

information to identify the individual polygons representing each one of the zones. A 

modified map was created and used to plot all the records, using the corrected 

coordinates. After this, a complete matching record-life zone report was generated and 

used to assign the forest type to each one of the records. All GIS work was performed 

using the program ARCmap, version 9.2. 

 

Substrate and species classification  

The range of substrates upon which myxomycetes occur is very broad. For this 

reason, in the present study, a list of 10 substrate categories was created and all records 

were arbitrarily assigned to one of these categories. Categories were created from 

observed patterns of occurrence in tropical areas and some of them represent substrates 

that are unique to this part of the world. From nonwoody to increasingly woody, substrate 

categories (with the abbreviations used given in parentheses) are dung (DU), flowers and 
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inflorescences (FI), living plants (LP), living cryptogams (LC), ground litter (GL), aerial 

litter (AL), lianas (LI), fruits (FR), twigs (TW) and dead bark and wood (DBW). 

Since the collecting effort in each of the forest types was obviously different, 

species were placed into four main categories of abundance in order to decrease the 

potential risk of accepting a poorly supported hypothesis during the statistical analysis. In 

this classification, species representing more than 1.5% of the total number of collections 

were considered as abundant, those falling between 0.5–1.5% as common, between 0.15– 

< 0.05% as occasional and those less than 0.05% as rare (modified from Stephenson et al. 

1993). According to this system, only species making up more than 1.5% of the total 

number of collections were considered as well represented, whereas those making up less 

than 1.5% were considered as not well represented in the country. Only those species 

falling in the first category were used to evaluate forest type and substrate preferences as 

well as the overall effect of environmental factors on the inherent variation of the dataset 

as revealed through applying multivariate techniques and niche breadth analyses. This is 

due to the larger number of records available and thus the lower potential minimum error 

during the analyses. 

 

Species occurrences 

The observed distributions of records among forest types and on various 

substrates were analyzed independently in an effort to assess the effects of both macro- 

and microenvironmental factors. The idea was to test whether or not species occurrences 

were significantly higher or lower than the expected probability for the particular macro- 

and microenvironmental categories. For the former, the expected probability was 



90 
 

considered as a function of the entire area covered by the forest type in question. With 

this system, the probability of finding a species would be higher in those ecosystems with 

larger areas. For substrates, it was considered that the probability of finding a particular 

type was a function of the exhaustiveness of the survey and not a function of the relative 

abundance of substrate types. When the opportunistic protocol is used, a non conscious a 

priori assessment of the ecosystem is carried out and the sampling effort starts being 

gradually directed toward rarer substrates. This results in a more or less equal sampling 

effort of all available substrates in relation to their relative availability. 

However, since the distribution of substrates is not equal among forest types, it 

was considered that the probability of finding a species on a particular substrate for a 

specific forest type was a function of the number of substrates present in that forest type. 

This means that substrates had different associated probabilities depending upon the 

forest type being considered, which conforms to the opportunistic collecting protocol 

used as well. In all cases goodness of fit Chi-Square tests were performed between the 

observed and the expected distributions to look for statistical differences, and forest types 

or substrates that showed a marked deviation from the expected probability were 

recognized as “key” categories. 

 

Analysis of microenvironmental conditions 

Some recent studies of myxomycetes have provided evidence of the importance 

of certain environmental factors in determining the spatial distribution of particular 

species. In order to evaluate the importance of a group of seven microenvironmental 
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parameters in the distribution of species throughout the country, a niche breadth 

calculation and a multivariate analysis were carried out. 

For both analyses the environmental factors evaluated were (1) elevation, (2) 

evapotranspiration rate (extrapolated from the forest type analysis) in the forest being 

considered, (3) mean temperature, (4) diameter of the substrate, (5) wind exposure, (6) 

light exposure and (7) substrate type. For wind and light exposure, the discrete category 

protocol used by Stephenson et al. (2004a) was utilized, whereas for substrate type an 

ordinal classification of substrates was developed, based on their woodiness using the 

sequence described in a previous section. For the multivariate analysis, both a principal 

component analysis (PCA) and a non-metric multidimensional scaling ordination (NMS) 

were carried out using the program PC-ORD, version 5.17 (McCune & Mefford, 2006). 

The first analysis was based upon correlations among variables. For the second analysis, 

the scores were generated using the autopilot option and weighted averaging from an 

exploration of 50 runs of real data and 50 runs of randomized data using Sørensen 

distances. Some species had to be excluded from these analyses due the lack of 

microenvironmental information on them in the main database.  

 

Results 

Altogether, 188 species of myxomycetes were recorded in the database. Many of 

these were new records for Costa Rica; however, a complete taxonomic treatment of 

Costa Rican myxomycetes will be the subject of a future paper. The records included in 

the database represent 18 out of the 24 forest types recognized for Costa Rica. The 

geographic location of all study sites is shown in Fig. 1. In a similar way, a depiction of 
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the collecting efforts over time is presented in Fig. 2, where it is clearly apparent that the 

majority of specimens have been obtained in the last decade or so. 

Well represented species accounted for approximately 10% of the total number of 

species found in the country, whereas species with fewer than 5 records represented 

exactly 50% of the total. When the preference of well represented species was evaluated 

in relation to forest types and substrates, there were some readily apparent patterns in the  

analysis (Table 1). It is clear that all species have broad niches; however, Collaria 

arcyrionema and Perichaena vermicularis show the narrowest ones. At the same time, 

Arcyria cinerea and A. insignis seem to show a preference for lowland moist forests, 

whereas A. denudata displays a preference for montane rain forests. In fact, A. denudata 

was so underrepresented in lowland moist forests that it seems unlikely to be collected in 

that forest type. Interestingly, both A. cinerea and A. denudata showed a clear preference 

for dead bark and wood, whereas A. insignis seems to be preferentially associated with 

living plants and flowers and inflorescences (Fig. 3). In a similar fashion, Ceratiomyxa 

fruticulosa seems to occur preferentially on dead bark and wood in premontane and lower 

montane moist forests but was infrequent in lowland moist forests. 

An interesting case is represented by a group of species consisting of Collaria 

arcyrionema, Diderma hemisphaericum, Didymium iridis, Didymium squamulosum, 

Lamproderma scintillans, Perichaena depressa and Physarum pusillum. All these species 

seem to be strongly associated with ground litter, although in different forest types. Most 

of them were preferentially found in lowland moist forests; however, it is interesting to 

note that Diderma hemisphericum, Didymium iridis and Didymium squamulosum were 

highly underrepresented in premontane and lower montane forests. 
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Figure 1. Map of Costa Rica showing the localities where specimens included in the 

database were collected. The Lambert CR-N equal-area projection is used. 
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Figure 2. Number of myxomycete collections per year for the period between 1905 and 

2007. Documented sampling during the period between 1963 and 1965 corresponds to 

collections made by C.J. Alexopoulos and J.A. Sáenz. The collecting effort after 1994 

largely represents the product of projects funded by three grants from the National 

Science Foundation (to SLS).  
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Figure 3. Diagram showing the distribution of substrates observed for the well 

represented species of myxomycetes in Costa Rica. Black squares indicate the preferred 

substrate for each one of the species.  
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The three species in the genus Perichaena display another interesting pattern. All 

are highly associated with moist forests. However, both P. depressa and P. vermicularis 

seem to prefer lowland forests, whereas P. chrysosperma was found more commonly in 

premontane forests. Interestingly, all three are associated with different substrates.  

This was not the case for the two species in the genus Hemitrichia. Both H. 

calyculata and H. serpula were found preferentially on dead bark and wood; however, 

they seem to be associated with different forest types. Two of the less abundant species 

(Lamproderma columbinum and L. scintillans) displayed a preference for a uncommon 

substrate for myxomycetes, since they occurred on living cryptogams (bryophytes).  

Interestingly, Physarum compressum and Ph. didermoides appear to be highly 

associated with flowers and inflorescences and are very much underrepresented at higher 

elevations. In contrast, it seems clear that Stemonitis fusca and Lycogala epidendrum 

prefer montane rain forests and grow preferentially on dead bark and wood. A clearer 

picture of the significant differences between abundant species in relation with elevation 

can be observed in Fig. 4 (F=35.05, d.f. = 1, P = 0.001). In a similar fashion, species 

present only in these montane environments included Cribraria mirabilis, Enerthenema 

papillatum, Leocarpus fragilis and Trichia verrucosa (not shown in the table). 

Interestingly, none of the common species was found to be present in only one region of 

the country (see Table 2) or to grow preferentially above the ground on aerial substrates.  

The results obtained from the multivariate analysis seem to support the same 

tendencies observed in the previous analyses. The PCA determined that elevation, wind 

exposure and substrate are the three most important environmental parameters explaining 

the hyperdimensional variation observed in the present study. These three factors alone 
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accounted for over 90% of the total variation in the dataset. The NMS ordination 

performed (Fig. 5) shows the multidimensional arrangement of the abundant species in 

relation with these three factors. A pattern of elevation and substrate preferences similar 

to the one observed in the previous analyses is evident.  

 

Discussion 

The total number of species reported for Costa Rica in this paper is larger than the 

figure obtained in any other comparable study of which we are aware. Recently, Rojas 

and Stephenson (2007) increased the total number of species known from this country to 

137. Since studies of myxomycetes have been more common in Costa Rica than in other 

countries in Central America, it would be expected that some of the species newly 

reported for Costa Rica also represent new records for the region. However, as indicated 

earlier, the taxonomic aspects of the database compiled in the present study will be 

addressed in a separate analysis. 

It is interesting to note that the majority of records of myxomycetes for Costa 

Rica have been made during the last 14 years. This is not surprising, considering that this 

country has been at the forefront of mycological research in Central America for the past 

two decades. However, it is noteworthy that this research effort has already considered 

75% of the forest types recognized for the country. Even though there are still areas that 

need further investigation, most of the country has already been studied, at least when 

forest types are considered. In any case, the body of information used to construct the 

database presented in this paper represents an exhaustive effort made over a period of a 

number of years. This is obviously reflected in the completeness of the study in terms of  
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Figure 4. Diagram showing the relationship observed between well represented species of 

myxomycetes and elevation in Costa Rica. Black squares indicate the average elevation 

of records, bars show the standard error and gray areas encompass the 95% confidence 

interval.  
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Figure 5. Ordination of records using nonmetric multidimensional scaling (NMS). Circles 

define the position of species and lines indicate the direction of the most important 

microenvironmental variables. Abbreviations used for species follow the codes provided 

in Table 1. 
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surveyed macro- and microenvironments. Some other studies (e.g., Schnittler & 

Stephenson 2000, 2002) have already addressed particular ecological situations in Costa 

Rica; however, a complete analysis for the entire country has never been carried out.  

In any case, the fact that more than 50% of the total number of records are made 

up of species with fewer than 5 records would be interesting to address in the future. It is  

known that different abundance distributions are associated with different ecological 

strategies of biological groups (McGill et al. 2007).  

 

Forest type and substrate preference  

It is interesting to note that species within the same genera show differences at 

one or both environmental levels. For example, the well represented species recorded in 

the genus Arcyria seem to prefer dead bark and wood over other substrates, although one 

of the species shows a clear preference for nonwoody substrates. A similar pattern was  

reported by Stephenson et al. (1993) for members of the order Trichiales in the tropical 

forests of southern India, which is the order in which the genus Arcyria is traditionally 

placed. Similarly, species in the genus Perichaena, another member of the Trichiales, 

were found on different substrates but preferentially in lowland moist forests. This forest 

type has already been noted as an especially suitable habitat for the genus (e.g., Schnittler 

& Stephenson 2000). 

Another pattern of substrate preference is seen in C. fruticulosa, S. fusca, L. 

epidendrum and all species in the genus Hemitrichia. All of the members of this group 

were found mostly on dead bark and wood. This is clear in Fig 3. For these species, even 

the multivariate analyses show that the substrate factor is an important factor in 
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explaining their distribution. Evidently, given the high number of available substrates in 

tropical regions, it seems that a preference for dead bark and wood in these regions might 

be associated with broader niches. This is the general trend observed in the niche breadth 

values shown in Table 1. Interestingly, previous studies have shown broad niches for all 

of these species in both temperate (e.g., Stephenson 1988) and tropical areas (e.g., Rojas 

& Stephenson 2007). However, for the first species, this pattern conforms to the recorded 

substrate preferences across the Neotropical region (Rojas et al. 2008).  

One of the more noteworthy patterns is displayed by S. fusca and L. epidendrum, 

both of which showed a preference for higher elevation forests, which also may be an 

indication of their preference for cooler, more temperate environments. The same can be 

said for the group of species that has been found only in high elevation areas. In fact, two 

of these (Enerthenema papillatum and Leocarpus fragilis) belong to an ecological group 

of what have been considered traditionally as “temperate” species. Not surprisingly, Fig 4 

shows that elevation is not only an important environmental factor but also a variable that 

explains the vertical distribution of those species most abundant at high elevations in 

Costa Rica.  

In the same way, the group of species highly associated with ground litter, 

inflorescences and bryophytes displays a microhabitat distribution pattern that has been 

observed previously in forest ecosystems in Costa Rica (Schnittler 2001; Schnittler & 

Stephenson 2000, 2002). However, in contrast to the preference for dead bark and wood, 

these species are in theory likely to show more narrow niches as a response to their 

substrate preferences. The evidence provided in this paper partially supports this 

hypothesis. The narrowest niche, for example, was found in the ground litter inhabitant 
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Collaria arcyrionema. Although very little information on niche relationships is available 

for tropical regions, in the high elevation oak forests of Costa Rica, Didymium 

squamulosum, another of the ground litter-inhabiting species, showed a very narrow 

niche (Rojas & Stephenson 2007).  

Paradoxically, most of the species in this ecological group are absent from high 

elevation forests. Results from multivariate analysis also suggest that lowland forests are 

important in the vertical distribution of these species. This may be an indication that they 

somehow depend on the higher litter decomposition rates occurring at lower elevations. 

For example, in their study of myxomycete communities in different forest types in Costa 

Rica, Schnittler & Stephenson (2000) found all of the species reported herein that show a 

preference for ground litter substrates were more abundant on litter from lowland moist 

forests rather than litter from lowland dry forests. This is interesting because there is 

evidence showing that the process of decomposition occurs more rapidly in moist tropical 

forests (Palace et al. 2008). Schnittler & Stephenson (2002) observed that both Physarum 

compressum and Ph. didermoides, the two most common inflorescence-inhabiting 

species in their study, were the most abundant species found on inflorescences from all 

tropical areas for which they had data. In their study, even the preference factor, a form 

of mathematical algorithm to evaluate the constancy of species growing on inflorescences 

over litter, was determined as “infinite” (reported as ∞) for Ph. didermoides. The exact 

mechanisms driving the ecology of species of myxomycetes that appear to be restricted to 

inflorescences in the tropics have not yet been studied carefully, but this does seem to be 

a clearly apparent pattern found in tropical forests.  
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What is evident from all of these analyses is that myxomycetes in Costa Rica 

seem to show patterns of preference for particular macro- and microenvironmental 

situations. The high levels of preference for forest types and substrates observed for 

particular species suggest that myxomycetes are not randomly distributed across the 

country. In fact, what this dataset also suggests is that myxomycetes in Costa Rica show 

levels of preference for different sets of environmental conditions that drive their 

distribution in the country in different ways. The fact that this is also apparent when 

species are analyzed within a given forest type or substrate provides additional support 

for such a concept. It is true that some forest types have been surveyed more extensively 

than others, but in practically all cases a given pattern of preference can be observed. It 

seems possible that the latter situation is an indication that the three important abiotic 

factors identified in the present study also are major determinants for other Neotropical 

myxomycete metacommunities. 

 

Acknowledgements 

Appreciation is extended to Martin Schnittler of Ernst Moritz Arndt Universität 

Greifswald for providing a substantial number of records for the database, to the 

authorities of MINAET (in particular Javier Guevara) and ACLA-P for their help 

throughout the years and to the herbarium of the University of Costa Rica and Federico 

Valverde for logistic support. Several portions of this project were supported by grants 

from the National Science Foundation. 



108 
 

References 
 

 

Alexopoulos CJ, Sáenz JA, 1975. The myxomycetes of Costa Rica. Mycotaxon 2: 223-
271. 
 
 
Alexopoulos CJ, Mims CW, Blackwell M, 1996. Introductory Mycology. 4th ed. John 
Wiley and Sons, New York.  
 
 
Bolaños R, Watson V, 1993. Mapa ecológico de Costa Rica según el sistema de 
clasificación de zonas de vida del mundo de L. R. Holdridge. Centro Científico Tropical, 
San José, Costa Rica.  
 
 
Cannon P, Sutton B, 2004. Microfungi on wood and plant debris. In: Mueller G, Bills G 
and Foster M (Eds.). Biodiversity of fungi: Inventory and monitoring methods. Elsevier 
Academic Press. Burlington, MA. pp. 217-239. 
 
 
Chao A, Li PC, Agatha S, Foissner W, 2006. A statistical approach to estimate soil ciliate 
diversity and distribution based on data from five continents. Oikos 114: 479-493. 
 
 
Fahrni JF, Bolivar I, Berney C, Nassonova E, Smirnov A, Pawlowski J, 2003. Phylogeny 
of lobose amoebae based on actin and small-subunit ribosomal RNA genes. Molecular 
Biology and Evolution 20: 1881-1886. 
 
 
Fallas J, 2003. Evaluación del error asociado a la transformación de datum de Sistema 
Geodésico Mundial (WGS) a Ocotepeque-CR utilizando el método de tres parámetros de 
Molodensky. Universidad Nacional, Heredia, Costa Rica. 
 
 
Farr M, 1976. Flora Neotropica Monograph No. 16 (Myxomycetes). New York Botanical 
Garden, New York. 
 
 
Fenchel T, Finlay BJ, 2004. The Ubiquity of Small Species: Patterns of Local and Global 
Biodiversity. BioScience 54(8): 777-784.  
 
 
Finlay BJ, 2002. Global dispersal of free-living microbial eukaryote species. Science 296: 
1061-1063. 
 



109 
 

 
Hernandez-Crespo JC, Lado C, 2005. An on-line nomenclatural information system of 
Eumycetozoa. http://www.nomen.eumycetozoa.com accessed 18.10.2008. 
 
 
Holdridge LR, Grenke WC, Hatheway WH, Liang T, Tosi JA, 1971. Forest 
Environments in Tropical Life Zones: a Pilot Study. Pergamon Press, Oxford. 
 
 
ITCR, 2004. Atlas Digital de Costa Rica 2004. Instituto Tecnológico de Costa Rica. 
Cartago, Costa Rica. 
 
 
Martin G, Alexopoulos CJ, 1969. The Myxomycetes. University of Iowa Press, Iowa. 
McCune B, Mefford MJ, 2006. PC-ORD Multivariate Analysis of Ecological Data, 
Version 5.17. MjM Software, Gleneden Beach, OR. 
 
 
McGill B, Etienne R, Gray J, Alonso D, Anderson M, Kassa H, Dornelas M, Enquist B, 
Green J, He F, Hurlbert A, Magurran A, Marquet P, Maurer B, Ostling A, Soykan C, 
Ugland K, White E, 2007. Species abundance distributions: moving beyond single 
prediction theories to integration within an ecological framework. Ecology Letters 10: 
995-1015. 
 
 
Obando V, 2008. Biodiversidad de Costa Rica en cifras. Instituto Nacional de 
Biodiversidad, Heredia, Costa Rica. 
 
 
Palace M, Keller M, Hudson S, 2008. Necromass production: Studies in undisturbed and 
logged Amazon forests. Ecological Applications 18: 873-884. 
 
 
Rojas C, Stephenson SL, 2007. Distribution and ecology of myxomycetes in the high-
elevation oak forests of Cerro Bellavista, Costa Rica. Mycologia 99: 534-543. 
 
 
Rojas C, Schnittler M, Biffi D, Stephenson SL, 2008. Microhabitat and niche separation 
in species of Ceratiomyxa. Mycologia 100: 843-850. 
 
 
Schnittler M, 2001. Foliicolous liverworts as a microhabitat for Neotropical 
Myxomycetes. Nova Hedwigia 72: 259-270. 
 
 



110 
 

Schnittler M, Stephenson SL, 2000. Myxomycete biodiversity in four different forest 
types in Costa Rica. Mycologia 92: 626-637. 
 
 
Schnittler M, Stephenson SL, 2002. Inflorescences of Neotropical herbs as a newly 
discovered microhabitat for myxomycetes. Mycologia 94: 6-20. 
 
 
Stephenson SL, 1988. Distribution and ecology of myxomycetes in temperate forests. I. 
Patterns of occurrence in the upland forests of southwestern Virginia. Canadian Journal 
of Botany 66: 2187-2207. 
 
 
Stephenson SL, Kalyanasundaram I, Lakhanpal T, 1993. A comparative biogeographical 
study of Myxomycetes in the mid-Appalachians of eastern North America and two 
regions of India. Journal of Biogeography 20:645-657. 
 
 
Stephenson S, Stempen H, 1994. Myxomycetes: a handbook of slime molds. Timber 
Press, Oregon 
 
 
Stephenson SL, Schnittler M, Lado C, 2004a. Ecological characterization of a tropical 
myxomycete assemblage – Maquipucuna Cloud Forest Reserve, Ecuador. Mycologia 96, 
488-497.  
 
 
Stephenson SL, Schnittler M, Lado C, Estrada-Torres A, Wrigley de Basanta D , Landolt 
J, Novozhilov Y, Clark J, Moore D, Spiegel F, 2004b. Studies of neotropical 
mycetozoans. Systematics and Geography of Plants 74: 87-108. 
 
 
Vaughan C, Fallas J, McCoy M, 1998. Conservation mapping in Costa Rica. In: Savitsky 
B, Lacher T (Eds.), GIS methodologies for developing conservation strategies. Columbia 
University Press, New York. pp 13-26.  
 
 
Welden A, 1954 Some myxomycetes from Panama and Costa Rica. Mycologia 46: 93-
99. 
 
 
Wrigley de Basanta D, Stephenson SL, Lado C, Estrada-Torres A, Nieves-Rivera AM, 
2008. Lianas as a microhabitat for myxomycetes in tropical forests. Fungal Diversity 28: 
109-125. 



111 
 

Chapter 3 

Distribution and ecology of myxomycetes in the high-elevation oak forests of Cerro 

Bellavista, Costa Rica 

 

Carlos Rojas1, Steven L. Stephenson1 

1Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 

72701 

 

Rojas C, Stephenson SL. 2007. Distribution and ecology of myxomycetes in the high-

elevation oak forests of Cerro Bellavista, Costa Rica. Mycologia 99: 534-543. 

 

Abstract: Myxomycetes associated with a high-elevation (>3000 m) oak forest in the 

Talamanca Range of Costa Rica were studied over a period of seven months. Field 

collections were supplemented with collections obtained from moist chamber cultures 

prepared with samples of bark and ground litter of Quercus costaricensis. Various 

microenvironmental parameters including pH, substrate moisture and diameter, height 

above the ground and canopy openness were recorded for each field collection, whereas 

macroenvironmental data for temperature and precipitation were obtained from a 

meteorological station located near the study area. Niche breadth and niche overlap 

indices were calculated to assess possible resource partitioning by myxomycetes. Thirty-

seven species were recorded, including 11 new records for Costa Rica, eight for Central 

America and one for the Neotropics. Both PCA and NMS multivariate analyses indicated 

that pH and height above the ground explained most of the observed variation, although 
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substrate diameter also seemed to be an important factor. Precipitation showed an inverse 

correlation with the number of fruitings, confirming its importance as a 

macroenvironmental factor. Niche overlap values were not higher for closely related 

species and values for niche breadths were quite similar for most of the more common 

species, suggesting that most members of the assemblage of myxomycetes present in the 

study site are ecological generalists. 

 

Key words: biodiversity, community ecology, eumycetozoans, slime molds, Talamanca 

Range 

 

Introduction 

The myxomycetes (plasmodial slime molds or myxogastrids) are a relatively 

small and homogeneous group of eukaryotic, phagotrophic organisms (Stephenson and 

Stempen 1994) phylogenetically related to the amoeboid protists (Adl et al 2005) but 

traditionally studied by mycologists. Only about 880 species are known worldwide 

(Hernández-Crespo and Lado 2005). The myxomycete life cycle consists of two 

vegetative stages, one a uninucleate amoeba, with or without flagella, and the other a 

multinucleate unicellular structure known as a plasmodium (Martin and Alexopoulos 

1969). Under suitable conditions, the plasmodium gives rise to the reproductive stage, a 

somewhat fungus-like fruiting body.  

 Most ecological studies of myxomycetes have been carried out in temperate 

regions of the world (e.g., Härkönen 1977, Stephenson 1989, Novozhilov et al 1999, 

Schnittler 2001b), and only recently have certain regions of the tropics been investigated. 
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However, most regions of the tropics remain understudied and thus have considerable 

potential for future studies (Schnittler and Stephenson 2000, Stephenson et al 2004b). 

Results obtained from recent studies suggest that the relative abundance of myxomycete 

fruiting bodies decreases with decreasing latitude (Schnittler and Stephenson 2002) and 

increasing elevation, apparently in response (at least in part) to increasing levels of 

environmental moisture (Stephenson et al 2004b). Stephenson et al (2000) suggested that 

distribution ranges in myxomycetes can be very large, although factors related to 

microclimate and vegetation influence their presence and dispersal potential. For 

example, some species display strong preferences for specific substrates or exhibit 

distribution patterns that can be related to microenvironmental variables such as pH and 

moisture (Novozhilov et al 2005). However, distribution patterns of myxomycetes have 

yet to be studied in high-elevation forests of the tropics, and basic questions relating to 

the assemblages of myxomycetes present in these forests and whether or not the 

abundance of fruitings is correlated with the actual number of taxa present at a particular 

locality warrant further investigation. 

 In Costa Rica, many forests above 3000 m are dominated by a single species of 

oak (Quercus costaricensis Liebm.). These high-elevation oak forests are characterized 

by an almost constant cloud coverage, and for this reason they are often referred to as 

“cloud forests” (Kappelle et al 1992). Other major groups of organisms such as animals, 

plants and fungi have distinctive assemblages of species associated with these forests, 

and the assemblages present usually differ from those found at intermediate elevations or 

in lowland moist sites in the same region (Kappelle 1996).  
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The lack of ecological data on myxomycetes in the Neotropics, especially in high-

elevation forests, suggested the study described herein, in which an effort was made first 

to characterize the assemblage of species associated with a high-elevation oak forest in 

Costa Rica and then to investigate some of the ecological patterns displayed by these 

species. Particular emphasis was placed on assessing patterns of sporulation phenology, 

seasonal abundance and microhabitat occurrence in relation to macro- and 

microenvironmental factors and the range of available microhabitats.  

 

Materials and Methods 

The study reported herein was carried out during 2004 in a high-elevation oak-

dominated forest community in the mountains of south central Costa Rica. The forest 

examined would be classified as a montane moist forest according to the Holdridge life 

zone system (Beauvais and Matagne 1998). The actual study site is located on the eastern 

slope of Cerro Bellavista and within the boundaries of the Cerro de la Muerte Biological 

Station (9°33'42'' N, 83°44'27'' W) in the Province of San Jose, Costa Rica. Elevations 

within the general study area range between 3142 and 3230 m above sea level. The forest 

present is characterized by a canopy that is 20–25 m tall and dominated by Quercus 

costaricensis. In the subcanopy (5–15 m tall) the most common trees are members of the 

genera Weinmannia, Comarostaphylis, Schefflera, Drymis, Myrsine and Oreopanax. The 

understory is dominated by ferns and the bamboo-like grass Chusquea. The mean annual 

temperature in this region of Costa Rica is 10.9 C, and precipitation averages around 

3000 mm per year (data from the National Meteorological Institute, Costa Rica). 
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 Field sampling was carried out during the two periods of the year characterized by 

a different precipitation regime. The first period (referred to as the “dry season”) occurs 

between December and the beginning of the rains in May, whereas as the second period 

(the “rainy season”) encompasses the rest of the year. However, it should be noted that 

recognizing these two periods as distinct is somewhat arbitrary, since the annual climate 

of this region of Costa Rica exhibits a rather superficial seasonality and forests are mostly 

evergreen throughout the year. Three collecting trips were made in each of the two 

seasons, and these extended over a total of seven months. The laboratory component of 

the study was carried out during an additional eight months. Samples for laboratory study 

were collected only in the first trip of each season, but field collections were obtained on 

every trip.  

Plots and collections.— Three 20 x 50 m (0.1 ha) plots were established in 

portions of the study area clearly dominated by oak trees. Although no analysis of tree 

dominance was carried out, Jimenez et al (1988) reported a density of about 500 stems 

per hectare (DBH >10) for the oak forests in this portion of the Talamanca Range. In 

order to minimize any edge effects, the boundary for each plot was located at least 50 m 

from the forest edge. The opportunistic sampling protocol (Cannon and Sutton 2004) was 

used to search for fruitings of myxomycetes in each plot. This method is effective for 

studying myxomycetes, especially when the forest structure is particularly complex as is 

the case in many areas of the tropics, because it allows the researcher to make an a priori 

selection of substrates. For this reason, primary emphasis was placed on examining dead 

leaves, decaying wood and twigs for myxomycetes. No specimens still in the plasmodial 

stage were collected. Nomenclature follows Hernández-Crespo and Lado (2005) except 



116 
 

for Arcyria leiocarpa and Stemonitis smithii, where the treatment of Martin and 

Alexopoulos (1969) is used.  

All specimens obtained in the field were collected and curated in the manner 

described by Stephenson and Stempen (1994). To complement field collections, 120 

moist chamber cultures were prepared with samples of bark and ground litter collected 

from each plot. Sixty moist chambers were prepared with samples collected during the 

dry season and another 60 with samples collected during the rainy season. In this part of 

the study, samples were collected in paper bags, transported to the laboratory and placed 

in standard 9 mm diameter Petri dishes lined with filter paper. Distilled water was added 

to each dish and the sample material in each culture remained soaked for 24 hours, after 

which excess water was poured off. Cultures were examined every week for 

approximately four months. 

Environmental measurements.— General climatic data for the total period during 

which the study was carried out were obtained directly from the Villa Mills 

meteorological station, located 5 km south of the study site, through the National 

Meteorological Institute (IMN) in San Jose, Costa Rica. Microenvironmental variables 

were measured or determined directly in the field. For example, the type of substrate 

upon which a fruiting occurred along with its diameter (for woody substrates) and height 

above ground were recorded for each specimen collected.  

Canopy openness, measured with a spherical densiometer, was used as an 

indicator of the quantity of light reaching the forest floor. To determine this parameter, 

each plot was divided in ten subplots of 10 x 10 m, and these were further subdivided into 

four 5 x 5 m areas. In each of the latter, four measurements of canopy openness were 
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obtained and the mean value was calculated. Each specimen collected in the plot was 

assigned the average value of the specific area in which occurred.  

 The stage of wood decay was recorded for discrete categories as described by 

Stephenson et al (2004a), except that in the present study, categories 2 and 4 were not 

used. As such, only three categories (1, 3 and 5) were recorded for wood decay, and these 

were considered to represent early, intermediate and late decay stages. Substrate moisture 

was measured by collecting small samples of substrate from the same microsites upon 

which fruitings occurred. Within 24 hours of returning from the field, these samples were 

weighed and then placed in a constant temperature oven for 72 hours at 65 C. After this 

period, it was assumed that most of the water content of the substrates had been lost and 

samples were reweighed. The difference between dry and original weights was used to 

obtain the percentage moisture for each sample.  

Data analysis.— Shannon-Wiener and taxonomic diversity indices (Stephenson et 

al 1993) were calculated for the total assemblage of species in an effort to quantify 

overall myxomycete biodiversity in the forest studied. Sørensen’s coefficient of 

community was calculated for the sets of specimens obtained on different collecting dates 

to evaluate temporal differences in species composition.  

 A multivariate analysis of microenvironmental measurements was carried out to 

evaluate the possible effects of micro- and macroenvironmental variables. To avoid the 

noise effect produced by the less common species, all species were classified according 

to their abundance before performing the analysis. In this classification, species 

representing more than 3% of the total number of collections were considered as 

abundant, those falling between 1.5–3% as common, between 0.5– < 1.5% as occasional 
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and those less than 0.5% as rare (Stephenson et al 1993). A nonmetric multidimensional 

scaling ordination (NMS) was performed using the numeric microenvironmental 

variables for only the species classified as abundant. This ordination was carried out 

using the program PC-ORD by exploring 50 runs of real data and 50 runs of randomized 

data using the autopilot function and the scores generated by weighted averaging. 

Sørensen distances and a Monte Carlo test of significance were used. A principal 

component analysis (PCA) based on correlations was also performed with the same set of 

data to evaluate the relative importance of the different variables to structure and 

composition of the community and to evaluate similarities with the previous ordination.  

 Values obtained for niche breadth and niche overlap were calculated in the 

manner described by Stephenson (1988). These were evaluated for the most abundant 

species using Levin’s estimators, as recommended by Maurer (1982) and Petraitis (1985). 

In this case substrate moisture and diameter, pH, height above the ground and canopy 

openness (and thus the level of light) were used as potential indicators of resource 

partitioning. This type of analysis has the potential to examine the evidence for potential 

interactions that might occur within particular taxonomic groups. Such interactions might 

not be revealed on a spatial analysis, especially if they occur between closely related 

species.  

 

Results 

Thirty-seven species were collected during the entire study (TABLE I), with 27 of 

these recorded during the dry season and 20 during the rainy season. Most species were 

represented by fruitings that occurred in the field under natural conditions, and only four 
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taxa were recovered from moist chamber cultures. Eleven of the 37 species are new 

records for Costa Rica, nine are new records for the Central America and one 

(Diacheopsis sp.) is a new record for the Neotropics. The most abundant species were 

Cribraria piriformis, Ceratiomyxa fruticulosa, Cribraria mirabilis and Cribraria 

vulgaris. Most fruitings were recorded on logs, twigs and bryophytes, although a few 

occurred on ground litter. For the entire study, the value calculated for Shannon’s index 

of diversity was 3.27, whereas the values for the dry season and the rainy season were 

1.09 and 1.30, respectively; the index of taxonomic diversity for the total assemblage of 

species present was 2.11. Eighty-two percent of all field collections consisted of stalked 

fruiting bodies, and 75% of the species recorded were examples that typically produce 

stalked fruiting bodies.  

The PCA analysis indicated that 60% of the total variation was explained by pH 

and height above the ground (not shown). However according to the NMS analysis, 

height above the ground, substrate diameter and pH were the most important 

microenvironmental variables accounting for the variation in the data when a cutoff value 

of 0.01 is applied (FIG. 1). Interestingly, pH values above 4.5 are absent when height 

above the ground reaches 1 m (pH versus height above ground, Pearson’s product 

moment = –0.43, P < 0.0001) and values this high were rarely recorded for substrates 

with a diameter greater than 20 cm (pH versus height above ground, Pearson’s product 

moment = –0.36, P < 0.0001). Those relationships are explained by the fact that 

substrates with diameters >25 cm are rare near the ground (substrate diameter versus 

height above ground, Pearson’s product moment = 0.45, P < 0.0001). In fact, a deeper 

analysis indicated that Didymium squamulosum, Lycogala epidendrum and Metatrichia 
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Figure 1. Ordination of species and microenvironmental variables using nonmetric 

multidimensional scaling (NMS). Points define the abundant species. Lines indicate the 

direction and strength of the most important microenvironmental variables. For 

abbreviations used for species see TABLE I.  
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floriformis seem to group together both for high pH and lower heights. These species also 

differ from the other taxa in their relatively high values for substrate pH (F=8.00, d.f.=11, 

P < 0.0001). Conversely, examples of species showing a preference for more acidic and 

higher substrates include Cribraria mirabilis and Trichia botrytis. 

Substrate moisture, pH and canopy openness showed significant differences when 

a comparison between the two seasons was made. Interestingly, height above the ground 

also showed a significant difference from the dry to the rainy season. Temporal 

differences also appear to be apparent in the type of substrate (χ2=31.7, d.f.=8, P < 

0.0001), with logs and twigs more commonly recorded during the dry season and logs 

and bryophytes during the rainy period.  

Interestingly, the only macroenvironmental factor that appears to have an 

important influence on the occurence of myxomycetes is precipitation, which had a 

inverse but significant correlation with the number of fruitings recorded (FIG. 2, 

precipitation versus number of fruitings, Pearson’s product moment = –0.77, p <0.05). 

However, a multiple regression analysis showed that the combined effect of temperature 

and precipitation seems to have an even greater influence (precipitation and temperature 

versus number of fruitings, Pearson’s product moment = 0.95, P <0.05). A significant 

relationship was not observed when the number of species was considered (precipitation 

and temperature versus number of species, Pearson’s product moment = 0.87, P <0.05).  

 The coefficient of similarity value calculated for species assemblages associated 

with the two seasons was 0.48. Major differences in abundance were noted for members 

of such genera as Lamproderma and Lycogala, which were invariably absent during the 

rainy period, or Didymium and Leocarpus, never recorded for the dry season. When the  
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Figure 2. Numbers of species and fruitings recorded during seven months of field work in 

the current study. The line indicates the average value of monthly precipitation for Cerro 

Bellavista, based on data provided by the National Weather Institute in Costa Rica.  
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values calculated for niche breadth and overlap are examined, it is clear that the values 

for most species are similar and relatively high (TABLE II). If niche breadth values 

represent the mathematical result of a proportionally higher number of fruitings recorded 

in the field, then some correlation between these two variables should exist for the 

community as a whole. However, the actual correlation is extremely weak (niche breadth 

versus number of fruitings, Pearson’s product moment = 0.09, P > 0.05). Posterior 

analysis indicated that Lamproderma columbinum has a broader niche and Dydimium 

squamulosum a narrower niche than the other species (F=14.5, d.f=7, P < 0.05). When 

these two species are excluded from the analysis, no appreciable differences in niche 

breadth values can be noted among the rest of the taxa present (F=5.07, d.f=5, P > 0.05). 

One might expect intrageneric overlap to be higher than intergeneric overlap due 

to the theoretical relatedness in resource use by closely related species. However, an 

analysis of the niche overlap values calculated for Cribraria and Trichia, the two most 

diverse genera, does not reveal significant differences in the values between species 

within each genus or among the species of the two genera (F=1.20, d.f.=2, P > 0.05).  

 

Discussion 

The number of species recorded in the present study is comparable to the totals 

reported for studies carried out elsewhere in the tropics (e.g., Schnittler & Stephenson 

2000, Stephenson et al 2004a). However, limiting the study to selected substrates may 

have underestimated the actual number of taxa present. Recently, Schnittler (2001a) and 

Schnittler and Stephenson (2002) have described new microhabitats for myxomycetes in 

the Neotropics, and unpublished data suggest that a number of others probably exist. 
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Preliminary surveys of the general study area in 2001 and 2003 indicated that at least four 

plant species could be serving as living microhabitats for some species of myxomycetes. 

However, these plants were not considered in the present study and some of the species 

of myxomycetes typically associated with the microhabitats they provide were not 

recorded in the present study either. In any case, it is clear that surveys of nontraditional 

substrates would yield new records for any particular locality, especially in the 

Neotropics as discussed by Stephenson et al (2004b). 

 In a similar study carried out in the seasonal tropical forests of Guanacaste in 

Costa Rica, Schnittler and Stephenson (2000) reported a Shannon’s index of 1.11. Such a 

low value can be obtained for a single locality in temperate regions (e.g., Stephenson 

1989), but it seems more typical for the apparently less diverse tropical regions of the 

world (Stephenson et al 2004b). As such, the value obtained in the present study (3.27) 

seems more comparable to those obtained for temperate rather than tropical regions, and 

the values obtained for the different periods of study suggest that diversity is similar 

throughout the year. The taxonomic diversity index (2.11) obtained in the present study 

contrasts dramatically with values reported for other areas in the tropics. For example, 

Stephenson et al (1993) obtained a value of 3.93 for the set of data contained in a 

published checklist of the myxomycetes of Costa Rica (Alexopoulos and Saenz 1976) 

and reported a value of 4.13 for southern India. 

 When these values are considered together, the apparent conclusion is that 

tropical areas appear to be characterized by lower overall numbers of species but richer 

intrageneric diversity. However, the set of data from Cerro Bellavista shows a different 

pattern. The assemblage of species present contains a relatively higher number of species, 
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and this number is especially impressive when one considers that for tropical regions 

myxomycete diversity seems to decrease as elevation increases (Stephenson et al 2004b). 

Interestingly, the assemblage at Cerro Bellavista is dramatically poor in terms of the 

number of species per genus, which resembles the apparent pattern for temperate areas. 

This suggests that resource partitioning among species should be lower than in typical 

tropical assemblages, where requirements of particular species might be expected to be 

more similar due to higher numbers of closely related taxa.  

 Ceratiomyxa fruticulosa was the only species found to be abundant both in the 

present study and a previous study of cloud forests in Ecuador (Stephenson et al 2004a). 

However, Didymium squamulosum, Lycogala epidendrum and Metatrichia floriformis, 

reported as common in Ecuador, are three of the species that form a cluster that seems to 

be related to a basic pH in the ordination presented in Fig. 1.  

 When pH values are compared, it is clear that most substrates at Cerro Bellavista 

are only slightly more acidic (values from 2.7–7.1) than those in Ecuador (3.3–9.8). 

However, none of the species associated with low pH values in the present study, 

including the three common species of Cribraria, were reported from Ecuador 

(Stephenson et al 2004a). Moreover, in their study of a cloud forest in the northern part of 

Costa Rica, Schnittler and Stephenson (2000) did not report the same species recorded in 

the present study. The forests investigated in these three studies were very different in 

terms of plant composition and architecture. Consequently, it seems obvious that the 

differences in climatic conditions and plant composition that exist among these three 

areas are playing an important role in determining the species composition of the 

assemblages of myxomycetes present. 
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 The only common species shared between the present study and cloud forests in 

Ecuador (Schnittler and Stephenson 2000) occurred only on leaf litter, which suggests 

that lignicolous substrates may have a more important influence on the distribution of 

myxomycetes, as has been suggested for plant communities in other parts of the world 

(e.g., Stephenson 1988, Schnittler 2001b). Interestingly, oak is absent both in Ecuador 

(Ulloa and Møller 1993) and in the cloud forest studied by Schnittler and Stephenson 

(2000) in Costa Rica.  

An interesting result of the present study is the high proportion of stalked species 

(75%) and records of those species (82%). The values we obtained are similar those 

reported for temperate deciduous (but mostly oak) forests in the Mountain Lake region of 

southwestern Virginia (Stephenson 1988), where the same percentage (74%) was 

recorded for both species that typically produce stalked fruiting bodies and the total 

number of records represented by these species. This would suggest that whatever 

ecological factors (presumably those related to levels of substrate and/or atmospheric 

moisture) are involved in determining the relative proportions of sessile versus stalked 

forms in the assemblage of myxomycetes present in a particular type of habitat are fairly 

comparable for high-elevation oak forests in Costa Rica and mid-latitude oak forests in 

eastern North America.  

Records of new taxa.— Recent studies of myxomycetes in Costa Rica (e.g., 

Schnittler and Stephenson 2000) have increased the number of species known from the 

country to 126. However, these studies did not consider high-elevation communities. 

Although there are few records from an elevation of approximately 2700 m near the El 

Empalme area (Alexopoulos and Saenz 1976), the highest area studied in detail thus far is 
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the Monteverde Biological Reserve at around 1500 m elevation (Schnittler and 

Stephenson 2000). However, both the structure of the forest and climatic conditions in 

these two areas are very different from those at Cerro Bellavista. Therefore, the new 

records generated in the present study are probably not unexpected. 

 Four species of the genus Lamproderma were recorded in the present study, and 

none of these had been reported previously for the Central American region. Also, three 

of the four most abundant species recorded in Cerro Bellavista are members of the order 

Liceales, which was the single most abundant order. Stephenson and Stempen (1994) 

indicated that both Lamproderma and Cribraria, a member of the Liceales, are 

characteristic genera of temperate forests. Cribraria mirabilis, one of the new records, is 

well known in temperate areas, especially in Europe (Lado and Pando 1997), but appears 

to be rare in the tropics. Interestingly, this species was one of the most abundant 

myxomycetes in the present study.  

 Leocarpus fragilis, another species typical of temperate regions, was also 

recorded at Cerro Bellavista. This species was collected previously (Martin Schnittler, 

unpublished data) in the paramo of the Cerro Chirripó (ca. 3700 m). Both mountains are 

located in the Talamanca region and represent two of the highest peaks in Costa Rica, 

which suggests that L. fragilis may be restricted to high elevation areas of the country. 

This is apparently the case in Colombia (Uribe-Meléndez 1995). 

 As a general observation, it seems that the assemblage of myxomycetes at Cerro 

Bellavista more closely resembles, both taxonomically and ecologically, the assemblages 

associated with temperate forests rather than those of tropical forests. 
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Microenvironmental factors.— The PCA analysis indicates that pH and height 

above the ground account for much of the variation associated with the more common 

species. Many other studies (e.g., Härkönen 1977, Schnittler et al 2006) have found that 

pH is an important ecological factor for myxomycetes and height above the ground also 

seems to have some influence on the distribution of the organisms, especially on a macro 

scale when forest canopies are studied (e.g., Black et al 2004). The results from the PCA 

analysis are not surprising when the forest dynamics of Cerro Bellavista, where there is a 

slight seasonality affecting the phenology of oak trees, are considered (Kappelle 1996).  

The variation that occurs in the canopy coverage represents an important factor 

since it largely determines the effective vertical precipitation reaching the forest floor and 

the extent to which leaching of nutrients from the canopy takes place (e.g., Milla et al 

2005), thus influencing the substrate humidity and pH values in the lower strata of the 

forest.  

 In the present study, compositional differences in the species assemblages 

recorded for the different seasons might be expected to make this pattern even more 

evident, especially when species recorded only in one of the two seasons are considered. 

Lycogala epidendrum and Didymium squamulosum, for example, were recorded during 

only one season. Similarly, it seems that substrate moisture does not affect the 

assemblage of species in Cerro Bellavista as has been observed in other studies (e.g., 

Schnittler et al 2006). However, the major effect of horizontal precipitation in the study 

area is that maintains a relatively high water content for most substrates throughout the 

entire year.  
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 Substrate diameter is another important variable as shown in FIG. 1. This is not 

surprising either, especially when it is very obvious that most of the twigs and lower 

diameter logs are associated with the ground level. For example, Schnittler et al (2006) 

did not find these factors to explain the variation in their data when they studied a 

community of canopy myxomycetes in Germany. However, the assemblages of species 

present in the canopy and aerial strata of tropical forests are different from those found at 

the ground level (Black et al 2004); therefore, it would not be surprising if their 

community ecology is different.  

 Cribraria vulgaris, C. mirabilis and Trichia botrytis were recorded at the highest 

positions, whereas three other species (Trichia favoginea, C. piriformis and 

Lamproderma columbinum) were recorded for substrates with the largest diameters. 

Interestingly, most of those species were recorded in both seasons, which suggests that 

these variables are not as macroenvironmentally dependent as is the case for pH. 

Consequently, the composition of the species assemblage observed in a particular season 

is a combination of preferences for both dynamic and more static microenvironmental 

conditions, depending on the responses of particular taxa.  

 Associated with the microenvironmental variation that exists between the seasons, 

there was a significant difference in the height above the ground at which fruitings were 

recorded, with higher values being recorded during the rainy season. This pattern does 

not seem to have been reported for myxomycetes in previous studies. 

 In general, the myxomycetes seemed to fruit preferentially on logs and twigs on 

the ground. However, bryophytes were very important during the rainy season. 

Interestingly, although bryophytes have been reported as apparently favorable substrates 
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for myxomycetes (Stephenson and Studlar 1985), they do not seem to be more abundant 

above the ground in the oak forests of Costa Rica (Holz et al 2002). Consequently, the 

apparent change in height above the ground of the myxomycetes at Cerro Bellavista for 

the two different seasons does not necessarily seem to be the result of species that are 

able to grow on bryophytes, as the data appear to show.  

Macroenvironmental factors.— Data presented in FIG. 2 seem to indicate that the 

sporulation patterns of myxomycetes in the study area are intimately linked with 

precipitation levels. However, for this particular forest, it is difficult to evaluate the effect 

of seasonal climate variables on the community due to its tropical evergreen character. 

Although patterns of seasonality are known for some species of myxomycetes in 

temperate regions, there is a lack of mid- and long-term studies in the tropics (Stephenson 

et al 2004b). 

 In one of the few other studies of seasonal differences in myxomycetes, Maimoni-

Rodella and Gottsberger (1980) examined the sporulation pattern of the species present in 

a lowland tropical rainforest in Brazil. Although these authors reported an overall pattern 

similar to that of the present study, they also considered temperature to be the more 

important factor in the tropics, since water often is not a limiting factor. Interestingly, 

Ogata et al (1996) found a positive correlation between both precipitation and 

temperature and the overall abundance of fruitings in a study carried out in eastern central 

Mexico. These authors agreed with Maimoni-Rodella and Gottsberger (1980) when 

suggesting that slight changes in temperature during the period studied might be 

responsible for changes observed in the community composition. However, both of these 
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studies were carried out in ecological situations totally different from the present study, 

which is also reflected in the very different species composition, as already discussed.  

 For the general area considered in the present study, Kappelle (1996) found that 

temperature is the most important variable explaining the dynamics of the overall 

ecosystem. It is interesting to note that our data suggest that temperature has a positive 

additive effect on the model when both factors are examined together. Apparently, more 

than one environmental factor affects the timing of sporulation in myxomycetes. 

However, the main effect of precipitation in the present study contrasts dramatically with 

the negligible effect of substrate moisture in the microenvironmental analysis. This seems 

to indicate that, as has been observed in other studies, myxomycetes have an optimal 

range of substrate moisture conditions, which is hypothesized to be constantly maintained 

by the cloud coverage in the study area but exceeded when rain occurs and temperature 

drops.  

  Climatic data for Cerro Bellavista indicate that temperature varies only about 1.7 

C from February to October, whereas monthly precipitation increases dramatically from 

around 21 mm to more than 450 mm over the same period of time. However, the effect of 

horizontal precipitation in high elevation areas in the tropics is known to be correlated 

with temperature, since the latter affects the water content in the atmosphere. For 

example, Stephenson and Stempen (1994) suggested that atmospheric humidity could be 

the most important macroenvironmental variable determining the timing of sporulation 

for myxomycetes. This variable did not seem as important in the present study; however, 

it is known that high levels of environmental humidity are associated with high horizontal 

precipitation and high levels of precipitation recycling (Dominguez et al 2006). Results 
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obtained in the present study seem to indicate that myxomycete fruitings increase in 

number as precipitation levels drops and decrease with increasing levels of precipitation. 

However, similar studies carried out in lowland tropical forests in other parts of the 

Neotropics might reveal the relative effect of each factor on the sporulation pattern and 

abundance of myxomycetes. 

Niche breadth and overlap.— The values calculated for niche breadth are 

mathematical constructs that are determined by the original values of resource utilization 

used as input for the equations to generate a value for a particular species. One assumes a 

normal distribution in the resource utilization requirements; consequently, there is an 

increasing probability of finding increasingly more narrow niches as more input data are 

used. This is due to the fact that values closer to the mean are more common than 

extreme values. For this reason, is important to test whether or not the niche breadth 

values obtained are the product of a probabilistic artifact or external factors. The 

nonsignificant and weak correlation between the number of fruitings found in the field 

and values for niche breadth suggests that these two variables are independent, which 

makes niche breadth useful for making inferences about biotic interactions. 

 The observed niche breadths include examples that show significant differences 

for some species when Lamproderma columbinum and Didymium squamulosum are 

included in the analyses. Interestingly, these two species are found at the extremes of the 

niche breadth distribution for the study area, at least suggesting that they are 

characterized by ecological strategies different from those of the other taxa present. 

Didymium squamulosum was the only abundant species in which the fruiting bodies 

produced contain calcium carbonate, which may influence its ecological distribution. 
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Lamproderma columbinum seems to exhibit a strong substrate preference for bryophytes, 

even though its niche breadth is the broadest overall.  

 When analyzing niche overlap, it has been noted that closely related species, for 

example those belonging to the same genus, have more similar resource requirements 

than less related species, presumably as a result of their common evolutionary path 

(Morin, 1999). However, when the intrageneric niche overlap values are evaluated using 

the two most diverse genera in this study, no differences were found. In fact, the values 

obtained for species within each genus differ only slightly from the values obtained for 

species across genera. The implication of these similar values would seem to be that they 

reflect a common ecological strategy. In fact, it appears that the assemblage of 

myxomycetes present consists of a majority of generalist species and very few that are 

specialists. 

 In summary, the results obtained in the present study provide new and relevant 

data on the ecological patterns displayed by myxomycetes in the Neotropics. The new 

records for the region also contribute to our knowledge of the biogeographical patterns of 

myxomycetes. When the influence of both macro- and microenvironmental variables on 

the sporulation of myxomycetes at Cerro Bellavista was evaluated, information generated 

in the study indicates that a combination of factors determines the timing of this 

phenomenon, whereas analyses of niche breadth suggest that the species of myxomycetes 

present are mostly ecological generalists that are well adapted to changing 

microenvironmental conditions. 
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Abstract: The marine biota of Cocos Island is well known; however, the terrestrial biota 

is poorly understood. In an effort to document the myxomycetes of the island and to 

determine their ecological distribution along an elevation gradient, a survey was carried 

out in 2005. Forty-one species were recorded, mostly from moist chamber cultures 

prepared with samples of various types of substrate material collected from a series of 

selected study sites. The assemblage of species on Cocos Island was found to be more 

similar to that reported from previous studies in Puerto Rico than those obtained from 

other investigations carried out in continental Costa Rica. This suggests that the very 

isolation provided by the ocean may influence the biotic interactions and ecological 

factors involved in determining the distribution patterns and dispersal potential of 

myxomycetes in the various microhabitats in which these organisms occur. Decreasing 

diversity with increasing elevation and the role of certain microenvironmental factors in 

maintaining myxomycete assemblages in particular microhabitats is also discussed. The 
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data generated in this study also contributes to the body of knowledge required to 

evaluate some of the biogeographical and ecological hypotheses currently under 

discussion within the scientific community.  

Key words: community ecology, eumycetozoans, island biogeography, Neotropics 

 

Introduction 

Cocos Island is a small oceanic land mass located approximately 550 km 

southeast of the Pacific coast of Costa Rica (Hogue and Miller, 1981). The rugged 

topography found in the island is thought to be the product of volcanic and tectonic 

activity associated with the Galapagos hotspot approximately 2 million years ago 

(Castillo et al., 1988; Walther, 2002). The geographic isolation of Cocos Island has 

produced a distinct assemblage of species and high levels of endemism (e.g., Hogue and 

Miller, 1981). The extremely wet climate and oceanic character give Cocos an ecological 

character that is not shared with either the Galapagos Archipelago or any of the other 

islands (e.g., Malpelo or Coiba) in this region of the world (Kirkendall and Jordal, 2006). 

 Even though isolated islands such as Cocos potentially represent living 

laboratories for studies of biogeography and evolution, relatively little is known about 

their biota and the ecological dynamics of the organisms present. This is particularly true 

for protists, a group for which most species have been proposed to be cosmopolitan (de 

Wit and Bouvier, 2006). Interestingly, recent evidence relating to myxomycete 

distribution and ecology in the Neotropics (e.g., Lado et al., 2003; Stephenson et al., 

2004; Rojas and Stephenson, 2007) seems to show that some species within the group 

appear to respond more directly to microenvironmental factors than predicted by the 
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neutral theory, which may indicate that the ubiquity theory does not necessarily explain 

myxomycete distribution patterns. This same observation has also been made for other 

protists (Foissner 2006).  

 Continental Costa Rica represents a good starting point for studying the dynamics 

of the assemblages of myxomycetes associated with tropical ecosystems. These 

organisms have been well investigated throughout most areas of the country (e.g., 

Schnittler and Stephenson, 2000), where a series of ecological patterns has been 

documented. One of the more important of these is the general pattern of decreasing 

myxomycete diversity with increasing elevation, Moreover, higher levels of diversity 

appear to exist in temperate rather than tropical regions of the Northern Hemisphere 

investigated to date (Stephenson et al., 2004). The myxomycetes of insular tropical 

communities have been studied in the past (e.g., Eliasson and Nannenga-Bremekamp, 

1983; Eliasson, 1991; Pando, 1997; Novozhilov et al., 2001) but never in the context of 

the relative isolation, geologic history and ecological situation that an island such as 

Cocos provides. The overall objective of the present study was to investigate the 

diversity, species assemblages and substrate specificity of myxomycetes along an 

elevational gradient on Cocos Island.  

 

Materials and methods 

The vegetation of Cocos Island consists primarily of lowland tropical moist 

forests, according to the Holdridge life zone classification system (Beauvais and 

Matagne, 1998). The island is located between latitudes 5º30'06'' to 5º33'26'' N and 

longitudes 87º05'46'' to 87º01'47'' W and is within the Costa Rican continental waters 
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jurisdiction (Montoya, 2006). The surveys reported herein were carried out during a visit 

to the island in April 2005, during a period when weather conditions were moderately 

dry. Because this island is a world historical treasure and a world heritage site, study 

areas had to be selected within the context of the trail system already in place.  

 

A. Selected study areas 

Six study sites situated along a transect that represents an elevation gradient 

across the island were selected. The starting point for the transect was in the northeastern 

portion of Cocos Island at Chatham Bay, and the ending point was at Cerro Iglesias in the 

southwestern portion of the island (Fig. 1). A brief description of each of the study sites is 

provided below.  

 

Chatham Bay (CB – 5°32'56''N, 87°02'42''W) 

This study site encompasses the only sandy beach and represents one of the two 

bays of the island. The vegetation is typical of lowland coastal areas throughout the 

Neotropics, with Erythrina fusca, Ochroma pyramidalis and Terminalia cattapa as 

common tree species (e.g., Porter, 1973). The forest shows a simple vertical structure, 

sometimes with only two discrete vegetation layers and intermediate-to large-sized 

canopy gaps. The areas surveyed for myxomycetes occurred at elevations between 5 and 

15 m. 
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Chatham-Wafer Trail (CW-T – 5°32'29''N, 87°02'53''W) 

In the trail from Chatham Bay to the interior of the island there is an area of open 

savannah-like forest dominated by grasses, sedges and ferns of the family 

Dennstaedtiaceae. The vegetation at this study site has a very limited vertical structure, 

with only two subordinate layers within the understory and no other structural 

components present. Although this type of vegetation is found at intermediate elevations 

between 75 and 150 m, it is characterized by the absence of canopy, which creates a 

virtually open area. 

 

Wafer Bay Ridge (WB-R – 5°32'39''N, 87°02'57''W) 

This study site represents the first non-coastal area of forest vegetation along the 

elevation gradient. It is located on a ridge between Chatham and Wafer bays. Three of the 

most common trees in this moist forest are Ficus pertusa, Ocotea insularis and the 

endemic Cecropia pittieri. The vertical structure of the forest is quite different from that 

of coastal areas, with more than three discrete vegetation layers and intermediate-sized 

canopy gaps that give the forest a more closed appearance than is the case in coastal 

areas. This study site occurs at an elevation of approximately 100 m.  

 

Genio River (GR – 5°32'21''N, 87°03'18''W) 

The portion of the island in which this study site occurs resembles Wafer Bay 

Ridge in plant composition and stratification; however, it is characterized by the typical 

structure of a gallery forest, with trees following a more linear arrangement along the 

river. Common plant species in this area include Rustia occidentales, Pilea gomeziana 
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and the endemic Hoffmannia piratarum. Elevations in this portion of the island range 

between 100 and 150 m. 

 

Cerro Iglesias Trail (CI-T – 5°32'03''N, 87°03'56''W) 

Located at a higher elevation (ca 400 m) on the Cerro Iglesias trail, the forest at 

this study site resembles the premontane cloud forests of continental areas at the same 

latitude (e.g., Monteverde in Costa Rica), although at a much lower elevation. The most 

abundant plants include the canopy dominants Sacoglottis holdridge, Ocotea insularis 

and Clusia rosea and large ferns of the genus Cyathea in the understory. However, 

Euterpe precatoria is commonly observed extending beyond the canopy. The vertical 

structure of this forest is characterized by more than three non-discrete layers of 

vegetation and intermediate-sized canopy gaps.  

 

Cerro Iglesias (CI – 5°31'41''N, 87°04'12''W) 

 This study site represents the highest point on the island. The general 

characteristics and structure of the forest are essentially the same as for Cerro Iglesias 

Trail. The canopy of this area is dominated by Sacoglottis holdridge and the understory 

by Cyathea alfonsiana (Montoya, 2007). However, the very top of the mountain, which 

coincides with the end of the trail, is represented by an open area that is clearly the 

product of human influence. The elevation in this area is 575.5 m (Castillo et al., 1998, 

Montoya 2007). 
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B. Field and laboratory studies 

A series of 130 moist chamber cultures was prepared in the laboratory from 

samples of dead plant material collected in study areas. For this part of the study, samples 

of both ground litter and aerial litter (dead but still attached plant parts above the ground) 

were collected in the Chatham Bay, Chatham-Wafer Trail, Cerro Iglesias Trail and Cerro 

Iglesias study sites. Samples of bark and twigs were collected only in the Wafer Bay 

Ridge and Chatham Bay study sites, respectively, whereas only samples of aerial litter 

were obtained in the Genio River study site. All samples were processed and studied 

using the laboratory protocol given by Stephenson and Stempen (1994). 

In addition to the laboratory study, specimens of myxomycetes that fruited in the 

field under natural conditions were collected and curated using the protocols described by 

Cannon and Sutton (2004) and Stephenson and Stempen (1994). Following this 

methodology, myxomycetes are searched for in an opportunistic manner in the 

microhabitats provided by different types of dead plant material. When observed, the 

specimen along with a small portion of the substrate upon which fruiting occurred are 

collected and returned to the laboratory, after which they are glued to paper strips, placed 

in small pasteboard boxes and allowed to dry at room temperature. In the current study, 

no specimens still in the plasmodial stage were collected. In addition, pH was not 

measured for field collections. The morphological concept of species in current use for 

myxomycetes was applied to all of the collected material. Nomenclature follows 

Hernández-Crespo and Lado (2005) except for Tubifera bombarda, for which the 

treatment of Martin and Alexopoulos (1969) is used. Nomenclature for plants follows 

Trusty et al. (2006).  
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C. Data analysis 

Sørensen’s coefficient of community index was calculated for each of the data 

sets from those study sites where samples of both ground litter and aerial litter or bark 

and twigs were collected equally. The Shannon-Wiener index was obtained for the same 

study sites as well as for the entire assemblage of myxomycetes recorded from Cocos 

Island. The taxonomic diversity index was calculated for the combinations of ground 

litter-aerial litter and bark-twigs, using the methodology outlined by Stephenson et al. 

(1993).  

Species were classified according to their abundance using a protocol similar to 

that described by Stephenson et al. (1993). In this system of classification, species 

representing more than 3% of the total number of specimens were considered as 

abundant, those falling between 1.5–3% as common, between 0.5–1.5% as occasional 

and those less than 0.5% as rare.  

A species accumulation curve was generated for each type of substrate, using both 

field and laboratory data based on the abundance-based coverage estimator (ACE) values 

calculated by the program EstimateS (Colwell, 2006) with a cutoff value of 1.5% in 

abundance. These sets of data were adjusted later according to the formula ( )xb
axy

+
=

 

as suggested by Raaijmakers (1987). Since the coefficient of variation for all the datasets 

was higher than 0.5, an estimation of the total number of species to be expected for each 

substrate was calculated using the program SPADE (Chao and Shen, 2003) by using the 

ACE values as recommended by Chao et al. (2006). 
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Results 

Two hundred and forty-one specimens representing 41 species of myxomycetes 

were recorded from the various study sites. The numbers of records from field and 

laboratory conditions are shown in Table 1. Moist chamber cultures were especially 

productive, with 92% of all moist chambers and 93% of those prepared with samples of 

aerial litter or ground litter showing some evidence (either fruiting bodies or plasmodia) 

of the presence of myxomycetes. None of the 41 species was a new record for the country 

of Costa Rica or the entire Neotropical region; however, they do represent the first 

records of this group of organisms from Cocos Island. Only four species were represented 

exclusively by specimens that had fruited under field conditions, As such, specimens 

obtained by means of the moist chamber culture technique made up more than 90% of the 

total number of all species recorded during the entire study. Interestingly, 34% of all 

specimens were recovered from twigs and bark, although samples of these substrates 

represented only 20% of all substrate samples collected. In fact, twigs were the substrate 

characterized by the highest mean number of fruitings per moist chamber culture (t = 

1.96, d.f. = 136, p<0.05), with a value of 3.70. The corresponding values for aerial litter, 

ground litter and bark were 1.23, 1.30 and 1.95, respectively.  

The species accumulation curves (Fig. 2) appear to indicate that for all the 

different types of substrates examined, adequate sampling was carried out; however, 

there seem to be two different trends in the analysis. The species accumulation curves for 

the two types of litter (ground and aerial) and the two non-litter substrates (bark and 

twigs) seem to be more similar to each other than to either member of the contrasting 

substrate type. The ACE values for the maximum number of species to be found in the  
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different substrates indicate that the survey accounted for the 62%, 69%, 93% and 88% of 

the species in aerial litter, ground litter, bark and twigs, respectively.  

The Shannon-Wiener and taxonomic diversity indices calculated for the 

assemblage of species on the island were 1.31 and 2.27, respectively, whereas the values  

for the latter index calculated for the combinations of aerial litter-ground litter and bark-

twigs were 2.14 and 1.37, respectively. 

When the aerial and ground litter data sets for Chatham Bay, Chatham-Wafer 

trail, Cerro Iglesias trail and Cerro Iglesias were analyzed, the values obtained for the 

Shannon-Wiener index were 1.17, 0.92, 0.7 and 0.64, respectively. These diversity values 

correlate with elevation (Shannon-Wiener index versus elevation = -0.96, p<0.05). 

Interestingly, pH showed the same pattern (pH versus elevation, Pearson’s product 

moment = -0.76, p<0.001). With the single exception of the Cerro Iglesias, all of the 

other study sites yielded higher numbers of fruitings for aerial litter than for ground litter 

(Fig. 3, χ2 = 4.43, gl = 1, p<0.05). In spite of this difference in substrate preference, the  

highest values for Sørensen’s coefficient of community were obtained when data from 

this study site were included. It is interesting to note that the Cerro Iglesias Trail study 

site was the least similar to all of the other study sites (Table 2). When only species 

associated with bark and twigs from the Chatham Bay and Wafer Ridge study sites were 

considered, no appreciable difference was apparent in their diversity index values (0.70 

and 0.72, respectively), and the Sørensen’s coefficient of community index for the two 

sites was 0.3. 
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Figure 2. Species accumulation curves for the assemblages of myxomycetes associated 

with the four different types of substrates investigated. In each instance, the dashed line 

represents a prediction of the curve using the modified equation obtained from the ACE 

values. The calculated maximum values of species richness using SPADE were 48 for 

aerial litter, 39 for ground litter, 14 for bark and 17 for twigs.  
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Figure 3. Number of species by substrate type in relation to elevation for both ground 

litter and aerial litter where the two types of litter were collected equally. The asterisk 

indicates a statistically significant relationship.  
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Discussion 

 As mentioned earlier in this paper, information on the assemblages of 

myxomycetes associated with insular ecosystems is limited. Although the 41 species 

recorded in the present study have also been reported for continental Costa Rica and 

neighboring countries, they represent a useful set of data to use in an effort to better 

understand the biogeography of myxomycetes in one region of the world. 

For example, species such as Arcyria cinerea, Cribraria violacea, Collaria 

arcyrionema and Perichaena chrysosperma were abundant in both the present study and 

in the moist tropical forests studied by Schnittler and Stephenson (2000). However, some 

of the other more abundant species recorded in the present study, including such 

examples as Cribraria microcarpa, Comatricha tenerrima, Diderma effusum and 

Stemonitis fusca, were not particularly common in the latter study but were reported as 

among the more common taxa present in Puerto Rico (Stephenson et al., 2004). It has 

been suggested (e.g., Stephenson, 1989) that such differences in abundance can be 

explained on the basis of the differences that exist in resource availability and 

microenvironmental characteristics. However, until recently, very few studies have 

addressed these questions and thus have generated the data required to test this 

hypothesis.  

In a previous study carried out in the tropical forests of Puerto Rico (Novozhilov 

et al., 2001), both the species composition of the assemblage of myxomycetes present 

and their patterns of abundance were similar to those found in the present study. For 

example, Physarum serpula, a rare species on Cocos Island, was also recorded by  
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Novozhilov et al. (2001) but not recorded by Schnittler and Stephenson (2000) in Costa 

Rica. Even more interesting is a comparison of the list of species reported for a previous 

study in Puerto Rico (Stephenson et al., 1999) and the same type of data compiled in the 

present study. Eighteen species, representing 80% of the data set for Puerto Rico, are 

shared between the two studies. This contrasts to the much lower proportion (only 39%)  

of species shared in common between the present study and those reported by Schnittler 

and Stephenson (2000) for a series of moist tropical forest study sites in Costa Rica. It is 

obvious that differences in the overall collecting effort and the types of substrate 

available can influence these values; however, there would seem to be some evidence that 

the two islands have a more similar species composition for a comparable type of forest 

than either does with their continental counterpart.  

A clear pattern obtained in this study is the low number of species traditionally 

regarded as corticolous, especially those belonging to such genera as Echinostelium, 

Licea and Macbrideola. This is not surprising, especially when it is considered that these 

genera seem to be more abundant in temperate forests (see Stephenson et al., 1993) than 

tropical forests. In previous studies in the Neotropical region, this pattern has been well 

documented (e.g., Schnittler and Stephenson, 2000, Novozhilov et al., 2001).  

 Another interesting result is that more than 90% of the moist chamber cultures 

prepared with samples of ground litter and aerial litter in the present study were positive 

for myxomycetes. Stephenson et al. (2004) reported values for positive cultures ranging 

from 39 to 79% for ground litter samples collected from tropical forests in Puerto Rico 

and indicated that these values were lower than those usually reported for comparable 

substrates in temperate forests. However, Schnittler and Stephenson (2000) also reported 
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high values for cultures prepared using samples of litter substrates collected in moist 

tropical forests of continental Costa Rica, which suggests that such values are not 

exceptional. The fact that more than 90% of the specimens obtained in the present study 

were obtained from moist chamber cultures seems to suggest that a more exhaustive field 

survey would be necessary to document the myxobiota of the island more completely. 

However, the logistical constraints inherent in carrying out field research in this part of 

the world make such a task difficult to accomplish. A recent study (Stephenson et al., 

2007b) of the myxomyetes associated with woody twigs has provided evidence that this 

substrate is an underestimated but important microhabitat for some species. In the present 

study, in spite of the fact that twigs were not collected from study sites located at the 

higher elevations, more than 30% of the total number of records were recorded on this 

substrate. 

Each of the species accumulation curves show an apparently normal pattern for 

the type of substrate being considered. Bark has been reported to yield lower numbers of 

myxomycetes than ground litter in the tropics (e.g., Schnittler and Stephenson, 2000), 

which is exactly the reverse of the pattern that has been observed in temperate forests 

(e.g., Stephenson, 1989; Stephenson et al., 1993). This may explain, at least in part, why 

the two curves representing litter substrates do not flatten in the figure. Interestingly, the 

ACE values for the maximum number of species indicate that the survey was more 

complete for woody substrates such as bark and twigs than for aerial litter and ground 

litter. These estimates however, may represent underestimations simply because all of the 

different substrates were not investigated with equal intensity, a variable that clearly 

could not be controlled in the present study due to logistical constraints such as the time 
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available for collecting in more remote portions of the island. In any case, it seems likely 

that most of the common species on Cocos Island were successfully recorded during the 

course of the present study.  

A similar situation occurs with respect to the Shannon-Wiener index of diversity. 

The algorithm used in the calculation of the index depends upon sample size and 

therefore indices obtained for data sets derived using different sampling efforts are not 

directly comparable. Schnittler and Stephenson (2000) used a methodology similar to that 

of the present study and analyzed 111 moist chambers from moist tropical forests in 

Costa Rica. In this study they obtained a diversity index value of 2.97, much higher than 

the value (1.31) obtained after processing 130 moist chambers in the present study. The 

isolation of Cocos Island may play a role in accounting for this difference.  

On the other hand, similar values for the taxonomic diversity index would be 

expected if species of myxomycetes are distributed more or less equally in different 

ecosystems and geographical locations, as predicted by both the ubiquity theory of protist 

distribution (Finley, 2002; Fenchel and Finley, 2004) and the neutral theory of 

biodiversity (Hubbell, 2001). However, in a comparative study of the assemblages of 

myxomycetes associated with temperate and tropical regions, Stephenson et al. (1993) 

reported values higher than 3.0 for tropical regions of India. The latter study was based 

only upon specimens collected in the field and did not involve a moist chamber 

component. In a similar study carried out in northern Thailand, Tran et al. (2006) 

reported an overall value of 3.44, whereas Stephenson et al. (1999) obtained a value of 

1.76 for a study carried out in Puerto Rico. The latter value is lower than what might be 

expected for a tropical region, but their study was limited to the ground litter microhabitat 
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and considered only specimens obtained from moist chamber cultures. Interestingly, the 

value obtained for Cocos Island (2.27) falls between the values reported for India and 

Puerto Rico. However, there is at least some evidence that tropical insular assemblages 

are characterized by lower species/genera ratios than continental ones, which may reflect 

fundamental but as yet undetermined differences in the biotic interactions and ecological 

factors involved in determining the distribution patterns and dispersal potential of 

myxomycetes (Stephenson et al., 2007a). For these organisms, the more limited habitat 

space and taxonomic (and thus resource) diversity of available substrates on an island 

may favor interspecific competition over intraspecific interactions, assuming that more 

closely related species have more similar microenvironmental requirements. Data 

obtained from studies carried out in arid areas of northern Chile (Lado et al., 2007) and 

Russia (Novozhilov et al., 2006), which are biogeographically isolated in an ecological 

sense, provide evidence to support for such a hypothesis. In fact, this apparent resource 

partitioning among the members of the assemblage of species of myxomycetes present in 

a particular ecosystem may represent one of the more important factors determining both 

the local and global distribution within the group.  

A clear pattern of decreasing diversity with increasing elevation was apparent in 

the present study, based on the Shannon-Wiener index values obtained for some of the 

study sites. The occurrence of such a pattern in tropical regions was discussed by 

Stephenson et al. (2004). Apparently, a lower number of plant species is associated with 

this phenomenon, but the effect of abiotic factors probably also plays an important role in 

determining the distribution patterns of myxomycetes. In the present study, pH was also 

observed to decrease with elevation, suggesting that microenvironmental conditions also 
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change at higher elevations. Recent studies (e.g., Schnittler et al., 2006; Rojas and 

Stephenson, 2007) have demonstrated the importance of some microenvironmental 

characteristics in determining the occurrence of some species of myxomycetes, which 

suggests that if myxomycetes respond to microenvironmental factors when fruiting, they 

would probably respond as well to macroenvironmental factors such as differences in 

elevation and plant communities. 

One interesting pattern that emerged from the present study is that species 

richness was higher for aerial litter than for ground litter except in the study area at the 

highest elevation, where more species were associated with ground litter. It is generally 

assumed that wind plays a major role in dispersing the spores of myxomycetes 

(Stephenson et al., 2007a). Schnittler et al. (2006) demonstrated that even a slight breeze 

can have the potential effect of causing the spore of a myxomycete to be dispersed more 

than one kilometer from its starting point. As such, the occurrence of myxomycetes in 

aerial microhabitats would not seem surprising. With this in mind, it seems logical to 

attribute the apparent lower diversity of aerial substrates at higher elevations to the 

possible removal of spores by the usually higher winds associated with such sites. 

However, the leaching effect of the sometimes almost horizontal wind-driven 

precipitation that occurs over mountain peaks also could reduce the number of spores 

associated with aerial substrates. 

Comparisons among the various study sites did not reveal large numbers of 

species shared in common, which also accounts for the relatively low coefficient of 

community values obtained for pairwise comparisons of these study sites. It is clear that 

these differences could be attributed, at least in part, to the different plant communities 
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present in the study sites. Tran et al. (2007) reported a similar situation for a series of 

study sites in northern Thailand; however, the Cerro Iglesias Trail study site was 

characterized by a coefficient of community value even lower that might have been 

anticipated, when the assemblage of species was compared with those of the two lower 

elevations. Interestingly, Cerro Iglesias shared more species with these communities, 

which suggests that wind dispersal, presumably more efficient in open areas, is a major 

factor determining the composition of species on the island. The forest surrounding the 

Cerro Iglesias Trail is more closed than the other three study sites, which would be 

expected to place some constraint on wind dispersal. Interestingly, the assemblages of 

species associated with bark and twigs did not show differences in diversity that could be 

related to elevation, suggesting that the two study sites involved (Chatham Bay and 

Wafer Bay Ridge) may have similar environmental characteristics. One possibly 

important aspect is that both bays are located in the northern portion of the island, where 

they would be subjected to the influence of tides, winds and rain in similar manner. The 

low coefficient of community value for these two study sites seems to be related to 

taxonomic differences in the plant communities present.  

In summary, the data obtained in the present study indicate that both the species 

composition of the assemblages of myxomycetes present and their diversity along the 

elevation gradient represented by the transect of study sites conform to a similar pattern 

reported for other areas of Neotropics. Moreover, these same data provided additional 

evidence that the distribution of myxomycetes in nature is not well explained by the 

ubiquity theory. Instead, wind and the composition of the plant communities present 
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seem to be the most important factors determining the occurrence of myxomycetes on the 

island, and perhaps for other insular ecosystems as well. 
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Abstract: The eumycetozoan genus Ceratiomyxa appears to have a cosmopolitan 

distribution, although two of the three macroscopic species within the genus have been 

reported only from tropical regions of the world. In theory, these two tropical species 

might be expected to display more narrow niches than their cosmopolitan counterpart, 

due to their specialization for tropical environments. However, ecological data 

documenting niche separation in eumycetozoans are largely lacking. As part of several 

investigations carried out in the Neotropics, the ecology of the three macroscopic species 

of Ceratiomyxa was studied. The results from in situ measurements of environmental 

factors associated with their fructifications reveal a clear separation of niches between the 

two tropical species, which may be an indication of resource partitioning within the 

genus. As expected in theory, the cosmopolitan C. fruticulosa shows the broadest niche 
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of the three species. Moreover, the niche overlap value between C. morchella and C. 

sphaerosperma along with results from a multivariate CDA analysis seem to indicate that 

these two species are more specialized than C. fruticulosa.  

Key words: community ecology, Eumycetozoans, niche overlap, Neotropics, resource 

partitioning  

 

Introduction 

The eumycetozoans are a group of amoeboid protists (Fahrni et al 2003) whose 

life cycle includes the particular capacity to produce spores and spore-holding structures 

during their reproductive stages (Alexopoulos 1996). The three different taxonomic 

groups recognized for the eumycetozoans are the myxomycetes (plasmodial slime molds 

or myxogastrids), the dictyostelids (cellular slime molds) and the protostelids (Adl et al 

2005). Although the genus Ceratiomyxa has been considered as a protostelid slime mold 

(Olive 1970), most researchers treat it as a myxomycete (e.g., Tran et al 2006, 

Stephenson et al 2008). In fact, recent molecular analyses suggest that there is strong 

support showing that the genus is a sister group to the myxomycetes and not to the 

protostelids (Fiore-Donno et al 2007). Interestingly, three out of the four species making 

up the genus have a macroscopic habit and resemble myxomycetes both morphologically 

and ecologically.  

Although the genus Ceratiomyxa is widely distributed, only the most common 

species C. fruticulosa has a cosmopolitan distribution. The other two macroscopic species 

appear to be restricted to the tropics (Stephenson et al 2008), where they also seem to be 

less abundant than C. fruticulosa. A high degree of specialization has been documented 
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in C. sphaerosperma (Novozhilov et al 2001); however, a proper niche analysis for all the 

macroscopic species in the genus has not yet been carried out. In fact, there have been 

few previous studies of this type for any species of eumycetozoans (e.g., Stephenson 

1988, Schnittler 2001). The problem inherent in doing such an analysis is that without 

enough ecological information about the species, it is hard to construct an adequate 

experimental design to evaluate these aspects. 

In the past, most studies involving Ceratiomyxa have had a strictly taxonomic 

approach (Olive 1970, Olive and Stoianovitch 1979, Scheetz et al 1980), with no real 

considerations of ecology. However, the increasing number of biogeographical studies of 

myxomycetes over the last decade (reviewed in Stephenson et al 2004b) has provided 

evidence that the three macroscopic species have different geographical distributions, 

both at the world and at the ecosystem level. Presumably, the differences in distribution 

noted for closely related organisms result from differential responses to intrinsic 

ecological properties such as their ability to colonize particular substrates or utilize 

different resources available in their immediate environment. When this phenomenon 

occurs, it is often hypothesized that there is a higher niche overlap in species that are 

closely related phylogenetically (e.g., intrageneric taxa) than in less closely related 

species (Morin 1999). Unfortunately, the effect of biotic interactions among sympatric 

species is still poorly understood for eumycetozoans. For that reason, this project was 

designed to provide a body of data on niche overlap and resource partitioning in 

Ceratiomyxa in an effort to evaluate niche breadth and overlap among the species within 

the genus. 
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Materials and Methods 

This study described herein includes data collected during the ten-year period 

1998-2008 in several Neotropical countries. Only data on Ceratiomyxa fruticulosa, C. 

morchella and C. sphaerosperma (abbreviated as CERfru, CERmor and CERsph, 

respectively) are considered in this paper. The morphological species concept was used to 

identify the three macroscopic intrageneric forms currently recognized in the genus 

Ceratiomyxa (FIG 1), the nomenclature used follows Hernández-Crespo and Lado (2005) 

and the forest classification system is that of Holdridge et al (1971). 

Study sites.— The data considered herein were collected in 14 different study 

areas across the Neotropics. For those areas in which collections were made in different 

study sites within the general study area, a georeference centroid for the geographic 

location, rather than the exact location, is provided. Two of the surveyed areas are in 

South America. (1) Los Amigos Biological Station (in the rest of this paper referred to as 

Los Amigos, exact coordinates: 12°34'09.0'' S, 70°06'00.4'' W, elevation 200-300 m) in 

the southern Amazonia of Peru. This area is administrated by Amazon Conservation 

Association and is located in the Department of Madre de Dios in the watershed of the 

Los Amigos River, between Manu National Park and the city of Puerto Maldonado in the 

middle of one of the world’s biodiversity hotspots. The forests of this area are classified 

as lowland tropical wet forests. (2) Yasuní National Park (Yasuní, collecting area 

centroid coordinates: 0°40'16.80'' S, 76°23'25.20'' W, elevation 200-300 m) in the 

northeastern Amazonia of Ecuador in the province of Orellana. This other area of high 

diversity is characterized by lowland tropical wet forests. (3) Maquipucuna Cloud Forest 

Reserve (Maquipucuna, collecting area centroid coordinates: 0°6'08.40'' N, 78°37'4.20''  
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FIGURE 1. Typical morphology of the fructifications produced by the three macroscopic 

species of Ceratiomyxa. A, fructifications of C. morchella; B, fructifications of C. 

sphaerosperma; C, columnoid form of the fructification of C. fruticulosa and D, detail of 

the columns in C. fruticulosa. Scale bar represents 3 mm in A and B, 20 mm in C and 4 

mm in D.  
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W, elevation 1200-2700 m) on the western slope of the Ecuadorian Andes in the provice 

of Pichincha. In this area, due the elevational and precipitation gradients, both 

premontane tropical wet forests and lower montane tropical moist forests are present, 

depending on the elevation. A complete description of this area is provided by Schnittler 

et al (2002). 

The study areas in Central America are all located in Costa Rica and include the 

three biological stations of the Organization for Tropical Studies. (4) Las Cruces 

Biological Station (Las Cruces, exact coordinates: 8°47'12.00'' N, 82°57'16.80'' W, 

elevation 1000-1100 m) located in the Panamanian border on the southern Pacific coastal 

range of Costa Rica in the vicinity of the town of San Vito in the province of Puntarenas. 

The forests in this study area are premontane tropical wet forest. (5) La Selva Biological 

Station (La Selva, exact coordinates: 10°25'51.75"N, 84° 0'14.08"W, elevation 50-80 m) 

in northeastern Costa Rica. La Selva is located in the province of Heredia near the town 

of Puerto Viejo de Sarapiquí, and the forests are classified as lowland tropical wet forests. 

(6) Palo Verde Biological Station (Palo Verde, exact coordinates: 10°20'42.54"N, 

85°20'18.18"W, elevation 5-20 m) in the north pacific region of Costa Rica. This station 

is located within the territory of the Palo Verde National Park near the town of Bagaces 

in the province of Guanacaste. The forests are classified as lowland tropical dry forests 

and are characterized by a definite seasonality, which is influenced mainly by the 

precipitation regime.  

Other study areas in Costa Rica were located throughout the country. (7) Cahuita 

(Cahuita, exact coordinates: 9°45'16.20"N, 82°52'6.60"W, elevation 5-20 m). This area 

corresponds to a coastal town on the south Caribbean coast of Costa Rica in the vicinity 
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of the Cahuita National Park in the province of Limón. The forests here are represented 

by lowland tropical wet forests. (8) Cerro de la Muerte Biological Station (Cerro, exact 

coordinates: 9°33'53.00"N, 83°44'32.00"W, elevation 3200-3300 m) in the highest 

elevations of the Talamanca Range in central southern Costa Rica in the province of San 

José. A complete description of this area is provided by Rojas & Stephenson (2007). The 

forests of these mountains are classified as montane tropical moist forests. (9) 

Monteverde Cloud Forest Reserve (Monteverde, collecting area centroid coordinates: 

10°17'9.60"N, 84°46'14.40"W, elevation 800-1500 m), part of the Tilarán Range along 

the Pacific coast in central northern Costa Rica in the province of Puntarenas. This area, 

near the town of Santa Elena, encompasses one of the most famous cloud forests in the 

world in which the systematic study of its biodiversity has played a key role in the 

understanding of the climate change effect over tropical areas. According to the 

Holdridge life zone system the ecosystems present are characterized by premontane 

tropical wet forests. 

The northwestern province of Guanacaste in Costa Rica was represented by three 

study areas (see Schnittler & Stephenson 2000 for details). (10) Santa Rosa National Park 

(Santa Rosa, collecting area centroid coordinates: 10°50'37.80"N, 85°36'45.00"W, 

elevation 250-300 m) near the city of Liberia. This area is characterized by lowland 

tropical dry forests with high degree of seasonality. (11) Maritza Biological Station 

(Maritza, collecting area centroid coordinates: 10°56'60.00"N, 85°29'18.00"W, elevation 

600-700 m), located in the northernmost section of the Guanacaste range in Costa Rica; 

on the western slope of the Orosí volcano. The forests in this area are tropical premontane 

transitional wet forests showing the seasonal influence of the lower elevation dry forests 
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and the upper elevation wet forests. (12) Cacao Biological Station (Cacao, collecting area 

centroid coordinates: 10°55'21.00"N, 85°28'4.80"W, elevation 1100-1200 m) on the 

western slope of the Cacao volcano. The forests in this area correspond to tropical 

premontane transitional wet forests as well. However, this place is associated with a 

higher precipitation than the Maritza Biological Station area.  

The northernmost study areas were located in Puerto Rico and the Yucatan of 

Mexico. (13) El Verde Field Station (El Verde, exact coordinates: 10°50'37.80"N, 

85°36'45.00"W elevation 350-450 m) in the municipality of Luquillo in northeastern 

Puerto Rico. This area shows the typical lowland tropical wet forests of most of the 

Caribbean. However, the sampled area corresponds to the so-called tabonuco forest 

dominated by the palm Dacryodes excelsa Vahn. A complete description of this area is 

provided by Stephenson et al (1999). (14) El Eden Ecological Reserve (El Eden, 

collecting area centroid coordinates: 21°12'44.40"N, 87°11'43.20"W, elevation 5-10 m) 

located in the state of Quintana Roo in southeastern Mexico. This area is characterized by 

having lowland tropical dry forests with a very strong seasonal effect provided by the 

high precipitation coming from the Atlantic Ocean during part of the year. A complete 

description of this area is provided by Lado et al (2003).  

Sampling.— In all study areas, the opportunistic method of collecting 

recommended for microscopic fungi by Cannon and Sutton (2004) was applied. Using 

this protocol, a thorough survey for fructifications was made on decayed logs, twigs and 

fruits along some of the trails that are present in all of the specific study sites. The 

selection of the trails to be surveyed was based on the overall characteristics of the forest 

and for the case of Los Amigos, La Selva and Palo Verde, determined by using the GIS-
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based forest coverage maps present at these stations. In all cases, the ecosystem type (ET) 

was defined as the forest type already mentioned for each study area according to the 

Holdridge life zone system and the forest subtype (FT) was determined as primary, 

secondary and disturbed depending upon the overall appearance and known ecological 

characteristics such as vertical structure, canopy openness and plant composition.  

Microhabitats.— In order to evaluate both direct and multivariable responses of 

the species to their environment, a series of microenvironmental parameters was 

measured or determined directly in the field when fructifications were found. These 

microenvironmental parameters included pH, substrate moisture (SM), substrate type 

(ST), diameter or thickness of the substrate (DS) as an index of substrate mass, height 

above the ground (HAG) and canopy openness (CO) as a way to evaluate light 

availability. The first and second parameters were measured using a calibrated pH meter 

and an electronic moisture meter when possible, whereas the other parameters were 

determined as described in Stephenson et al (2004a). With this commonly used protocol, 

the level of light availability is assessed with a system that uses five discrete categories 

and can be easily transformed into a standard percentage scale comparable to the readings 

obtained with the moisture meter. In addition, the categorical arrangement used for 

ecosystem type and forest subtype was considered part of the microenvironmental setting. 

Classification of non-continuous parameters.— For non-continuous parameters an 

ordinal classification of records was determined by using a series of ecological categories 

(sensu Stephenson 1988) developed specifically for each parameter. With this approach, 

the ecosystem type (ET) was ordered using categories based upon increasing levels of 

precipitation and elevation. These were (1) basal floor dry forest, (2) basal floor 
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transitional wet forest, (3) premontane floor transitional wet forest, (4) premontane floor 

wet forest, (5) lower montane floor moist forest and (6) montane floor moist forest. In a 

similar fashion, the forest type (FT) was classified according to the level of human 

disturbance, which ranged from (1) pristine primary forests to the (2) secondary and (3) 

disturbed areas. The substrate type (ST) classes were ordered in five categories that 

included (1) bark, (2) wood, (3) leaves, (4) herbaceous material and (5) fruits and seeds.  

Data analysis.— A classification of records on the basis of their occurrence in the 

study areas (communities) was estimated using the Bray-Curtis distance measure with the 

program PAST (Hammer et al 2001) for those areas with the three species present. This 

estimator, commonly used to evaluate similarity, is sensible to low numbers for some of 

the species in the communities under study and is very robust for small datasets (Clarke 

et al 2006). The values obtained with this estimator range from 0 in case of total 

correspondence of abundances of both positive and negative matches to 1 in case of total 

dissimilarity. In addition to this analysis, a comparison of the abundance of the three 

species according to forest subtype was also carried out for the whole dataset using the 

Pearson’s algorithm for the Chi-square test.  

In order to evaluate the formal structure of the records for each species in the 

hyperspace constructed from the data for the various microenviromental parameters and 

the importance of the latter for the distribution of records, a Canonical Discriminant 

Analysis (CDA) and a Principal Components Analysis (PCA) were performed using the 

program PC-Ord, version 5.11. The former type of analysis is appropriate to discriminate 

groups and determine the contribution of variables in datasets that have a b number of 

sampling units containing a c number of non-overlapping groups, whereas the second is 
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useful to determine the relative importance of those variables in the multidimensional 

spatial ordination (Kenkel et al 2002). These analyses were carried out by considering the 

six direct microenvironmental parameters mentioned already in addition to ecosystem 

type and forest subtypes. 

Also, the same first six microenvironmental variables were used to evaluate the 

niche breadth and the niche overlap of the three species. For this part of the analysis, the 

estimators were obtained by using the MacArthur-Levins (MacArthur and Levins 1967) 

approach in the manner described by Stephenson (1988). The niche overlap was also 

calculated by using the Shannon-Wiener Communication Theory formula (Shannon and 

Weaver 1949) as a way to compare the overlap between species when the niche breadth 

is not taken into account. This is important when it is considered that the biological 

interpretation of the overlap in a multivariate analysis depends upon the characteristics of 

the parameter distributions. For that reason, these parametric analyses were also 

performed, following the recommendations of Stine and Heyse (2001). 

 

Results 

A total of 408 records of Ceratiomyxa were recorded from the field surveys. 

Ceratiomyxa fruticulosa was the single most common species, representing 77% of the 

total number of records, with C. morchella and C. sphaerosperma contributing 15% and 

8%, respectively. The three species co-occurring at the same time were recorded only for 

Los Amigos, Yasuní and Monteverde, with the last one being the only non-lowland 

tropical moist forest with all occurrences. Interestingly, the values of the Bray-Curtis 

distance estimates were 0.78, 0.67 and 0.23 for the pairwise combinations Monteverde-
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Yasuní, Monteverde-Los Amigos, Yasuní-Los Amigos, respectively. These were the only 

study areas for which all three species were present. 

The three species were found in the three subtypes of forest; however, there are 

differences in the relative abundance at which they seem to occur in each type. For 

example, C. fruticulosa is found more frequently than the other two species in secondary 

forests and this factor seems to account for the overall differences in their occurrence (χ2 

= 33.95, g.l. = 4, P < 0.0001). When the records of C. morchella and C. sphaerosperma 

are compared independently from those of C. fruticulosa, the former two species do not 

differ in their occurrence (χ2= 1.26, g.l. = 2, P > 0.05). Interestingly, all species were 

found in similar proportions in disturbed areas. When the preferred substrates for each of 

the species are considered, it is very clear that both C. fruticulosa and C. morchella seem 

to have preference for decaying wood. For these two species, >90% of the observations 

were recorded on the latter substrate. That is not the case for C. sphaerosperma, for 

which approximately 87% of the records were found on herbaceous substrates. 

The CDA analysis in FIG. 2 shows a separation of the C. morchella and C. 

sphaerosperma two-dimensional hyperspaces. However, it also shows that their 

respective hyperspaces are contained almost entirely within the much more extensive 

hyperspace of C. fruticulosa. The PCA analysis in FIG. 3 shows that the most important 

microenvironmental parameters appear to be substrate type, pH and diameter of the 

substrate, respectively. With exception of canopy openness, all microenvironmental 

parameters showed significant differences (not shown) among the three species. The data 

presented in TABLE I summarize the range and average values for these parameters. 
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FIGURE 2. Canonical Discriminate Analysis ordination that shows the two dimensional 

hyperspaces occupied by the three species of Ceratiomyxa. Note: gray circles = C. 

fruticulosa, black stars = C. morchella and black circles with enclosed points = C. 

sphaerosperma. For abbreviations see Materials and Methods.  
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FIGURE 3. Principal Component Analysis diagram showing the position of the three 

species of Ceratiomyxa in the hyperspace constructed with the microenvironmental 

variables. Note: ET = ecosystem type, FT = forest subtype. For other abbreviations see 

Material and Methods.  
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The niche breadth and overlap values obtained with the MacArthur-Levins and 

Shannon-Wiener protocols are shown in TABLE II. The inclusion of niche breadth in the 

first case does not have a significant effect on the calculated values for either algorithm 

(χ2= 6.60, g.l. = 4, P > 0.05). Ceratiomyxa fruticulosa shows the broadest niche, closely 

followed by C. morchella and C. sphaerospema. Similarly, the highest niche overlap 

occurs between C. fruticulosa and the other two species and the lowest value is 

associated with the combination C. morchella – C. sphaerosperma. Niche overlap is 

higher between C. fruticulosa and C. morchella than between the former and C. 

sphaerosperma. Interestingly, the latter species shows significant differences from the 

other two when a comparison of substrate types is considered (χ2= 129.9, d.f. = 10, P < 

0.0001). 

 

Discussion 

Members of the genus Ceratiomyxa represent some of the more commonly 

encounterd eumycetozoans in tropical regions. However, also in tropical regions many 

studies have recorded only one species, C. fruticulosa (e.g., Hochgesand and Gottsberger 

1996, Ogata et al 1996). The other two macroscopic species within the genus are more 

difficult to find and normally represent occasional to rare observations. In spite of that, 

some studies such as those of Pando (1996) and Novozhilov et al (2001) represent 

instances in which appreciable numbers of records of C. sphaerosperma were 

documented. In spite of these situations, what is currently known about the overall 

pattern of abundance for the three species seems to correspond to the relative frequencies 

recorded in the present study. This suggests that for the latter, the survey was carried out 
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effectively, even though for some of the study areas C. morchella and C. sphaerosperma 

were never recorded. In any case, it has been suggested that the former species is more 

abundant in the Amazon forests than in Central America (Stephenson et al 2008), which 

seems to conform with the results obtained in the present study.  

When the mathematical distance between the study areas with the three species 

present is evaluated, a similar pattern is apparent. It is interesting to note that the values 

obtained show an increasing degree of dissimilarity with increasing geographical distance 

from the southernmost study area (Los Amigos) and with differences in the forest type. 

This can be observed in the higher Bray-Curtis distance value for both the pairwise 

combinations of Los Amigos and Yasuní with Monteverde than for the combination of 

Los Amigos and Yasuní. Interestingly, of these three areas, the only one that is not 

represented by a lowland tropical rainforest is Monteverde, which may also be an 

indication that differences in forest type can play a role in the distribution of the species 

within the genus.  

In fact, a similar pattern can be observed in the occurrence of the three species in 

the evaluated subtypes of forest. The low abundance of C. morchella and C. 

sphaerosperma in secondary forests is likely to be the product, at least in part, of 

differences in the microhabitats available, which in turn are the product of variations in 

the forest structure of the three sub types of forests. This might be particularly true with 

respect to the availability of particular substrates for which one of the species of 

Ceratiomyxa seems to show a preference, an observation that has been reported for 

myxomycetes in previous studies (e.g., Stephenson 1988).  
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Interestingly, some of these correlations are apparent when the micro- 

environmental parameters are evaluated independently. For example, the average pH 

value for the three species differs significantly in the present study (not shown before, F = 

53.95, d.f = 2, p < 0.0001, TABLE I), being higher for C. fruticulosa and C. 

sphaerosperma than for C. morchella. Such a pattern was reported previously by 

Stephenson et al (2008). Interestingly, it is known that the higher heterogeneity of 

organisms and resources in secondary tropical forests affects the acidity levels of the 

substrates in different ways (e.g., Herrera and Finegan 1997), a situation that may have a 

stronger negative effect on the presence of species such as C. morchella and C. 

sphaerosperma that seem to be more pH-specific than C. fruticulosa.  

Also noted in the present study is that one the strongest tendencies observed was 

the occurrence of C. sphaerosperma on substrates different than those on which C. 

fruticulosa and C. morchella were recorded. In fact, for purposes of comparison, all the 

observations of C. morchella reported herein were found on decaying wood, whereas 

87% of all records of C. sphaerosperma came from herbaceous plant litter. This is not the 

first time that C. sphaerosperma has been reported to be restricted to particular types of 

substrates. Novozhilov et al (2001) recorded this species only on the decaying fruits of 

Andira inermis, which suggested a pattern of high abundance associated with a particular 

plant. In any case, the important point to consider is that C. sphaerosperma was recorded 

as exploiting a resource that neither of the other two species appears to utilize. When 

such a phenomenon occurs, it is logical to think that the niche overlap between the 

species involved is lower than between species that share the same substrate in a similar 

way. Based upon the other analyses carried out, this seems to be the case for the 
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macroscopic species of Ceratiomyxa. For example, in FIG. 2 the hyperspaces obtained for 

C. morchella and C. sphaerosperma are both smaller than that obtained for C. 

fruticulosa. The hyperspaces of the two tropical species seem to be comparable in size; 

however, FIG. 3 shows that C. sphaerosperma is clearly associated with higher pH values 

and lower diameter substrates than C. morchella. Moreoever, the niche breadth values in 

TABLE II show the same pattern. This makes sense when one considers that the 

characteristics of the substrates utilized by these two less common species of 

Ceratiomyxa are different, as already discussed.  

Interestingly, for these two species, the overlap in their hyperspaces is very low, 

which can be interpreted as an indication of resource partitioning and specialization 

within the genus. On the other hand, one might think that C. fruticulosa is less specialized 

for particular resources than the two other species simply because it is the only species in 

the genus that occurs throughout the world. Although the data in TABLE II seem to 

indicate such a situation, our dataset is too limited for a truly definitive conclusion. 

Nevertheless, these data do seem to suggest the idea that C. fruticulosa is more of a 

generalist, based both on the multivariate and niche breadth and overlap analyses. These 

results conform with what was reported by Stephenson (1988) for the same species in 

upland forests of a study area in eastern North America. Another interesting observation 

is that C. fruticulosa seems to have a much more variable morphology than the two other 

macroscopic species in the genus. This has been observed both in the color of fresh 

fructifications (pink to pale yellow to white) and the appearance of the sporophores, 

which can vary from highly branched (var. arbuscula [Berk. & Broome] Minakata) to an 

almost poroid appearance (var. poroides [Alb. & Schwein.] G. Lister). 
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What seems to be readily apparent is that the niches of C. morchella and C. 

sphaerosperma are clearly defined by the characteristics of their microhabitat and that C. 

fruticulosa seems to be the least specialist of the three macroscopic species. These 

apparent microenviromental preferences might account, at least in part, for their 

distribution patterns and interspecific interactions. However, since little information on 

various aspects of the ecology of eumycetozoans is available, especially at the level of 

species, this is certainly something that warrants additional study. 
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Chapter 6 

Macroecology of high-elevation myxomycete assemblages in the northern 

Neotropics 

 

Abstract: A number of recent studies have been directed towards developing a more 

complete understanding of myxomycete ecology in high-elevation areas of the 

Neotropics. However, the lack of comparative data obtained using standard 

methodologies makes the results from these studies somewhat speculative. The objective 

of the investigation described was to examine the evidence for macroecological patterns 

in myxomycete assemblages in the northern Neotropics. First, a series of study areas was 

selected in Mexico, Guatemala and Costa Rica. In addition, two other study areas (one in 

the United States and the other in Thailand) were selected in order to compare the 

diversity-environment relationships using data from the Neotropics with comparable data 

from a temperate forest in North America and a tropical forest in Asia. A standard 

methodology for collecting and processing samples of substrate material was used for all 

study areas. Altogether, 2592 moist chamber cultures were prepared from the samples 

collected during the course of the investigation, and these samples yielded a total of 1377 

myxomycete records representing 89 different species. A trend of decreasing species 

richness with decreasing latitude was observed for the species assemblages associated 

with the study areas in the Neotropics. This contrasted with a lack of significant 

differences among these same study areas when species diversity was analyzed. Species 

assemblages in the Neotropical study areas became increasingly similar to the temperate 

study area as latitude increased. The difference in species richness between study areas in 
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Mexico and Thailand along with the results obtained for a series of macroclimatic 

patterns evaluated in the study areas of the Neotropical region suggest that forest 

structure plays an important role in the structure of myxomycete assemblages. In contrast, 

the soil chemical characteristics and the pH of the substrates present seem to be indirectly 

related to the diversity estimators used for analysis, which suggests that their role with 

respect to the dynamics of the myxomycete assemblages considered is probably more 

important at a smaller ecological scale. 

 

Keywords: alpha and beta diversity, community structure, Cofre de Perote, 

Cuchumatanes, Doi Inthanon, Malinche, mycetozoans, Talamanca. 

 

Introduction 

The myxomycetes (plasmodial slime molds or myxogastrids) comprise a 

monophyletic group of amoebozoans (see Pawlowski and Burki 2009) that have the 

capacity to produce fruiting bodies during the reproductive stage of their life cycle 

(Martin and Alexopoulos 1969). These microorganisms have been collected in most 

terrestrial ecosystems (Stephenson 2003). Although myxomycetes have been known 

since the middle of the 17th century (see Stephenson et al. 2008a), most studies published 

on the group are taxonomic in nature and contain relatively little ecological information. 

In fact, it was not until the second half of the 20th century that studies directed 

specifically to myxomycete ecology began to be carried out (e.g., Blackwell and 

Gilbertson 1984, Venkataramani and Kalyanasundaram 1986, Stephenson 1988, 

Stephenson et al. 1993). 
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 One of the problems with our knowledge of myxomycete ecology is that the 

information currently available does not seem to provide enough evidence to properly 

develop and test hypotheses relating to the distribution of myxomycetes across the planet. 

This is based on the fact that the majority of ecological studies have been carried out in 

the temperate forests of the northern hemisphere (Stephenson et al. 2008a). In spite of 

this situation, during the past two decades there has been more studies of myxomycetes in 

previously underrepresented areas of the world, and this has already generated valuable 

information for some of these poorly known areas (e.g., Stephenson et al. 1992, Tran et 

al. 2006, Nderitu et al. 2009). In fact, very recent studies (e.g., Novozhilov and Schnittler 

2008, Estrada-Torres et al. 2009) of myxomycetes in several underrepresented 

ecosystems have contributed a body of new information on a number of important 

ecological relationships that had not been observed previously. 

 For the New World tropics (or Neotropics), most ecological research is fairly 

recent. According to Lado and Wrigley de Basanta (2008), approximately 53% of 

published papers on Neotropical myxomycetes have been produced since the appearance 

of the Neotropical monograph by Marie Farr (Farr 1976). The majority of these studies 

have centered their efforts on myxomycetes in low- and mid-elevation areas. This has 

generated a somewhat biased view of the distribution and ecology of myxomycetes in the 

Neotropics, since some macro- and microhabitats are underrepresented as an artifact of 

this restricted sampling. In spite of that, recent efforts have been made to alleviate this 

problem and studies of higher elevation areas in the Neotropics have also been carried out 

(e.g., Schnittler et al. 2002, Rodríguez-Palma et al. 2005, Rojas and Stephenson 2007). 
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 Most comparative studies of Neotropical myxomycetes have considered species 

assemblages occurring in different forest types within a single country (e.g., Novozhilov 

et al. 2000, Schnittler and Stephenson 2000) or those associated with particular 

microhabitats or belonging to certain taxonomic groups (e.g., Schnittler and Stephenson 

2002, Rojas et al. 2008). As such, a more comprehensive analysis of the ecology of 

myxomycete assemblages in the Neotropical region is possible only when there are more 

baseline information, especially for understudied forests and other vegetation types that 

occupy high-elevation areas in the Neotropics. 

 For these areas, the different taxonomic composition and structure of the forest 

might influence assemblages of myxomycetes in different ways. For example, previous 

studies have shown that some myxomycete species seem to be very substrate specific 

(e.g., Stephenson et al 2008b, Wrigley de Basanta et al. 2008) or largely influenced by 

environmental factors (e.g., Rojas and Stephenson 2007). This specificity is likely to have 

an effect on the macroecological characteristics of different assemblages. However, these 

types of comparative studies are scarce; and for the high-elevation areas of the 

Neotropical region empirical data is practically non-existent. Such type of information 

gaps partially explain the lack of clarity in the distribution pattern for most myxomycete 

species, which in most cases remains still unclear. 

 For those reasons, this project was designed with the idea of providing basic 

information on myxomycete assemblages in poorly known high-elevation areas of the 

northern Neotropics. The overall objectives of the project were (1) to study 

macroecological aspects of myxomycete assemblages in these areas and (2) to use 

modern ecological methodology to generate comparative baseline data for this region of 
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the world. Such an approach offers both the opportunity to generate basic information for 

these understudied areas as well as the flexibility of applying additional types of 

ecological analysis in the context of future projects. 

 

Materials and methods 

 This investigation was carried out entirely during the period of 2006 to 2009. For 

practical purposes, the morphological concept of species was used for species 

identification and names of species follow the taxonomic treatment provided by Lado 

(2005-2010). However, a more complete evaluation of the species present in the study 

areas is the subject of a separate paper due to the biogeographical implications that fall 

outside of the scope designed for this paper. 

 

Study areas 

 A series of eight high-elevation study areas was selected for this investigation. Six 

of these are located in the northern Neotropics, one in North America and one in 

southeastern Asia. For the Neotropical region, two study sites were established in each of 

the six study areas, whereas only one study site was established in North America and 

Asia. Each study site contained two collecting plots approximately 0.1 ha in size. 

Consequently, a total of 28 different plots in 14 study sites were surveyed to obtain the 

data generated in this investigation.  

 The North American study area (Area 1) investigated was Andrews Bald 

(hereafter referred to as Andrews Bald; with collecting plots located at 35°32' N and 

83°29' W, 1750 meter above sea level – m asl –). This area is located in the highlands of 
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the Great Smoky Mountains National Park, approximately 2.5 kilometers south of 

Clingmans Dome, in Swain County, North Carolina in the United States. As a typical 

“bald”, the vegetation in this open area is dominated by grasses, sedges and forbs, with 

Abies fraseri (Pursh) Poir. dominant in the surrounding forest. In this area, only the open 

locations were sampled. The second study area (Area 2) investigated is located in 

Southeast Asia on Doi Inthanon (Doi Inthanon, collecting plots located between 18°31'–

18°33' N and 98°28'– 98°31' E, between 1400–1700 m asl). This study site is located in 

the province of Chiang Mai, Thailand, on Doi Inthanon, which is the highest mountain in 

the country (2565 m asl). The forests of the highest portions of Doi Inthanon are 

dominated by Quercus eumorpha Kurz, although at lower elevations a mixed assemblage 

containing Pinus kesiya Royle ex Gordon is also found. In this study area, only forested 

study sites were used. 

 In the Neotropical region, study areas were selected in Mexico, Guatemala and 

Costa Rica. For the first country the study areas are (Area 3) Matlalcueyetl (Malinche, 

collecting plots located between 19˚14'–19˚16' N and 97˚59'–98˚02' W, 3100–4050 m 

asl), a volcano located in the Trans Mexican Volcanic Belt between the states of Puebla 

and Tlaxcala and (Area 4) Cofre de Perote (Perote, collecting plots located between 

19˚29'–19˚31' N and 97˚09'–97˚10' W, 3400–4200 m asl), a shield volcano located in the 

state of Veracruz. In these two study areas, most of the forests at lower elevations are 

dominated by Pinus hartwegii Lindl. and Abies religiosa (Kunth.) Schltdl. et Cham, 

whereas the highest elevations are dominated by the tussock grasses Festuca tolucensis 

Kunth and Calamagrostis tolucensis (Kunth) Trin. ex Steud. In both cases, study sites 

were established in both forested and non-forested (high-elevation grasslands) locations. 
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 The study areas selected in Guatemala are (Area 5) Llanos de San Miguel 

(Llanos, collecting plots located at 15˚30' N and 91˚29' W, 3400–3500 m asl) and (Area 

6) La Ventoza (Ventoza, collecting plots located at 15˚27' N and 91˚32' W, 3400–3600 m 

asl). These two study areas are located on the Cuchumanates Plateau, which is within the 

Department of Huehuetenango in the northwestern section of the country. As with the 

case for Mexico, study sites in these areas were established on the basis of plant 

dominance. Both forested sites dominated by Juniperus standleyi Steyerm. or Pinus 

hartwegii Lindl. and non-forested sites dominated by the tussock grass Agrostis 

tolucensis Kunth or Agave hurteri Trel. were sampled. 

 The southernmost study areas are located on the Talamanca Range in south-

central Costa Rica. These are (Area 7) Cerro Buenavista or Cerro de la Muerte (Cerro, 

collecting plots located at 9˚33' N and 83˚44'–83˚45' W, 3150–3450 m asl) and (Area 8) 

Macizo del Chirripó (Chirripo, collecting plots located between 9˚26'–9˚27' N and 

83˚29'–83˚31' W, 3150–3500 m asl). These two study areas are located within the 

province of San José and have characteristic Quercus L. dominated forests below the tree 

line and treeless areas dominated by the dwarf bamboo Chusquea subtessellata Hitch. at 

the highest elevations. Study sites were established in both forested and non-forested 

areas. 

 

Experimental design 

 In order to obtain representative records of myxomycetes from the study areas 

being surveyed, collecting trips were made during the summers of 2006 and 2007. On 

each visit, 16 samples of dead plant material were collected directly from each one of the 
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plots. However, for the study area in southeastern Asia, this same number of samples was 

collected only once in early 2008. 

 A total of 864 samples of dead plant material were collected during the entire 

study. Four samples of sorted material that correspond to ground litter (GL), aerial litter 

(AL), twigs (TW) and bark (BA) were collected randomly from each plot during each 

visit. As considered herein, the term ground litter is used to refer to leaves and non-

woody plant material present on the forest floor, aerial litter is defined as decomposing 

plant material that occurred above the ground and remained attached to the aerial portions 

of living plants before being collected, twigs are small decomposing woody branches 

present on the forest floor and bark refers to the periderm of mature living trees. 

Each sample was used to prepare a series of three moist chamber cultures in the 

manner described by Stephenson and Stempen (1994). In total, 2592 moist chamber 

cultures were prepared during the entire study. Dead plant material from each sample was 

placed in a Petri dish lined with filter paper; pH-neutral water was added to the dish and 

the plant material soaked for approximately 24 hours, after which substrate pH was 

measured and excess water was poured off. All cultures were systematically observed on 

a weekly basis for approximately ten consecutive weeks. 

When fruiting bodies were observed, these were removed from the moist chamber 

culture and carefully glued to paper trays set in small pasteboard boxes. All specimens 

curated in this manner were identified and deposited in the herbarium of the University of 

Arkansas (UARK) for future reference. The identification of all specimens took place at 

the Laboratory for Mycetozoan Research of the University of Arkansas during the period 

2007-2009. In addition, a database of records was compiled and used for analysis.  
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Soil samples 

 In addition to the plant material collected for moist chamber cultures, a series of 

soil samples was collected from study areas in the Neotropics to determine soil chemical 

characteristics and to examine the evidence for possible correlations with various 

ecological parameters of the myxomycete assemblage present in those study areas. Soil 

samples were sent to Brookside Laboratories Inc. (New Knoxville, Ohio) for analysis of 

levels of macronutrients and trace elements, organic matter, total exchange capacity, pH 

and soluble sulfur.  

 

Data analysis 

 All collections of myxomycetes were assigned to the substrate sample from which 

they were recovered and not simply to the moist chamber culture in which they appeared. 

The completeness of the survey for the methodology used was calculated by first 

obtaining the maximum number of species to be expected for each of the study sites 

using the prediction platform and the multinomial model in the program SPADE (Chao 

and Shen 2003). For this, the values for the abundance-based coverage estimator (ACE) 

were used as recommended by Chao et al. (2006). The relationship between the observed 

and expected numbers of species for each of the study sites was calculated and 

considered as the degree of completeness. 

An analysis of alpha and beta diversity was also carried out on each dataset. For 

this, the Shannon, Simpson and Fisher indices of diversity were calculated with SPADE 

for each study areas using the bias-corrected maximum likelihood estimator, the 
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maximum likelihood estimator and the classic formula of each index, respectively. The 

calculation of alpha diversity was performed using different indices to avoid 

interpretation problems that commonly appear when only one estimator is used. 

According to Magurran (2004), even though the Shannon index is very popular in 

biological research, its interpretation is more complicated than most biologists assume 

due the variable effect of addition of species on the resulting value in most 

circumstances. In contrast, the Simpson and Fisher indices are more intuitive; provide a 

better calculation for small sample sizes and help with the interpretation of the former. In 

a same manner as described for the previous calculation of alpha diversity, the taxonomic 

diversity index value sensu Stephenson et al. (1993) was also calculated for each study 

areas. This estimator simply reflects the relationship between the number of species and 

genera in a given dataset, but this provides important information on the intrageneric 

diversity of myxomycete assemblages. As a complement to the latter calculations, both 

the values for the Sørensen coefficient of community similarity (= Sørensen quantitative 

index) and the Bray-Curtis distance measure were estimated for all combinations of study 

areas in order to evaluate the degree of similarity among them. For the latter, the classic 

formula for the Sørensen similarity index (Sørensen 1948) was used. These two 

measurements of similarity were used for their slightly different formulation and 

potential interpretation. The coefficient of community similarity index takes into 

consideration the relative abundance of species in the calculation and ranges from 0 when 

assemblages are totally different to 1 when the two assemblages are the same. On the 

other hand, the distance measure for species assemblages calculated using the classic 

Bray-Curtis index is based on presence/absence data only and ranges from 0 when 
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assemblages are the same (no distance) to 1 when they have opposite presence/absence 

patterns (maximum distance). 

 In addition to these analyses, several other aspects of the ecology of myxomycetes 

were also examined. Possible relationships between species richness, species diversity 

and taxonomic diversity with sampling period, latitude, substrate type, substrate pH and 

soil chemical characteristics were evaluated using either analysis of variance or linear 

regression analysis, depending on the parameter characteristics of the data subset. In 

those instances in which analysis of variance revealed significant differences, post-hoc 

Tukey tests were carried out to evaluate the direction of the distribution. When linear 

regressions were carried out, a posterior analysis of variance testing the probability of the 

regression occurring as a result of random events was also done. All of these tests were 

performed using the statistical package JPM, version 8.0, and a rejection value of 0.05 for 

null hypotheses. 

The particular relationship between myxomycetes and the substrate upon which 

they fruited in the laboratory was more carefully evaluated for the most abundant species 

only. This is due the fact that a number of recent studies have shown that particular 

species of myxomycetes seems to be highly substrate-specific. For this analysis, a 

categorization of the species was carried out on the original dataset on the basis of their 

relative abundance following a modification from Stephenson et al. (1993). Those species 

with overall abundance values higher than 1.5% were considered as Abundant (A), those 

falling between 1.5-0.5% as Common (C), between 0.5-0.15% as Occasional (O) and 

those falling below 0.15% as Rare (R).  



209 
 

 Only those species falling in the abundant category were considered for the 

substrate analysis since the probability of obtaining statistical errors driving to wrong 

conclusions is increased when not well represented species are included. In a similar way 

as the previous evaluations, an Analysis of Variance and posterior Tukey tests were 

performed when necessary. The statistical program JMP was also used for this analysis. 

 

Multivariate analysis 

 In addition to the latter, a Principal Components Analysis (PCA) was performed 

with a series of macro- and microenvironmental parameters collected in order to evaluate 

the variation exhibited in the database generated. For this analysis, only those records 

corresponding to species considered as abundant (A) were used in a similar way as with 

the substrate specificity evaluation. The environmental parameters included correspond 

to: mean annual temperature and precipitation of the study areas (provided by 

meteorological institutes in the countries involved), elevation, pH of the substrate, host 

plant, habitat type and substrate type.  

 For the last three mentioned parameters, an ordination of categories was carried 

out prior to the analysis in a similar way as described by Rojas et al. (2008). The values 

for pH were transformed to concentration of H+ ions in solution to avoid the inclusion of 

logarithm-based scales in the evaluation. The PCA analysis was performed after re-

scaling all variables on PC-ORD, version 5.30 (McCune and Mefford 2006). 
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Results 

 A total of 1377 myxomycete records representing 89 different species were 

obtained from all of the moist chamber cultures prepared during the course of the study. 

Forty-four percent of the records were from Mexico, 29% from Guatemala, 11% from the 

United States, 10% from Costa Rica and 6% from Thailand. For the Neotropical 

countries, moist chamber cultures showed a strong but not statistically significant 

tendency to yield fewer myxomycetes as latitude decreased (R2 = 0.98, F(1,1) = 66.18, P 

= 0.07). The single most frequently recovered species was Didymium difforme, followed 

closely by Stemonitis fusca and Arcyria cinerea (Table 1).  

The numbers of positive moist chamber cultures were essentially the same for the 

data sets obtained for the United States and Mexico (mean = 96.8 and 96.5, standard 

deviation = 4.41 and 2.77, respectively), but both were significantly higher than the 

values calculated for the sets obtained from Guatemala, Thailand and Costa Rica (mean = 

87.4, 78.1 and 64.8, standard deviation = 3.31, not calculated for replication absence and 

15.47, respectively; t(8) = 2.77, P < 0.05, r = 0.67). This pattern did not change when 

equal efforts were compared by excluding the data sets from the United States and 

Thailand from the analysis (t(5) = 3.18, P < 0.05, r = 0.81). 

 A different pattern was observed when the numbers of species found in each the 

study areas were compared (Fig. 1). There were significant differences in the number of 

species found among study areas (F(2,3) = 12.3, P = 0.035, R2 = 0.82). The values 

obtained for Mexico (mean = 50.0, standard deviation = 8.48) were higher (Tukey P  < 

0.05) than those found in Guatemala (mean = 29.0, standard deviation = 5.65), the 

United States (mean = 23.5, standard deviation = 0.70), Thailand (20) and Costa Rica 
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(mean = 19.0, standard deviation = 4.24). There were no differences in the study areas 

when sampling periods are compared (F(1,34) = 2,75, P = 0.11, R2 = 0.07) or when the 

overall distribution of records for the different substrates among the study areas is 

compared (F(3,32)= 1.72, P = 0.18, R2 = 0.13). The latter pattern is still evident even 

when the data sets from the United States and Thailand are excluded from the analysis 

(F(1,22) = 2,24, P = 0.15, R2 = 0.09 and F(2,20)= 1.68, P = 0.20, R2 = 0.20, respectively). 

In fact, when the effects of both sampling period and substrate or substrate and country 

on the number of myxomycetes found are evaluated in a combined model (see Table 2), 

no significant differences were found for either one (F(7,28) = 1.19, P = 0.33, R2 =0.23 

and F(19,16) = 1,96, P = 0.08, R2 = 0.69, respectively). 

 Both the highest species richness and diversity were recorded for the forested area 

of Perote in Mexico. However, the forests of La Malinche were characterized by the 

highest value for taxonomic diversity (Table 1). When non-forested areas are considered, 

no statistical differences were found for the Shannon (F(3,3)= 0.65, P = 0.63, R2 = 0.39), 

Simpson (F(3,3)= 0.05, P = 0.97, R2 = 0.05) or Fisher (F(3,3)= 0.88, P = 0.53, R2 = 0.46) 

indices of diversity among the different study areas. Moreover, the taxonomic diversity 

index does not show significant differences among the study areas (F(3,3) = 0.87, P = 

0.54, R2 = 0.46). For forested areas statistical differences among the study areas were 

observed when the taxonomic diversity index was evaluated (F(3,3)= 29.65, P = 0.009, 

R
2 = 0.97), but differences are not apparent when the Shannon (F(3,3) = 5.15, P = 0.10, 

R
2 = 0.83), Simpson (F(3,3) = 0.57, P = 0.67, R2 = 0.36) or Fisher (F(3,3) = 4.61, P = 

0.12, R2 = 0.82) indices of diversity are evaluated. These differences seem to be
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Figure 1. Comparison of the number of positive moist chamber cultures and number of 

species obtained on each one of the countries evaluated arranged by sampling period. 
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associated with the higher value for La Malinche (Tukey P < 0.05 ) when compared to 

the other study areas and are even more evident when Doi Inthanon is excluded from the 

analysis (Tukey P < 0.005). For the entire dataset, no differences in species diversity and 

taxonomic diversity between forested and non-forested sites were apparent (for Shannon 

index F(1,5) = 1.05, P = 0.35, R2 = 0.17; others not shown; for taxonomic diversity index 

F (1,5) = 0.0006, P = 0.98, R2 = 0.0001). 

 When species richness values were evaluated, significant differences were 

apparent both among non-forested study sites (F(3,3) = 13.93, P = 0.02, R2 = 0.93) and 

forested study sites (F(3,3) = 140.61, P < 0.001, R2 = 0.99) in study areas across the 

entire region of study. This pattern is maintained when Doi Inthanon is excluded from the 

analysis (F(2,3) = 206.18, P < 0.001, R2 = 0.99). It would seem noteworthy that the 

distributions of values in these analyses seem to show different patterns. For non-forested 

sites, both Cerro and Chirripo in Costa Rica show significantly lower values (Tukey P < 

0.05), whereas in forested sites both Perote and Maliche show significantly higher values 

(Tukey P < 0.005). When Doi Inthanon is not included in the analysis, the latter pattern is 

maintained (Tukey P < 0.005). For the complete dataset, differences in species richness 

between forested and non-forested sites appear to be absent (F(1,5) = 4.32, P = 0.09, R2 = 

0.46). The correlations between species diversity, species richness and taxonomic 

diversity index in relation to latitude for all study areas across the Americas are presented 

in Fig 2. 

Both the number of records and the species richness recorded in each study area 

showed a weak but significant correlation with average pH (R2=0.53; F (1,12) = 13.53, P 

= 0.003 
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Table 2. Number of species of myxomycetes recorded in each one of the countries, 

arranged by sampling period and the substrate from which they were recovered. The 

order of countries reflects the abundance of myxomycetes from highest (top) to lowest 

(bottom). 

 

Country Sampling period Substrates 

  GL AL T B 

Mexico 2006 26 32 24 17 

 2007 15 13 13 9 

Guatemala 2006 17 25 13 10 

 2007 15 13 13 9 

United States 2006 8 7 10 5 

 2007 9 9 11 8 

Costa Rica 2006 4 10 8 4 

 2007 3 20 4 9 

Thailand 2008 4 11 7 6 

 

 

 

 

 

 



218 
 

and R2=0.51; F (1,12) = 12.50, P = 0.004, respectively) and a moderate correlation with 

maximum pH (R2 = 0.72; F (1,12) = 31.59, P = 0.0001 and R2 = 0.66; F (1,12) = 23.82, P 

= 0.0004). Only species diversity using the Shannon index values showed a weak 

correlation with minimum pH (R2=0.30; F (1,12)=5.43, P = 0.03). In contrast, none of 

these parameters seemed to be associated with soil conditions, except for the diversity 

index values, which show a moderately weak significant negative correlation with the 

level of sodium (in ppm, R2 = -0.62, F (1, 10)=16.90, P = 0.002) and the taxonomic 

diversity index, which is weakly correlated with the level of phosphorus (in ppm, 

R
2=0.54, F against random (1,10)= 12.18, P = 0.005). The relationship between the 

organic content and the total exchange capacity of the soil with the species richness 

recorded in each of the study areas in the Neotropical region was not significant (F(3,8) = 

1.15, P = 0.38, R2 = 0.30), as can be noted in Figure 3. A similar result was obtained for 

the relationship of these two factors and the total number of records (F(3,8) = 1.03, P = 

0.42, R2 = 0.28) or the diversity value (for the Shannon index, F(3,8) = 1.07, P = 0.41, R2 

= 0.28) obtained for the study areas. 

The values obtained for the Sørensen coefficient of community similarity index 

and the Bray-Curtis distance measure are normally distributed and can be observed in 

Table 3. The highest value and thus the greatest similarity for the first estimator was 

obtained for the Chirripo forested-non forested comparison, but high values were also 

obtained for the Llanos forested-Ventoza forested and non-forested comparisons as well 

as for the pairwise comparison of Perote forested and all other Mexican study areas. In a 

similar fashion, the lowest value for the Bray-Curtis distance measure, and thus greatest 

similarity, was found to exist for the Perote forested-non forested comparison, whereas 
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Figure 2. Comparisons of the regression analyses for species diversity, species richness 

and taxonomic diversity index in relation to latitude for the study areas in the Americas. 

Filled circles and continuous lines represent non-forested study sites, whereas open 

circles and dotted lines represent forested ones. Values for the Pearson Product Moment 

coefficient are given in each case. 
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other low values existed between Perote forested and Perote non-forested and the other 

Mexican study areas. The Llanos forested-Ventoza forested and non-forested study areas 

also showed a low value for the Bray-Curtis distance measure. Both the Sørensen and the 

Bray-Curtis values of all study areas in the Neotropical region showed moderate but 

significant correlations with latitude when paired with Andrews Bald (Fig. 4, R2 = 0.72, 

F(1,10) = 26.44 P = 0.0004 and R2 = -0.71, F(1,10) = 24.99 P = 0.0005, respectively). 

The same pattern for both the Sørensen and the Bray-Curtis values was evident when 

only the non-forested areas are taken in consideration for the analysis. However, the 

correlation was higher than in the previous analysis when the Sørensen coefficient was 

used (R2 = 0.83, F(1,4) = 20.76 P = 0.01) but similar when the Bray-Curtis distance 

measure was considered (R2 = -0.71, F(1,4) = 10.01 P = 0.03). 

The Principal Component Analysis performed on the dataset of records and 

environmental parameters revealed that approximately 70% of the variation is explained 

by elevation, substrate pH and habitat type, the first three components in order of 

importance. The most frequently encountered species are widely dispersed in the 

multidimensional space formed by the environmental parameters but seem to be arranged 

into ecological groups. In Figure 5, group A is composed by two species primarily found 

in forested areas with relatively high pH values, group B is formed by two species 

encountered in non-forested areas with intermediate pH values and group C is composed 

by species primarily found in non-forested areas with relatively low pH values. An 

analysis of variance on the first three components did not show any significant 

differences among them. 
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Figure 3. Illustration of the non-significant relation between soil richness (as the 

correlation between TEC and organic matter) and species richness in the study areas. 
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Figure 4. Relation between the beta diversity estimators used and latitude for the study 

areas in the Neotropics in comparison with Andrews Bald. Filled circles and continuous 

line represent the Sørensen coefficient index, whereas open circles and dotted line 

represent the Bray-Curtis distance. 
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Discussion  

 The total number of myxomycete records and species obtained in this 

investigation represent an overview of the myxomycete biota of high-elevation areas of 

the northern Neotropics. With the exception of Didymium bahiense, the most frequently 

encountered myxomycetes in the present study are also known from most countries in the 

Neotropics (see Lado and Wrigley de Basanta 2008). The most abundant species 

(Didymium difforme) was not recovered from any of the study areas in Costa Rica, where 

collections of this species have been made in the past. Field observations in these same 

mountains have indicated that D. difforme frequently grows on living plants such as 

Cirsium subcoriaceum (Less.) Petr. and Bomarea costaricensis Kranzlin. These two 

plants tend to occur in areas with particular edaphic conditions that are not characteristic 

of the two study areas used in the present investigation (see Chaverri 2008), an 

observation that might account for the apparent absence of D. difforme. The two next 

most common myxomycete species in the study areas, Stemonitis fusca and Arcyria 

cinerea, are among the most frequently encountered species in myxomycete surveys 

throughout the world. For this reason, they have been referred to as “cosmopolitan” in the 

past (e.g., Martin and Alexopoulos 1969). Whether or not they represent single biological 

entities that have a truly worldwide distribution is an issue that requires further 

investigation. However, it did not seem surprising to find these two species in the study 

areas evaluated in the present investigation, especially considering that the substrates 

upon which they typically occur are among those sampled. 

 For the three Neotropical countries evaluated, the frequency of myxomycete 

occurrence in moist chamber cultures decreased linearly at an average rate of almost 8%  
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Figure 5. Principal Component Analysis ordination of the ten most frequently 

encountered myxomycetes in the study areas and apparent grouping of species based on 

the first and second most important environmental parameters. For abbreviations of 

species names see Table 1. 
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for each degree of latitude from Mexico to Costa Rica when only data from the three 

Central American study areas are considered. If the plant assemblages in these areas were 

the primary factor accounting for this pattern, then one would expect a similar degree of 

dissimilarity among the forests that occur along this latitudinal gradient. This does not 

seem to be the case. The taxonomic composition of high-elevation forests in Guatemala is 

more closely related to those in Mexico rather than to those in Costa Rica (Islebe and 

Kappelle 1994). It is possible that macroclimatic factors in the study areas play an 

important role in causing this pattern. Although under laboratory situations all moist 

chamber cultures were maintained at similar environmental conditions, substrates in the 

field are subjected to a number of environmental factors that differ among areas.  

For example, both temperature and precipitation data obtained from different 

meteorological institutes in the countries studied differ among study areas. However, 

only precipitation shows a significant increment from Mexico to Costa Rica (not shown 

before, F(2,57) = 16.25, P < 0.0001, R2 = 0.35) and by extension a high correlation with 

the percentage of positive moist chamber cultures along the latitudinal gradient (not 

shown before R2 = 0.99, F(1,1) = 110.59, P = 0.06). In these mountain areas, the 

combined effect of rainfall and steep slopes probably accounts for an appreciable degree 

of “spore washing” from the different substrates reached by myxomycete spores, which 

might indirectly influence the patterns of higher occurrence of myxomycetes and the 

percentage of positive moist chamber cultures observed. 

 For the number of species observed at each different latitude, some other factors 

such as the taxa present and their particular ecology should be taken in consideration. 

However, since very little information on the ecology of myxomycete species is 
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supported by empirical data obtained using standard methodologies, the interpretation of 

this type of result is highly speculative. In the present study, one factor that should not be 

ignored is the unequal sampling effort for the two non-Neotropical study areas. Although 

the results obtained for these study areas cannot be properly compared with those from 

the study areas in the Neotropical region, the North American study area, which 

corresponds to a non-forested site, shows a greater species richness than the combined 

study sites for both study areas in Costa Rica. In a previous study in this same country, 

Schnittler and Stephenson (2000) reported that the total number of species obtained in 

moist chamber cultures for bark and litter were comparable for Costa Rica and temperate 

forests of Virginia in the United States. Our results do not conform to those from this 

previous study, but it is important to take into account the effect of major differences in 

the forest type from which material for laboratory study was collected, which were not 

very similar for these two studies.  

Recent data indicates that the relative abundance of some species differs among 

forest types in Costa Rica (Rojas et al. 2009), which very likely has an impact on the 

density distribution of air-borne spores for different myxomycete taxa in different parts of 

the country. If this is the case, species that are better represented in a given forest type 

would have a higher probability of reaching suitable substrates within that same forest 

type than to be dispersed successfully to other forest types. Therefore, even though both 

studies may be used for comparisons, it is clear that the species composition and habitat 

characteristics of both assemblages are very different, which potentially explains the 

differences. 
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 The number of species of myxomycetes recorded from Doi Inthanon was 

significantly lower (Table 1) than the number of species found at a similar latitude in 

Mexico. The forests in both regions of the world are seasonal and have similar dominant 

trees (Quercus-Pinus assemblages). However, the structure of the forest is very different 

for the two study areas. For Doi Inthanon, the high tree diversity (see Khamyong et al. 

2004) results in a complex multilayered forest with a well-developed understory and 

subcanopy, whereas the forests of La Malinche and Perote are relatively simple in terms 

of their vertical structure, due the limitation of light reaching the lower parts of the forest 

(see Villers-Ruiz et al. 2006).  

Also, both the precipitation and temperature regimes of the two regions are 

different. At Doi Inthanon (annual average temperature around 20˚C) temperatures are 

about three times higher than for either La Malinche or Perote, and the latter two areas 

receive between four and five times less precipitation than the study area in Thailand 

(around 160 mm rain/year for the last one). As mentioned earlier, it seems likely that 

higher levels of precipitation have an effect upon the colonization of substrates by 

myxomycetes, which would have to be considered along with the obvious detrimental 

effect of rain drops on the fragile myxomycete fruiting bodies. For instance, in the high-

elevation oak forests of Costa Rica, precipitation levels seem to have an inverse 

relationship with the number of fruiting bodies and species of myxomycetes present at a 

given time (Rojas and Stephenson 2007), with the complex vertical structure of the Costa 

Rican forests also representing a factor of some (albeit undetermined) importance. The 

forest at Doi Inthanon should retain more water from evapotranspiration than the forests 

of La Malinche and Perote, which are also more exposed to the influence of the trade 
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winds. Presumably, the latter would serve to maintain higher levels of humidity within 

the forest in the first study area, which may have an effect on the number of 

myxoamoebae that begin the sexual cycle of myxomycete and ultimately produce fruiting 

bodies, as has been previously reported (see Stephenson and Stempen 1994). 

 No significant differences were found for both sampling period and overall 

distribution of substrates among the various study areas. This seems to be another 

indication that macroclimatic differences are an important driving force accounting for 

myxomycete distributional patterns at the larger scale in the region of study. Although the 

taxonomic composition of the plant assemblages of high-elevation areas in Mexico and 

Costa Rica are very different, myxomycetes seem to show similar patterns of occurrence 

on the substrates that were examined. This would not mean that the macroecological 

patterns of myxomycete assemblages for these two areas do not differ at all. The diversity 

indicators evaluated in this study showed that the Mexican study areas are richer and 

more taxonomically diverse than the more southern areas in the Neotropics. These 

differences seem to be associated more with the forested sites than with the non-forested 

sites, providing support to the idea that forest structure may account under certain 

conditions for the differences that exist between areas. The lack of differences at the 

diversity level for these study areas provides evidence at a different level. 

 It is thought that more evenly distributed assemblages of species are composed of 

taxa with similar competitive abilities. This concept has generated a number of 

theoretical models that attempt to explain the differences that exist among biological 

systems (see Magurran 2004). However, a common idea is that diversity is associated 

with both richness and relative abundance of the taxonomic units involved. In this way, 
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areas characterized by differing species richness but having similar diversity support 

assemblages of species with similar abilities that are occupying the niches available in the 

system. This is usually associated with a generalist pattern of resource utilization. For 

myxomycetes, even though it has been observed that related organisms seem to show 

specialized niches (e.g., Rojas et al. 2008), it has also been observed that levels of niche 

overlap are high for particular species in some assemblages (e.g., Stephenson et al. 1988). 

For the high-elevation areas of Costa Rica, Rojas and Stephenson (2007) observed high 

overlap values in most of the species comparisons that they considered when habitat use 

niches were studied. 

 If this high niche overlap is a generalized pattern in resource-limited systems such 

as the high-elevation areas in the Neotropics considered in the present study, then one 

would expect the different assemblages in the region studied to show a similar pattern of 

diversity, independent of their species richness. The data obtained herein may provide 

some evidence for the latter pattern, suggesting that the assemblages of myxomycetes in 

these areas are predominantly dominated by species that are likely to be present 

throughout the entire geographical area of study. Most of the frequently encountered 

species recorded from the study area in the Neotropics were also present at Andrews Bald 

and Doi Inthanon. Even though these species can represent taxa with widespread 

distributions and narrow niches, this does not seem to be the case based on previous 

ecological data on other tropical groups (see Rojas et al. 2008). 

 As mentioned earlier, macroclimatic factors seem to influence the distributional 

patterns of myxomycetes in the region of study. However, microclimatic factors such as 

substrate pH and soil chemical characteristics do not seem to be as important in 
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explaining the occurrence of myxomycetes (as a group) in the study areas. Both average 

and maximum pH showed a correlative trend with the number of records and species 

richness, suggesting that high pH levels might offer more suitable conditions for 

myxomycetes. The significant correlation of species diversity and minimum pH appears 

to suggest that beyond a certain point, acidity becomes a limiting factor for the 

occurrence of particular species, perhaps relating to the fact that a particular food 

resource is no longer available. Similar observations have been reported previously in the 

literature (e.g., Feest and Madelin 1988), also suggesting that simple physiological 

tolerance of myxomycete species to low acidity conditions does not seem to be the reason 

for this type of pattern (see Stephenson and Landolt 1996). 

It is perhaps surprising that the majority of the chemical characteristics of the soil 

did not show any evidence of a relationship with the indicators analyzed for 

myxomycetes. Soil characteristics would indirectly influence the occurrence of 

myxomycete fruiting bodies, since these actually occur on plant debris and not directly on 

the ground. However, one would suspect that better soil conditions (i.e., higher levels of 

macronutrients) would have an impact on the plant assemblages in the study areas, which 

would likely affect the myxomycetes occurring on the plant debris present. Data reported 

by Stephenson and Landolt (1996) suggest that higher levels of calcium, magnesium and 

phosphorus might be correlated with higher species richness and possibly diversity. In the 

present study, only diversity — both at the ecological and taxonomic level — showed 

some relationship with chemical characteristics of the soil. However, only a moderately 

weak negative correlation with sodium was observed. This is interesting, since high 

levels of sodium in soils are usually associated with poorly drained soils with low 
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permeability (Marx et al. 1996) and are known to affect negatively particular species of 

bacteria (e.g., Gannon et al. 1991). 

The highest levels of sodium were recorded for Chirripo (not shown), where the 

typical low-diversity paramo ecosystem occurs. In this area, dominated by the dwarf 

bamboo Chusquea, only some isolated trees occur (see Chaverri 2008). However, it 

seems that the low diversity of myxomycetes in this area is not the product of the 

Chusquea-dominated environment per se, but more of an indirect effect of the lack of a 

vertical forest structure in the treeless paramo. On the other hand, the weak correlation 

between the taxonomic diversity index and higher levels of phosphorus reflects that 

higher inputs of plant nutrients have a positive effect upon the production of plant 

structures (Mengel and Kirkby 2001). The availability of a higher number of plant 

structures increases by default the probability of myxomycetes to find more suitable 

microhabitats as expected. Obviously, this is not surprising. Also, the lack of a 

correlation between the levels of organic matter and the total exchange capacity (total 

cations) of the soil and any of the diversity indicators analyzed suggests that the 

relationship between soil richness and myxomycete diversity is not direct. As indicated 

earlier, it seems that the myxomycete indicators are only showing in an indirect way the 

effects of soil conditions on the plant assemblages and forest structure in the study areas. 

The apparent patterns explained earlier seem to be somehow contradictory with 

the PCA analysis performed on the most frequently encountered species. For all study 

areas, the three most important variables do not show any significant differences; 

whereas in this analysis they appear to be explaining a large percentage of the variation 

exhibited in the dataset. This result is not contradictory and actually seems to be an 
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indication that the environmental parameters evaluated might not have a strong effect on 

the occurrence of the myxomycetes in the study areas when they are considered as a 

group, but are reflected when particular species are evaluated. A similar pattern was 

recently observed for the species assemblages present in different forest types in Costa 

Rica (see Rojas et al. 2009). This observation seems to provide an indication of the level 

of resolution at which ecological patterns for different taxonomic levels can be observed. 

Such pattern would also indicate that the dominant species of myxomycetes in the high-

elevation areas evaluated may show individual environmental preferences in certain 

conditions, an aspect to evaluate in future projects.  

The grouping of species observed in the PCA ordination may provide evidence 

for the latter type of ecological strategies that some myxomycete species are showing. 

For example, the two species in group A are characterized by long stalks and evanescent 

peridia; whereas the two species in group B show stalks of intermediate length and both 

dehiscent and non dehiscent peridia, and those in group C are sessile (including all 

records of Physarum compressum observed in this study) to short stalked and show 

primarily thick peridia. The combination of absence of stalk and thick peridium seems to 

be a very good adaptation for resistance in environments with harsh environmental 

conditions (see Estrada-Torres et al. 2009), which would easily explain the higher 

frequency of this form in the environmentally tougher non-forested areas. In forested 

conditions there seems to be a change in resource allocation and forms tend to have 

longer stalks and weaker peridia, which would presumably increase the potential capacity 

of the species in these areas to disperse and colonize the preferred milder 

microenvironments. In any case, our data is only suggestive and not conclusive in this 
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sense and experimental testing would definitely provide a better understanding of this 

phenomenon. 

Finally, higher levels of similarity between study sites on the same mountain or 

study areas within the same country indicate the existence of regional species 

assemblages, suggesting that limitations on dispersal are not strong in these regions. Both 

the Sørensen index and the Bray-Curtis distance measure values for the different 

assemblage comparisons show a similar trend, even though the latter does not consider 

the relative abundance of the species. This similar pattern for both estimators may 

indicate that colonization processes are relatively more important in structuring the 

species assemblage of myxomycetes in the study areas. As expected, species assemblages 

in the study areas of the Neotropical region showed a decreasing degree of similarity with 

increasing distance from Andrews Bald. The relative abundance of the species present 

seems to play a secondary but non negligible role in the structure of the assemblage. The 

similarity of myxomycete assemblages when compared to Andrews Bald was slightly 

more significant when species abundance was included in the calculation. This similarity 

seems to be another indication that macroclimatic factors such as the precipitation of the 

areas discussed earlier, influence the abundance patterns of the myxomycetes present. 

In summary, the data provided herein seem to indicate that myxomycetes in high-

elevation areas of the Neotropics are subjected to a number of processes that shape the 

composition of the assemblages of species present. Among those processes, our data 

suggest that macroclimatic factors are important and that the composition of plant species 

in these high-elevation forests might not be as important in constructing these 

assemblages as it is the structure of forest. An experimental approach is needed to further 
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evaluate the mentioned factors. However, a number of limitations in relation to 

myxomycete manipulation in laboratory conditions represent an obstacle for 

experimentation at the moment. 
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Chapter 7  

Biogeographical aspects of high-elevation myxomycete assemblages in the northern 

Neotropics 

 

Abstract: The biogeographical relationships of myxomycete assemblages around the 

world have been the subject of only a limited number of studies in the past. This study 

represented an effort to apply some of the relatively well-known biogeographical and 

ecological models to the observed structure of myxomycete assemblages, with emphasis 

on the northern Neotropical region. A series of 28 experimental plots located in 14 study 

sites within five different countries was surveyed during two consecutive years using a 

standard methodology that included both field collections and specimens obtained from 

moist chamber cultures. Results showed that myxomycetes in high-elevation areas of the 

northern Neotropics seem to have different levels of preference for macro- and 

microenvironments, varying degrees of niche breadth and overlap, and different patterns 

of species occurrence in comparable areas. In a similar manner, species assemblages 

along a latitudinal gradient that extends from Mexico to Costa Rica showed a decreasing 

level of similarity with an assemblage studied in the temperate forests of the eastern 

United Stated and were clearly distinct from an assemblage in Southeast Asia. The 

implication of these results is that myxomycete ecology in the study areas does not 

support neutral models of species distribution and appears to be better explained by 

niche-based models.  
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Introduction 

 The myxomycetes or myxogastrids comprise a group of ameboid protists 

(Pawlowski and Burki 2009) known to occur throughout the world in microhabitats such 

as soil, decaying wood, bark, soft decomposing plant parts and herbivore dung 

(Stephenson 2003). The life cycle of these organisms involves a number of stages, 

including the production of fruiting bodies containing spores and the development of a 

mobile multinucleate macroscopic form known as a plasmodium (see Martin and 

Alexopoulos 1969), that would seem to have a positive effect on the dispersal capabilities 

of the whatever species might be considered. However, empirical data from several 

previous studies show that a number of myxomycetes seem to exhibit distribution ranges 

that appear to be associated with macro- and microenvironmental characteristics of the 

habitats in which they occur (see Stephenson et al. 2007). 

Most of the studies on the group have been carried out in temperate forests of the 

northern Hemisphere (Stephenson 2003). However, an increasing number of 

investigations have taken place in recent years in other parts of the world (e.g., Tran et al. 

2008, Ndiritu et al. 2009). These recent studies have generated important information 

relating to myxomycete diversity and patterns of occurrence at different ecological scales. 

However, despite these recent efforts, most tropical areas remain understudied. Even 

those areas such as the Neotropics, in which most recent ecological studies of tropical 



243 
 

myxomycetes have been carried out thus far, continue to generate important information 

on the global distribution and occurrence of the group. 

The information generated in the context of the research directed towards tropical 

myxomycetes has contributed greatly to our understanding of the strategies utilized by 

these microorganisms in a number of ecological situations that are absent in temperate 

areas (e.g., Schnittler and Stephenson 2002, Wrigley de Basanta et al. 2008). Such studies 

have also been important in that they have investigated the different assemblages of 

myxomycetes in the tropical forests of Central and South America (see review by 

Stephenson et al. 2004b). However, in spite of this increasing research effort in the 

Neotropics, myxomycete assemblages associated with high-elevation areas have not been 

studied with the same intensity as low-elevation assemblages. For that reason, several 

recent studies (e.g., Schnittler et al. 2002, Rojas and Stephenson 2007) have been carried 

out in several mountainous areas of the Neotropics.  

Unfortunately, due the impact of anthropogenic factors on mountain forests 

around the world (see Bubb et al. 2004), from which most high-elevations areas of the 

Neotropics do not escape (Brown and Kappelle 2001), the myxomycetes occurring in 

these areas are threatened as much as other organisms. The very fragmentation of these 

high-elevation forests provides the opportunity of studying several ecological aspects of 

the biology of myxomycetes that have not been fully considered in previous studies. In 

fact, the study of these organisms in areas with a high susceptibility to future climate 

change scenarios has the potential of providing important information regarding both the 

organisms considered and the ecosystems studied. 
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Moreover, these same myxomycete assemblages in high-elevation areas of the 

Neotropics represent an excellent choice to revisit classic macroecological and 

biogeographical questions for which the available evidence is not yet conclusive. For 

instance, a large number of widely accepted patterns of species distribution have been 

proposed based upon information obtained for macroscopic organisms, but the focus on 

larger organisms has historically limited the contribution of less conspicuous groups to 

the study of such patterns (see Secretariat of the Convention on Biological Diversity 

2008). In contrast, modern ecological study has included the monitoring of organisms in 

space and time, the essence of biogeography (Cox and Moore 2000), as one of the 

priorities to understand how life on the earth responds to changing environments. As 

such, it is not surprising that the determination of species diversity, the key for 

biogeographical studies, has been recently considered one of the top 25 issues for science 

to address in the present century (Pennisi 2005). 

 In this context, the study described herein was designed with the main objective 

of providing baseline information on the biogeographical relationships of the 

myxomycete assemblages occurring in high-elevation areas of the northern Neotropics. 

The approach used was intended primarily to generate information that can be used in 

future studies, but it also provides information relating to the habitats studied, some of 

which might be changing rapidly. 

 

Materials and methods 

 The present study was carried out during the period of 2006-2009. For species 

identification, the morphological species concept was used, following the taxonomic 
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treatment of Lado (2005-2010). Country codes follow the two-letter format 

recommended in the ISO 3166-1. 

 

 Study areas 

 A series of eight study areas was selected for investigation of the assemblages of 

myxomycetes present. Six of these areas are located in the northern section of the 

Neotropical region, one in eastern North America and one in Southeast Asia. For the 

Neotropics, two study sites that correspond to forested (F) and non-forested zones (NF) 

were selected in all study areas. A non-forested area was selected in eastern North 

America and a forested area was selected in Southeast Asia. In all cases, two 

experimental plots with an area of approximately 0.1 ha were established. As a result of 

this effort, a total of 28 experimental plots located in 14 study sites were used for this 

investigation. 

The Neotropical areas are located in Mexico, Guatemala and Costa Rica. In the 

first country they correspond to (A) the Matlalcueyetl (=La Malinche) Volcano (hereafter 

abbreviated as MA, elevation 3100–4000 m), which is located between the states of 

Puebla and Tlaxcala and (B) the Cofre de Perote Volcano (PE, elevation 3400–4200 m) 

in the state of Veracruz. In Guatemala, the two study areas are located on the 

Cuchumatanes Plateau and correspond to (C) Llanos de San Miguel (LL, elevation 3400–

3500 m) and (D) La Ventoza (VE, elevation 3400–3600 m). In Costa Rica, the two study 

areas are part of the Talamanca Range and correspond to (E) Cerro Buenavista or Cerro 

de la Muerte (CE, 3150–3450 m) and (F) Macizo del Chirripó (CH, 3150–3500 m). The 

forests in all these areas are very different in terms of their taxonomic composition, being 
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dominated by Pinus and Abies in Mexico, Juniperus and Pinus in Guatemala and 

Quercus in Costa Rica. Non-forested zones in the study areas are dominated by the 

tussock grasses Festuca and Agrostis in Mexico and Guatemala and by the dwarf bamboo 

Chusquea in Costa Rica. 

The two external study areas correspond to (G) Andrews Bald (AB, elevation 

1750 m), a non-forested area dominated by grasses, sedges and forbs and located in a 

high-elevation area of the Great Smoky Mountain National Park in North Carolina, 

United States and (H) Doi Inthanon (DI, 1400–1700 m), the highest mountain in 

Thailand, located in the province of Chiang Mai. The forests in the latter case are 

dominated by Quercus at higher elevations and by a Quercus-Pinus mixture at lower 

elevations.  

 

Material studied 

In order to obtain a representative sample of myxomycetes for analysis, all study 

areas in the Americas were visited on two occasions during the summers of 2006 and 

2007. The study area corresponding to Doi Inthanon was visited only once during 

January of 2008. In all study areas a series of collections of 16 samples of material for 

laboratory study was obtained during each visit. Each collection consisted of four 

samples each of ground litter, aerial litter, twigs and bark collected randomly from each 

one of the experimental plots. As used herein, ground litter refers to dead plant material 

deposited on the forest floor and aerial litter corresponds to dead but still attached plant 

material that has not been in contact with the ground. 
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A total of 864 samples of material were collected for the entire study. Each 

sample was used to prepare three moist chamber cultures in the manner described by 

Stephenson and Stempen (1994), for a total of 2592 moist chamber cultures. In all cases, 

a small portion of the material for examination was placed in a standard size Petri dish 

previously lined with filter paper. After this, pH-neutral water was added until all the 

material was submerged in the liquid. The plate remained in this condition for 24 hours, 

after which excess of water was poured off. All moist chamber cultures were examined 

over a period of 10 weeks and the internal moisture of the plates was maintained by 

adding little amounts of water occasionally during the observation period. 

When fruiting bodies of myxomycetes were observed, they were extracted from 

the moist chamber culture and placed into small pasteboard boxes that were deposited in 

the mycological herbarium of the University of Arkansas (UARK) for future reference. 

Identification of the species represented by the specimens of myxomycetes took place 

between 2006 and 2009 at the Laboratory for Mycetozoan Research of the University of 

Arkansas. 

In addition to the moist chamber component, a series of field collections of 

myxomycetes was obtained from all study areas during each visit. For this, the 

opportunistic sampling protocol described by Cannon and Sutton (2004) was utilized. 

With this method, myxomycete fruiting bodies were searched for in each study area in a 

random fashion to minimize human errors and maximize the probability of finding rare 

species. When fruiting bodies were found, they were brought back to the laboratory and 

curated in the same way described earlier. The database used for analysis was created 

using the records obtained using the two different protocols. 
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General data analysis 

 In order to evaluate the completeness of the survey, a series of rarefaction curves 

was constructed using the records obtained from the moist chamber cultures. Species 

accumulation curves for each study area were generated using the abundance-based 

coverage estimator (ACE) values calculated by the program EstimateS, version 8.0 

(Colwell 2006) with a cutoff value of 1.5% in abundance. These curves were adjusted 

later according to the formula 
( )

)( xb

ax
y

+
=  as suggested by Raaijmakers (1987). In 

addition to the latter, a series of rank-abundance plots was created for each one of the 

study areas. This approach has the advantage of being useful for evaluating species 

richness and evenness patterns among species assemblages (Magurran 2004), in a similar 

way to a classic alpha diversity analysis. 

 In addition to the latter, the relationships among species assemblages in the 

different study areas were evaluated by performing a cluster analysis using two different 

methods in the program PC-ORD, version 5.30 (McCune and Mefford 2006). The first 

approach evaluated corresponds to Ward’s method, a general-purpose linkage procedure 

that minimizes distortions in the space created by the matrix of data. This method uses 

analysis of variance and Euclidean distances to evaluate the separation between groups. 

The second approach used is the furthest neighbor method, in which the distance between 

groups is determined by the greatest distance between any two species in the different 

groups. This method uses the Bray-Curtis distance index to determine spatial 

relationships among groups according to the classic formula for the Sorensen coefficient 
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of similarity and seems to be particularly useful in cases when the groups evaluated form 

naturally distinct units (McCune and Mefford 2006).  

 

Evaluation of ecological models 

The biogeographical relationships and both macro- and microecological aspects 

of the assemblages of myxomycetes associated with high-elevation areas also was 

studied. For this, an examination of four ecological models of species distribution was 

carried out, using different approaches and the database constructed with the records 

obtained from the various study areas. 

The first model examined is the one often called the ubiquity theory, as revived by 

Fenchel and Finlay (2004). This theory basically proposes that microscopic organisms 

should occur everywhere on earth as long as suitable habitats permit their existence. To 

evaluate whether or not myxomycetes in the study areas show evidence of conforming to 

this theory, three secondary approaches were followed. For all these analyses, species 

from the original moist chamber culture or field collection datasets were placed in 

categories on the basis of their relative abundance, following a modification of the 

approach described by Stephenson et al. (1993). Those species with overall abundance 

values higher than 1.5% were considered as Abundant (A), those falling between 1.5-

0.5% as Common (C), between 0.5-0.15% as Occasional (O) and those falling below 

0.15% as Rare (R). Only those species falling in the abundant category were considered 

for the ubiquity theory evaluation, since the probability of obtaining statistical errors 

leading to wrong conclusions (Type I error) is increased when species that are not well-

represented are included 
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Using this methodology, the first approach consisted of an evaluation of the 

occurrence and relative abundance of the most frequently encountered species in relation 

to the various study areas, using a probabilistic approach. For this analysis, the relative 

abundance of each species in the complete dataset was considered a product of both the 

capacity of the species to occur in a given environment and the existence of such 

environment. Since all study areas presented comparable environments and were 

surveyed at comparable times using a standard effort, the expected abundance of each 

species was hypothesized to be similar (not significantly different) across all study areas. 

The expected abundance values were calculated for each species as a product of the total 

number of records across study areas and tested against the observed values, using a 

standard Chi-Square formula with a rejection value of 0.05 for the null hypothesis, as 

calculated using the software program JMP, version 8.0. It is clear that there are a number 

of underlying reasons why species would not show such pattern. However, this approach 

still offers the possibility of providing information in relation to the occurrence of 

selected species in the studied areas.  

The second approach, which represented an effort to assess the ubiquity theory, 

evaluated the particular relationship that exists between myxomycetes and the type of 

substrate upon which they occurred in the laboratory. A number of recent studies have 

shown that some species of myxomycetes appear to be highly substrate-specific. If this is 

a real pattern, it would provide evidence against the ubiquity theory, since organisms 

would not be expected to occur preferentially in certain microhabitats when a number of 

other suitable microhabitats are potentially available. For this evaluation, a series of 

analyses of variance was used to test the preference of the myxomycetes observed for one 
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of the four different substrate types collected. This examination was carried out on both 

the entire dataset and a series of subsets arranged by country. When null hypotheses were 

rejected, post-hoc Tukey tests were also performed to evaluate the direction of the 

distributions. 

The third approach used to study the ubiquity theory consisted of an evaluation of 

the microenvironments in which species collected in the field were found. For this 

analysis, a series of microenvironmental variables associated with the field records was 

measured in situ. These variables correspond to a number of characteristics of the 

substrates upon which fruiting bodies were collected. These include pH, moisture, 

diameter, distance from the ground, substrate type and exposure to light. The first four 

variables were measured directly in the field using electronic devices (e.g., calibrated pH, 

moisture and distance meters), whereas light exposure was recorded using the protocol 

explained by Stephenson et al. (2004a). With this method, a categorical classification of 

light conditions is used to record this variable. 

All these microenvironmental parameters were used to perform a multivariate 

analysis intended to provide information on the variation exhibited by the dataset. For 

this evaluation, a Principal Component Analysis (PCA) was carried out using the 

program PC-ORD, version 5.30 (McCune and Mefford 2006), with only the most 

abundant species being used in the calculations. In a similar manner, the same variables 

were also used to calculate the niche breadth and niche overlap of particular species using 

the MacArthur-Levins estimator in a similar manner to that described by Rojas et al. 

(2008). The idea behind using this approach is to evaluate the relationship between 

microenvironmental preference and niche breadth, which can provide important 
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information regarding the intrinsic ecological characteristics of myxomycete species and 

their relationship with observed distribution patterns.  

In addition to the latter, an examination of species occurrence in relation to two 

microenvironmental parameters was carried out only for Cerro Buenavista in Costa Rica. 

To do this, two sets of data loggers were placed in the two experimental plots and records 

for temperature and relative humidity were obtained in situ for a period of one year. For 

both experimental plots, one data logger was located at ground level and the second one 

at 1 m above the ground. For those records of myxomycetes collected from a height of 

less than 50 cm above the ground, the data logger at ground provided the 

microenvironmental information, whereas records collected at heights above 50 cm were 

associated with the readings from the higher data logger. With this information, an 

analysis of the average temperature and humidity obtained at 7:00 AM in relation to the 

records found in the experimental plots was carried out using analysis of variance and 

post-hoc Tukey tests, using JMP, version 8.0. 

The second model for evaluation corresponded to the Unified neutral theory of 

biodiversity and biogeography (UNT) proposed by Hubbell (2001). According to this 

theory, species within the same trophic level are ecologically equivalent and their 

existence is determined by a fundamental biodiversity constant. The relative abundances 

of the species in a guild are determined by two parameters, one denominated θ (theta), 

which controls the appearance of new species in the regional species pool, and a second 

one denominated m, which determines the immigration from the regional species pool 

into the individual communities. To evaluate this model, only records of myxomycetes 

obtained from moist chambers were used. The two parameters mentioned above were 
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calculated for each of the study areas, using a maximum likelihood-based estimation in 

the manner described by Etienne (2005) and with the program TeTame, version 2.0 

(Chave and Jabot 2008). After this, a simple correlation analysis of these values and both 

the observed species richness and abundance values was performed with JMP, version 

8.0, using a rejection value of 0.05 for the null hypothesis. This analysis is intended to 

provide evidence relating to a possible explanation of myxomycete distribution by means 

of neutral parameters. 

The last two models examined represent an effort to assess whether or not niche-

based methods are useful for an analysis of myxomycete distribution patterns. Although 

there are a number of niche-based models that have been used to explain community 

dynamics, it has been proposed that only the broken stick and the geometric series 

models properly explain the patterns found in nature (Dewdney 2003). Other models 

seem to have limitations in their biological interpretation due to their mathematical 

formulation (see Magurran 2004). The first of the models tested is based upon the fact 

that species occurring in the same area are dynamic enough to generate, in time, a mature 

and stable community where each taxon has similar competitive abilities. The second 

approach, the geometric series, is a theoretical construct based on the idea that niche 

preemption takes place by favoring the earliest inhabitants within a functional group in a 

particular ecosystem. 

In order to evaluate which of these two niche-based models best explains the 

distribution of myxomycetes in the study areas, a series of tests was carried out. For this, 

all species were sorted from most to least abundant and then ranked on the basis of their 

abundance values. Following the method of Fattorini (2005), regression analysis was 
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used and the best fit model was selected, based on the correlation estimator. According to 

this concept, the model with the highest estimator is considered to be the better one to 

explain the observed pattern in nature.  

In the first case, the analysis considered the distribution of observed abundance 

values and the theoretical values expected with the broken stick model. The latter were 

obtained by using the formula A = bo + bi log R, where A is the species abundance, R is 

the respective rank and both bo and bi are optimized fitting parameters obtained from a 

system of equations for each observed dataset. For the geometric series model, values 

were obtained using the formula log A= bo + bi R, where all parameters are the same as in 

the previous case. The correlation estimator obtained to evaluate the broken stick model 

distribution was the Pearson's product moment (R2), whereas the fit index (FI) was 

calculated to test the geometric series model. The latter was obtained using the formula 

FI = 1 - (RSS/TSS), where ( )∑ −
n

=i

YaYi=TSS
1

2  and ( )∑ −
n

=i

YbYi=RSS
1

2 . In these 

calculations, Yi is the observed value, Yb is the backtransformed value of Y in the 

transformed space and Ya is the mean of the backtransformed data. 

 

Results 

 A total of 1522 records including 149 field collections were obtained during the 

course of the present investigation. This effort generated a total number of 114 species 

for the complete study, 89 of which were recovered only from moist chamber cultures, 24 

were only found in the field and 10 were recorded using both methods. The rarefaction 

curves generated with the data from moist chambers (Fig. 1) show that the sampling 

effort used with this methodology was adequate to recover most of the species from each 
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of the study areas. Only Doi Inthanon shows evidence of under sampling of the 

assemblage of myxomycetes present. The rank/abundance plots generated (Fig. 2) show 

similar structural patterns for the assemblages of myxomycetes in the various study areas, 

with the most obvious difference among study areas apparent for those in Costa Rica. 

The number of ranks is relatively similar in all cases except in Costa Rica, with an 

average of only 4.75 ranks per study area. Similarly, the relative abundance of the first 

ranks is lower in this same country, where the starting values for each study area are 

lower than one. 

 When assemblages of species were compared to one other using cluster analysis, 

the two methods for the calculation of the distances among groups produced different 

arrangements of study areas (Fig. 3). In both cases, all study areas corresponding to a 

particular country grouped together. However, when Euclidean distances were used, all 

the Mexican study areas formed a separate cluster when compared with the others. In the 

first instance, species assemblages from Andrews Bald and Doi Inthanon also group with 

the other Neotropical areas, and in the second instance, these two assemblages fall in the 

Costa Rican group. In contrast, when Bray-Curtis distance measures were used to 

evaluate the relationship of species assemblages in the study areas, a different result was 

obtained. In this case, the myxomycete assemblage from Doi Inthanon falls apart from 

any of the other groups, and the assemblage from Andrews Bald shows a higher degree of 

similarity with those from Mexico and Guatemala. In the second case, the assemblages 

from Costa Rica form a different cluster than the one composed of the latter study areas. 

 When the models of species distribution were evaluated, a series of different 

patterns was apparent. The most frequently encountered species recorded from moist 



256 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. Species accumulation curves generated for each study area using the rarefaction 

values for the abundance-based coverage estimator (ACE).  
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Figure 2. Rank abundance plots generated for each study areas based on records obtained 

from moist chamber cultures. 
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Figure 3. Arrangement of species assemblages from the different study areas by means of 

cluster analyses performed using the Ward’s method (above) and the Sorensen’s method 

(below). 
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chamber cultures were not present in all study areas and showed uneven abundance 

values (Table 1). All goodness of fit Chi-square tests performed using the numerical 

values for species abundances across study areas yielded significant differences (not 

shown, P < 0.01 in all cases). In a similar manner, the substrate-specificity evaluation 

showed that myxomycetes exhibit a preferential use of some of the evaluated substrates 

in the study areas (F (3, 356) = 4.34, P = 0.005, R2=0.05). The results from this analysis 

show that aerial litter is more frequently used than either ground litter (Tukey, P = 0.032) 

and bark (Tukey, P = 0.0052). When substrate use is evaluated for each country 

separately, significant differences were found only for Costa Rica (F (3, 68) = 3.43, P = 

0.02, R2=0.13). As in the previous case, myxomycetes were found more frequently on 

aerial litter than on ground litter (Tukey, P = 0.03) and bark (Tukey, P = 0.03). 

 The Principal Component Analysis showed that about 72% of the variation in the 

dataset is explained by the first three components, which are light exposure, height above 

the ground and substrate moisture. The ordination of the 16 field-collected most abundant 

species is presented in Fig. 4. Average values for both temperature and relative humidity 

in the experimental plots in Costa Rica are also provided for the core of species around 

the center of the ordination and the three outlier species. The specific analyses performed 

with the microenvironmental information recorded in the field indicate that there are 

differences in temperature (F (21,58) = 5.71, P = 0.0001, R2 = 0.67) and atmospheric 

moisture (F (21,58) = 5.60, P = 0.0001, R2 = 0. 66) associated with the different species. 

One of the outlier species (Arcyria cinerea) in the PCA ordination was collected from 

significantly warmer microenvironments than the other species (Tukey, P = 0.001). In 

contrast, Ceratiomyxa fruticulosa, one of the species in the core group, was collected in
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Figure 4. Principal Component Analysis (PCA) ordination of the 16 most abundant field-

collected species in all study areas that shows the three most important 

microenvironmental components as internal axes. A central core of species is defined by 

the dashed line and three outliers can be identified. For both these and the central core of 

species, temperature and relative humidity values are provided in boxes. These 

measurements correspond to the values obtained for all species found in the Cerro de la 

Muerte study area. 
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significantly dryer microenvironments than the other species (Tukey, P = 0.05).  

The lowest values for niche breadth were obtained for A. cinerea, Clastoderma 

debaryanum and Cribraria oregana, whereas the highest values were obtained for Cr. 

mirabilis and Stemonitis splendens (Table 2). In a similar way, Cr. mirabilis and Fuligo 

septica show high values of niche overlap with the other abundant species (M = 0.88 for 

both species; SD = 0.13 and 0.14, respectively), whereas the lowest average values of 

overlap were obtained for Cl. debaryanum and A. cinerea (M = 0.60 and 0.62, SD = 0.11 

and 0.14, respectively). The difference in niche overlap values between Cr. mirabilis and 

Cl. debaryanum is significant but moderately weak (F (1,13) = 5.13, P =0.04, R2 = 0.28).  

 The values obtained forθ and m, the two neutral parameters evaluated, show that 

considerable variation exists among the different study areas (Table 3). The highest value 

for theta was obtained for the forests at Cofre de Perote, whereas the oak-dominated 

forest of Macizo del Chirripó had the lowest value. In a similar way, the highest value for 

m was obtained for the non-forested area of La Malinche, whereas the forested area at 

Llanos de San Miguel was characterized by the lowest value for the same parameter. The 

correlation analyses performed show a significant linear correlation between the m values 

and both species richness and species abundances in the study areas (for species richness 

F (2,11) = 4.08, P = 0.04, R2 = 0.42; for species abundance F (2,11) = 6.13, P = 0.01, R2 

= 0.52). However, in both cases the significant relationship corresponds to a second-

degree polynomial correlation with a low point associated with the intermediate values of 

m. 

 When the two niche-based models were evaluated, all the linear correlation values 

were high (Table 3) and there was no overall pattern of model dominance. The broken 
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stick model is better than the geometric series model in explaining abundance distribution 

in eight of the study areas, whereas the latter provides a better explanation of abundance 

distribution for the remaining six areas. For six of the seven non-forested areas, the 

broken stick model showed the highest correlation values of the model pair, whereas for 

five of the seven forested areas, the geometric series model provides a better fit for the 

observed distributions. 

 

Discussion  

 The numbers of records and species recorded from each of the study areas during 

this investigation are similar to those reported in previous studies. Using a comparable 

sampling scheme, Rojas and Stephenson (2007) found an average of 24 species of 

myxomycetes per study site in a high-elevation forest in Costa Rica, whereas during the 

present investigation the average was 23 species per study site (not shown previously). It 

is evident that both the numbers of records and species are associated with the sampling 

effort and that the overall higher numbers recovered from moist chamber cultures most 

likely respond to the more systematic approach that is followed when using this method. 

However, field collections and moist chamber cultures are complementary approaches for 

the study of myxomycetes (see Stephenson 2004b), and in both cases their ecological use 

is meaningful when information at different levels is required. 
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Table 3. Values for the estimators θ and m according to the neutral theory and regression 

analysis values obtained for the two abundance models being evaluated as arranged by 

study area. For abbreviations see Materials and methods. 

 

Study areas Neutral model Abundance models 

 θθθθ value m value BS R
2
 GS FI 

Andrews Bald (non-forested) 3.28 x109 0.07680 0.949 0.933 

Doi Inthanon (forested) 1.47 x109 0.08207 0.944 0.973 

Cofre de Perote forested 5.51 x109 0.08174 0.873 0.936 

Cofre de Perote non-forested 819.369 0.08774 0.990 0.939 

La Malinche forested 16.8282 0.62407 0.960 0.850 

La Malinche non forested 12.1712 0.67336 0.982 0.857 

Llanos de San Miguel forested 46.5926 0.07616 0.809 0.882 

Llanos de San Miguel non-forested 22.7779 0.19478 0.982 0.908 

La Ventoza forested 52.9382 0.09188 0.963 0.972 

La Ventoza non-forested 4.41 x108 0.12803 0.991 0.953 

Cerro Buenavista forested 21.0169 0.57973 0.956 0.978 

Cerro Buenavista non-forested 21.5408 0.48517 0.978 0.982 

Macizo del Chirripó forested 12.8708 0.28590 0.991 0.890 

Macizo del Chirripó non-forested 16.5278 0.33027 0.986 0.957 
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Figure 5. Simple correlation analysis plots of the neutral parameter m evaluated in 

relation to both species richness and species abundance recorded for the study areas. In 

both cases correlations are polynomial of second degree. Degree of statistical significance 

is provided in the results. 
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 The rarefaction curves generated indicate that for most areas the sampling effort 

was sufficient. It is clear that a higher number of samples probably would have yielded a 

higher number of species. However, this is difficult to assess, as a large body of evidence 

showing that myxomycetes are randomly distributed in tropical forests is still lacking. 

The latter is one of the assumptions of rarefaction analyses, and if myxomycetes in the 

high-elevation forested areas that have been studied are not randomly distributed, then 

this type of technique might have overestimated the actual species richness in the study 

areas (see Magurran 2004). In any case, the technique is still useful for comparing the 

species richness for different sampling efforts among study areas. When this is done, it is 

not surprising that the data set for Doi Inthanon shows that more effort would have been 

necessary in this study area to recover most of the taxa present.  

Notably—and this is perhaps the value of the information from this study area—

the species richness at Doi Inthanon based on a smaller sample size is still higher than the 

species richness of all areas in Costa Rica and comparable to the species richness found 

in the study areas in Guatemala. In fact, the rank-abundance plot for this study area 

shows what is presumably a less preemptive assemblage than in the case for Costa Rica 

and a pattern that is very similar to Guatemala as well. The species composition and 

distribution of the myxomycete assemblage at Doi Inthanon are somewhat different than 

those found in these two Neotropical countries (Rojas et al., unpublished data), but such a 

difference in species richness and distribution is probably associated with a number of 

external factors as well. 

 When the species richness and the rank-abundance plots of all the study areas are 

analyzed in detail, it seems that the high-elevation forests of Costa Rica provide the least 



270 
 

favorable conditions for myxomycetes. A similar observation was reported for the 

myxomycetes associated with twigs when the assemblages associated with samples from 

different geographical locations of the world were compared (see Stephenson et al. 

2008b). In contrast, forests in Mexico seem to favor the occurrence of the group in terms 

of both overall diversity and abundance. When only open areas are considered, Andrews 

Bald seems to support the most species-rich assemblage. Recent studies have shown that 

Mexico is a region with a comparatively high number of myxomycetes present (e.g., 

Wrigley de Basanta et al. 2008, Estrada-Torres et al. 2009). However, other studies 

carried out in temperate forests of Eastern North America have shown complex and 

species-rich assemblages as well (Stephenson 1988, Stephenson et al. 2001).  

Whether or not temperate areas truly support the highest diversity of 

myxomycetes, which is the prevailing view of myxomycete distribution, is a question that 

still requires more study in tropical and boreal areas of the world. However, the pattern 

shown by the data generated in the present study seems to indicate that both the diversity 

and abundance of myxomycetes are highly dependent on the characteristics of the forests 

with which these organisms are associated. Such a pattern of different levels of 

microenvironmental preference in myxomycetes has been reported for temperate (e.g., 

Stephenson 1988) and tropical areas (e.g., Schnittler 2001, Schnittler and Stephenson 

2002, Rojas et al. 2009). 

 It is remarkable to note that the relationships that existed among the study areas 

differed depending on the particular algorithm used when the cluster analysis was carried 

out. This is not surprising and has been well documented for the Euclidean and Bray-

Curtis distance measure protocols in the past (e.g., Ludwig and Reynolds 1988). 
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However, in the analysis provided herein, irrespective of the distance measure used, the 

study areas of the three Neotropical countries grouped together. This is somewhat 

remarkable when considering that Euclidean distance-based analyses are less sensitive 

and tend to split groups by emphasizing outliers (McCune and Grace 2002). The 

differences in the relationships that exist among the study areas when the two methods 

used in the analysis are observed relies on the position of the groups and the two non-

Neotropical areas. In the case of the Bray-Curtis distance-based analysis, the arrangement 

of study areas seems to have more biogeographical significance.  

All the study areas in the Americas form a group that is separate from Doi 

Inthanon, the only non-American area. In addition, the relative positions of the 

Neotropical areas suggest that the species composition of the assemblages of species that 

exist along the latitudinal gradient that extends from Mexico to Costa Rica show a pattern 

of decreasing similarity to the temperate study area at Andrews Bald. In contrast, a 

previous study carried out by Rojas and Stephenson (2007) suggested that there was 

some affinity between myxomycete assemblages in high-elevation areas in Costa Rica 

and temperate areas in North America. Moreover, the grouping of Mexican and 

Guatemalan areas suggests that these areas have some aspects in common. This may be 

related to a combination of the patterns of microenvironmental preference exhibited by 

particular species and the fact that the plant composition and forest structure for high-

elevation areas of these two countries is very similar (see Islebe and Velazquez 1994). 

 In the same way, the difference in abundance for the ten most frequently 

encountered species among study areas suggest that the distribution of these taxa depends 

on more factors than just the intrinsic characteristics of each species. This observation 
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supports other distributional analyses of myxomycetes carried out recently (e.g., 

Stephenson et al. 2008a). Although most of the species considered in the present study 

have known broad distribution ranges, it is very likely that they show ecological 

differentiation of some type. Even at the substrate preference level, as analyzed herein, 

some differences could be detected among the species making this group of abundant 

taxa. The preferential use of aerial substrates in the Neotropics, especially in Costa Rica, 

is one of those patterns. However, this apparent preference of myxomycetes for aerial 

substrates, which was already documented for tropical areas (see Stephenson et al. 2004b, 

Stephenson et al. 2008a) may also be a simple response to particular environmental 

factors such as high levels of moisture. 

 For example, the higher moisture content of ground substrates in these study 

areas, a condition that is apparently not suitable for the production of fruiting bodies (see 

Black et al. 2004), very likely influences the apparent substrate preference. In a previous 

study in the highland oak forests of Costa Rica, Rojas and Stephenson (2007) reported a 

negative correlation between the number of fruiting bodies present in the field and the 

precipitation registered for the area in which their study was carried out. Rollins (2008) 

observed a similar pattern along a gradient of decreasing precipitation in the grasslands of 

North America. At the same time, the use of aerial litter by myxomycetes may also be 

related to the availability of this substrate type in the study areas. In habitats where aerial 

substrates are limited, there tends to be a low incidence of myxomycetes on this type of 

substrate (e.g., Estrada-Torres et al. 2009). 

 Unfortunately, studies of environmental variables of this type and their effect 

upon the compositional and abundance dynamics of assemblages of myxomycetes are 
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still at a relatively early stage. However, the results obtained from the microhabitat-

centered PCA analysis demonstrate the functionality of this approach when it is used in 

combination with environmental data collected in situ. In this case, the effect of distance 

from the ground on the average temperature and moisture of particular microhabitats and 

its subsequent effect on the species of myxomycetes occurring under the different 

environmental conditions is apparent from the results provided herein. However, the two 

of the outlier species in the ordination did not show any deviation from the central 

tendency values when the individual parameters measures in situ were tested. This may 

represent an indication of a combined parameter-based response from myxomycetes, 

which would actually more accurately resemble a natural pattern. For example, in one 

recent study, Rojas and Stephenson (2007) showed that the combined effect of some 

microenvironmental variables on the presence of myxomycetes in a high-elevation forest 

in Costa Rica was stronger than the individual effect of a particular variable when the two 

types of analyses were carried out. Similar observations have been reported for other 

types of biological systems (e.g., Schnittler et al. 2006). 

Some species showed an apparent preference for a particular set of conditions 

when the in situ environmental parameters are analyzed. For example, our results indicate 

that Arcyria cinerea was generally associated with warmer microenvironments than any 

of the other common species, whereas Ceratiomyxa fruticulosa was found more 

frequently in comparatively dryer microenvironments. Both are myxomycetes generally 

regarded as being widely distributed species (see Martin and Alexopoulos 1969), which 

would, in theory, have a higher probability of showing broad preferences for such 

parameters. In the case of A. cinerea, this is not supported by the narrow niche shown in 
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the results. However, the apparent restricted ecological distribution of C. fruticulosa is 

supported by the results of niche breadth analysis and by other observations made in 

Neotropical lowland forests (e.g., Rojas et al. 2008). Previous studies have shown that 

both species are more frequently recovered in field surveys carried out in mid-elevation 

localities where a combination of moderate rainfall and warm temperatures is present (see 

Tran et al. 2006, Stephenson and Landolt 2009). It seems that the more moist and 

relatively colder high-elevation study sites surveyed in the present study influence their 

occurrence in a different way. 

In any case, the different levels of niche overlap among the various species and 

the significant differences that exist between extremes seem to be an indication of 

specialization. The body of data available supporting this observation has increased 

considerably over the past decade for tropical areas, and includes evidence for certain 

species at different ecological levels such as microhabitats (Wrigley de Basanta et al. 

2008), ecosystems (Estrada-Torres et al. 2009) and forest types (Rojas et al. 2009). The 

data obtained in the present study show that species such as Clastoderma debaryanum 

and Cribraria mirabilis, commonly associated with more temperate environments, do 

sometimes occur in temperate-like environments in the Neotropics. This conforms to 

previous observations for other species made in high-elevation areas of Costa Rica (Rojas 

et al. 2009) and, to a lesser extent, similar areas in Guatemala (see Estrada-Torres et al. 

2000). 

When the neutral parameters were analyzed, it seems evident that the assemblages 

of species associated with the high-elevation areas evaluated in the present study do not 

support the neutrality concept for myxomycetes. There was no clear pattern of the 
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influence of these parameters on the dynamics of the assemblages studied under the 

assumptions of the UNT (see Hubbell 2001). This is not a surprising finding, since it is 

widely recognized that “neutral” communities may occur only in theory (see Doncaster 

2009). Regardless of such an observation, the results obtained for this analysis indicate 

that some ecological aspects related to myxomycete assemblages undoubtedly deserve 

further study. For example, both θ and m values showed a significant correlation with 

species richness. In fact, in the latter case, our results also revealed a significant 

correlation with species abundance. 

In theory, high values for θ should be associated with high speciation rates and 

larger metacommunity sizes. In the example presented herein, assemblages of species in 

the various study areas (“communities”) are assumed to belong to the same 

“metacommunity” according to the neutral theory. Therefore, θ values would indicate 

that speciation rates in the different areas show some variation. However, in real terms it 

does not make very much sense that comparable study areas have the dramatically 

different θ values observed in the results we obtained. What these do seem to indicate is 

that such high values may correspond to species assemblages in study areas with different 

conditions, which in this case may be the result of a number of factors.  

One element to consider in this analysis is that all study areas with high θ values 

seem to have a stronger human influence. For instance, the natural character of the non-

forested areas (balds) in the Great Smoky Mountains is still a matter of debate (Jenkins 

2007), and the extent of human influence on the vegetation of Doi Inthanon, Cofre de 

Perote and the Cuchumatanes area has been well documented (e.g., Steinberg and Taylor 

2008 for the latter). Although levels of disturbance were not assessed in the study areas 
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and the observations made are highly speculative, one possible implication of this neutral 

parameter-based approach is that similar areas with different levels of disturbance might 

be expected to show different degrees of species richness. In this sense, recent empirical 

evidence suggests that for myxomycetes, this pattern seems to be case for at least some 

natural systems (e.g., Tran et al. 2008, Ndiritu 2009).  

In a similar fashion, the significant polynomial correlations obtained when the 

parameter m was analyzed seem to suggest that the dynamics that occur within and 

among assemblages of species in the various study areas are determined by more than 

one factor. This is not surprising in the context of biogeographical analysis, since similar 

patterns have been suggested by the data sets obtained in other studies of myxomycetes 

(e.g., Stephenson et al. 1993). The high values of species richness and abundance 

associated with low values of the migration parameter established in the neutral theory 

suggest that species occurring in areas with strong limitations on dispersal show evidence 

of coexistence. This can be associated with the capacity of particular groups of sympatric 

myxomycetes to exhibit microhabitat preference, as it has been observed in the genus 

Ceratiomyxa (Rojas et al. 2008) and also suggested for tropical myxomycetes in general 

on the basis of data obtained in other recent studies (e.g., Stephenson et al. 2004b, Rojas 

et al. 2009). 

The correlation values obtained in the evaluation of both niche-based species 

abundance models were consistently high. Even though the approach followed does not 

provide enough evidence to favor one model over the other, it would not be surprising 

that myxomycetes actually use more than one ecological strategy, depending upon the 

conditions that exist for a particular system. The results presented herein suggest, for 
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example, that the taxonomic composition of assemblages of species in non-forested areas 

are best explained by the broken stick model, an explanation that assumes a low degree of 

niche preemption. In contrast, non-forested areas in the northern Neotropics tend to 

provide more severe environments than neighboring forested areas (see Brown and 

Kappelle 2001), and one would assume that a higher degree of species displacement 

would occur in the former. On the other hand, the higher correlation values of species 

assemblages in forested areas with the geometric series model would appear to indicate 

that inter-specific competition is stronger in this type of situation. Evidence for tropical 

forests is not conclusive, as one could argue that the use of non-traditional substrates such 

as inflorescences (Schnittler and Stephenson 2002) and lianas (Wrigley de Basanta et al. 

2008) has the potential to broaden spatial niches for tropical myxomycetes or, conversely, 

be an indication of niche separation in particular species.  

Whatever the case, these interpretations do not seem to support the species 

richness values obtained in most of the study sites, which show that non-forested areas 

supported fewer species than forested ones across the entire region being subjected to 

study. However, in a recent comprehensive analysis of the ecology of myxomycetes in 

Costa Rica, Rojas et al. (2009) found that most species seem to show macro- and 

microenvironmental associations of some kind. In this context, the contrasting results of 

the niche-based species abundance analysis seem to be an indication of a response to 

multiple factors as well. 

In summary, it appears that the patterns of myxomycete occurrence indicate that 

this group exhibits variable degrees of ecological association in the high-elevation areas 

studied. These preferences have been not only detected but actually documented for 
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particular species in this and other studies. If the revived concept of Fenchel and Finlay 

(2004) applies to microorganisms such as myxomycetes, it would be highly unrealistic 

that a consistent pattern of microenvironmental preferences would be documented at 

different ecological levels for the localities examined in both the present study and other 

investigations carried out in other parts of the world. In a similar way, the UNT proposed 

by Hubbell (2001) seems to be unrealistic in explaining the patterns of biodiversity and 

distribution of myxomycetes in the high-elevation areas studied. However, this approach 

still offers the possibility of revealing possible patterns of ecological association that can 

determine the direction of future research. In this sense, it is very likely that niche-based 

models still offer the best arguments to explain biogeographical patterns in high-elevation 

Neotropical assemblages of myxomycetes. The data presented herein seem to indicate the 

latter. For this reason, even though the magnitude and direction of a number of 

environmental variables can have on the dynamics of myxomycete assemblages and 

particular species is still a subject that requires additional study, it is clearly evident that 

different myxomycete species are not ecologically equivalent. 
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Chapter 8 

A review of Costa Rican myxomycetes 

 

Abstract: No comprehensive review of the taxonomic composition of the assemblage of 

myxomycetes known from Costa Rica has been done since 1975. As a result of a series of 

studies carried out in the country during the last decade, considerable additional data now 

exist, and this review provides an update on this group of organisms. Collecting carried 

out in Costa Rica since 1975, a review of the published literature, and an examination of 

herbarium specimens were used to generate an annotated list consisting of a total of 208 

species in 36 different genera. This includes 62 species not previously reported from 

Costa Rica. The relative abundance of the different orders follows the expected 

distribution for the Neotropics, with the order Physarales being the most abundant. The 

data also show that the distribution of species is highly heterogenous. This suggests that 

most myxomycetes in Costa Rica are highly specialized for certain microhabitats that are 

defined by particular macro- and microenvironmental factors. 

 

Keywords: Central America, mycetozoans, Neotropics, species list 

 

Introduction 

The myxomycetes (plasmodial slime molds or myxogastrids) are a group of 

ameboid protists (Adl et al. 2005) known to occur in all terrestrial ecosystems examined 

to date. As a group within the Amebozoa (Pawlowski and Burki 2009), myxomycetes 

have a unicellular amoeboid or flagellated vegetative stage in which they resemble other 
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amoebae. In contrast, however, their life cycle also includes the particular capacity to 

produce both unicellular multinucleate structures known as plasmodia and fungus-like 

fructifications that contain meiotic spores (Stephenson and Stempen 1994). 

This combination of morphologically different stages gives myxomycetes a high 

theoretical capacity for dispersal and colonization (Schnittler and Tesmer 2008). 

However, it seems that the ability of myxomycetes to actually do this depends largely on 

individual requirements of the species involved and pre-existing ecological conditions. 

For example, recent studies in the Neotropics have indicated that a particular species 

seems to be associated with a microhabitat defined by a series of discrete ecological 

parameters and that these microhabitats vary among taxa (e.g., Schnittler and Stephenson 

2002, Rojas and Stephenson 2007, Wrigley de Basanta et al. 2008). Because of this, 

myxomycetes are not homogeneously distributed with respect to either macro- or 

microenvironmental factors. If this is in fact a biological pattern, then different geo-

climatic areas would potentially support different myxomycete assemblages. For the 

Neotropics, this seems to be the case (e.g., Stephenson et al. 2004). 

Costa Rica is a good example of an area in which previous studies have also 

shown that the distribution of species of myxomycetes seems to be ecosystem-related 

(e.g., Schnittler and Stephenson 2000). However, the lack of a long-term dataset of 

myxomycetes and information on their distribution patterns across various environments 

in this country has reinforced the speculative distributional ranges usually cited for 

particular species. This problem, also common in other areas of the Neotropics, 

represents an obstacle that must be taken in consideration when attempting to elucidate 

the actual distributions of particular species of myxomycetes. As an effort to standardize 
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the degree of knowledge about Neotropical myxomycete taxa, Lado and Wrigley de 

Basanta (2008) compiled a large set of records from the literature in order to generate an 

updated list of myxomycete species and their distribution in the Neotropics. The last 

occasion when a similar task had been carried out was in 1976, when Marie L. Farr 

published her monograph on Neotropical myxomycetes (Farr 1976). Unfortunately, due 

the limitations of the research methodology used in both instances, it is very likely that a 

number of non-published records, including collections in small herbaria, were left out of 

the list as part of the effort involved in each of these projects. 

When the latter point is considered along with the additional fact that the last 

comprehensive study dealing with myxomycetes in Costa Rica was carried out 34 years 

ago (Alexopoulos and Sáenz 1975), it seems worthwhile to evaluate the progress that has 

been made in the country since then. For this reason, the study presented herein was 

designed with two main objectives. The first was to review the list of myxomycete 

species reported from or known to occur in Costa Rica and the second was to provide 

basic ecological information for each taxon. For example, myxomycetes seem to have an 

important role in the soil environment (Novozhilov et al. 2000) but developing a good 

understanding of their ecology and interspecific relationships is not possible without 

having a good taxonomic baseline already in place. 

 

Materials and methods 

The information presented in this paper was generated at different times during 

the period of 1905 to 2009. The specimens considered were collected by a number of 

different individuals using different methodologies. However, the methods used to 
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compile information for this paper have been carefully selected. For example, the 

nomenclatural treatment used for all myxomycete species is that of Lado (2005-2010) 

except for Stemonitis smithii and the genus Tubifera, for which the treatment of Martin 

and Alexopoulos (1969) has been used. Synonyms are provided for species that were 

reported previously for Costa Rica under a different name. Following Lado (2005-2010), 

synonyms are specified with the symbols ≡ and = when accepted names are based upon 

the same type or upon different type specimens, respectively. All identifications of noted 

particular specimens are based on the morphological species concept (see Clark 2004 for 

a discussion of shortfalls and problems). 

 

Compilation of the annotated checklist 

The information presented in this paper was compiled from a number of sources, 

with the more important to these being (1) Hennings 1902, (2) Welden 1954, (3) 

Alexopoulos and Sáenz 1975, (4) Farr 1976, (5) Schnittler and Stephenson 2000, (6) 

Moore and Stephenson 2003, (7) Rojas and Stephenson 2007, (8) Rojas and Stephenson 

2008, (9) Rojas et al. 2008, (10) Lado and Wrigley de Basanta 2008 and (11) Moreno et 

al. 2009. The number preceding each of these published reports represents the code used 

in the annotations for each taxon. 

All species names were obtained from the sources mentioned above and used to 

create a preliminary list of Costa Rican myxomycetes in a manner similar to what has 

been used in a recent previous publication (i.e. Lado and Wrigley de Basanta 2008). 

However, in addition to published records, myxomycete collections in five herbaria were 

examined. These herbaria (acronyms given in parentheses) were the Museo Nacional de 
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Costa Rica (CR), the Universidad de Costa Rica (USJ), the University of Arkansas 

(UARK), the United States National Fungus Collection (BPI) and the Botanische 

Staatssammlung München (M). The selection of these five herbaria was based on the fact 

that they were designated as the primary repositories for specimens obtained during the 

course of important research projects carried out in the country, including seven that were 

described in the publications listed above. With the exception of most collections 

deposited in BPI, all the collections in the other the herbaria were examined directly. In 

addition, as an extra source of information, the electronic portal of the Global 

Biodiversity Information Facility (GBIF) was used to validate some of the records. 

Locations of all collecting areas represented in this survey are indicated in Figure 1. 

All species reported herein are supported by either deposited vouchers at the 

studied herbaria or listed previously published reports. However, four doubtful species 

for which no vouchers or published reports were found are included, although their 

occurrence in Costa Rica remains uncertain. 

 

Field work 

On different occasions during the period 1994-2009, the three authors carried out 

field work in Costa Rica. During this time, a combination of field and laboratory 

techniques were used. For the former, specimens were collected directly in different 

vegetation zones in the country using the opportunistic sampling method described by 

Cannon and Sutton (2004). Upon being collected, specimens were returned to the 

laboratory, dried at room temperature, glued to a paper strip, and placed in pasteboard 

boxes using the protocol described by Stephenson and Stempen (1994). 
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For the laboratory component, samples of different types of dead plant material 

were collected in the field and used to prepare several series of moist chamber cultures. 

The latter consisted of plastic disposable Petri dishes (15 cm) lined with filter paper. 

Sample material was placed on the filter paper and soaked in distilled water for 24 hrs, 

after which excess water was poured off. Examination of cultures was carried out at 

different times for a period not longer than four months. Substrates used to obtain 

myxomycetes in this manner included ground litter, aerial litter (as described in 

Stephenson et al. 2004), wood and bark, twigs, flowers and inflorescences, fruits and 

dung. 

 

Classification of species 

In order to evaluate the occurrence of myxomycetes according to forest type and 

substrate, a frequency-based classification of records was carried out on the main 

database following Stephenson et al. (1993). In this classification, the frequency of 

occurrence of each one of the species in relation to the different forest types and 

substrates was evaluated in relation to the total number of records with available 

information for each factor. In this manner, species with occurrences higher than 1.5% 

the total number of records were considered as abundant, those between 1.5-0.5% as 

common, between 0.5-0.15% as occasional and less than 0.15% as rare. Only the values 

for the abundant and common categories were used to determine forest type and substrate 

preference. For those species in which the number of records for the country is very low, 

all available information was used. 

 



291 
 

Forest types and substrates 

To determine forest type and substrates a careful examination of records 

following the methodology detailed in Rojas et al. (2009) was performed. For the first 

one, all geographical coordinates were first checked for consistency and accuracy. Forest 

types were assigned to collections by performing a GIS analysis using ARCMap, version 

9.2 and the Holdridge Life Zone system (Holdridge et al. 1971). 

With this system, forests are classified according to environmental criteria such as 

elevation, biotemperature and evapotranspiration values. When arranged in a gradient of 

precipitation from highest to lowest, the forest types in which myxomycetes were found 

in Costa Rica correspond to premontane rain forest (PRF), lower montane rain forest 

(LMRF), montane rain forest-transition to lower montane (MRFTLW), montane rain 

forest (MRF), subalpine rain paramo (SRP), premontane wet forest-transition to 

perhumid (PWFTp), lowland wet forest (LWF), lowland wet forest-transition to 

premontane (LWFTP), premontane wet forest (PWF), premontane wet forest-transition to 

lowland (PWFTL), lower montane wet forest (LMWF), lowland moist forest (LMF), 

premontane moist forest-transition to lowland (PMFTL), premontane moist forest (PMF), 

lowland moist forest-transition to premontane (LMFTP), lower montane moist forest 

(LMMF), lowland moist forest-transition to dry forest (LMFTd) and lowland dry forest 

(LDF). The letter codes assigned to each forest type are used in the annotations for each 

species.  

For substrates, a series of 10 categories was first created upon the original 

recorded substrates available in the main database and individual records were re-

arranged into these newly created categories. From nonwoody to increasingly woody, the 
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substrate categories correspond to dung (DU), flowers and inflorescences (FI), living 

plants (LP), living cryptogams, (LC), ground litter (GL), aerial litter (AL), lianas (LI), 

fruits (FR), twigs (TW) and dead bark and wood (DBW). In a manner similar to that 

described in the last section, the letter codes assigned to each substrate category were 

used for the annotations of species. 

 

Annotations and format of the list of species 

The list of species is arranged alphabetically and for each taxon a number of 

annotations have been included. In all cases, after the species name and protologue, the 

forest and substrate types from which the species was predominantly recorded are 

provided using the letter codes explained earlier. This is followed by the publications 

listed above where the species was mentioned, which are provided as a series of numbers 

that correspond to the number codes for these information sources. After this, the codes 

for the herbaria where vouchers are deposited and other Neotropical countries where the 

species was recorded are provided as well. Species names that represent new records for 

Costa Rica are preceded by an asterisk, whereas those that are also new for the 

Neotropical region are preceded by two consecutive asterisks. For the four doubtful 

species, a question mark precedes the taxonomic name as well. 

 

Data analysis 

As a way to evaluate the taxonomic richness of the studied area, the taxonomic 

diversity index sensu Stephenson et al. (1993) was calculated by determining the ratio 

between the numbers of species and the number of genera found. This index is useful to 
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estimate the intrageneric diversity of a given area, in the frame of biogeographical 

studies. 

Similarly, in order to estimate the maximum number of species expected, species 

richness indicators were calculated using the program SPADE (Chao and Shen, 2003). 

The values corresponding to the ACE estimator recommended by Chao et al. (2006) were 

selected after running a simulation using the multinomial predictive model. Following 

this calculation, the completeness of the survey was estimated from the relationship that 

existed between the number of species found in the database created and the expected 

value obtained with SPADE. 

In addition, two Pearson’s Chi square tests of Goodness of Fit were performed to 

evaluate statistical differences in both the number of species found in the 10 forest types 

with the highest number of species and the number of species found in the three 

substrates with the highest species richness. A Monte Carlo simulation was used to 

evaluate possible problems in the species richness values used during the Chi-Square 

tests. The program PAST, version 1.92 (Hammer et al. 2001) was used for these 

calculations. 

 

Results 

The final database of all myxomycete collections in the country encompassed 

4990 records. These records were derived from a representative sample of forest types 

and localities throughout Costa Rica (including Cocos Island, Fig. 1). Altogether, the 

database contained 208 species in 36 different genera and 62 species not previously 

reported for this country as well as 7 species not previously reported for the Neotropics. 
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Three more taxa are presumed to occur in the country but their presence is still uncertain. 

These numbers generate an overall taxonomic diversity index value of 5.80. An 

appreciable proportion (e.g., > 65%) of the species in the country correspond to the dark-

spored clade, the group that included the two genera (Physarum and Didymium) with 

highest species richness (Fig. 2). 

The ACE value for the maximum number of species to be expected, based on the 

entire dataset, was 253 species, with a 95% confidence interval between 232-291 species. 

According to this value, about 83% of the species of myxomycetes that would be 

expected to occur in Costa Rica are reported herein. The forest types with the most 

species present were montane rain forest, premontane wet forest, lowland moist forest 

and premontane moist forest, whereas some of the transitional forest types showed the 

lowest values of species richness (Fig. 3). The data suggest that there are differences in 

the number of species present in the ten most represented forest types (χ2 = 19.33, d.f. = 

9, p < 0.05; Monte Carlo p < 0.05).  

Similarly, dead bark and wood and the two types of litter studied were the 

substrates with the highest number of species, whereas dung, lianas and fruits fell 

towards the other extreme of the distribution (Fig. 4). For the three substrates 

characterized by the most species of myxomycetes, it seems that the one represented by 

dead bark and wood is the one that supports the largest myxomycete community (χ2 = 

29.68, d.f. = 2, p < 0.0001; Monte Carlo p < 0.0001).  

The most common species in the dataset were Arcyria cinerea, Physarum 

compressum, Didymium iridis and Didymium squamulosum. The annotated list of all 

species documented for Costa Rica is provided below. 
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Figure 1. Map of Costa Rica showing collecting locations for the records considered in 

the present study. 
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Figure 2. Taxonomic composition of the assemblage of myxomycetes reported from 

Costa Rica. Distribution by clades with phylogenetic affinity (above) and genera (below), 

with highest species richness sorted by decreasing values from left to right. Bar colors 

correspond to the tones provided for clades in which genera are arranged (see Fiore-

Donno et al. 2005 and Fiore-Donno et al. 2010). 
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List of Costa Rican Myxomycetes 

 

Arcyria afroalpina Rammeloo, Bull. Jard. Bot. Belg. 51(1/2):229 (1981) 

Primarily found in LTRF, on ground and aerial litter. Reported in 5, 8 and 9. Vouchers 

deposited in UARK. Also reported from Mexico, Cuba, Puerto Rico and Ecuador. 

 

Arcyria cinerea (Bull.) Pers., Syn. Meth. Fung. 184 (1801) 

Present in almost all ecosystems, common in LTRF, primarily on DBW and GL. 

Reported in 2, 3, 4, 5, 7, 8 and 10. Vouchers deposited in USJ, CR, UARK and M. 

Ubiquitous in the Neotropics. 

 

Arcyria denudata (L.) Wettst., Verh. Zool.-Bot. Ges. Wien 35:Abh. 535 (1886) 

Present in almost all ecosystems, common in PWFTp and PWFTL, primarily on DBW 

and GL. Reported in 2, 3, 4, 7 and 10. Vouchers deposited in USJ, UARK and M. 

Ubiquitous in the Neotropics. 

 

Arcyria incarnata (Pers. ex J.F.Gmel.) Pers., Observ. Mycol. 1:58 (1796) 

Primarily found in PMFTL and PMF, on DBW. Reported in 3, 4 and 10. Vouchers 

deposited in USJ and UARK. Ubiquitous in the Neotropics. 
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Figure 3. Number of species of myxomycetes found (gray bars) and elevation (black line) 

arranged according to the different forest types found in Costa Rica. For abbreviations 

see Materials and Methods.  
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Figure 4. Number of species of myxomycetes found in the different substrate types 

evaluated in the present study. For abbreviations see Materials and Methods. 
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Arcyria insignis Kalchbr. & Cooke, in Kalchbr., Grevillea 10: 143 (1882) 

Primarily found in LMF, LTDF, PWF, PMF and LMWF, on DBW, GL, AL, LP and FI. 

Reported in 3, 4 and 10. Vouchers deposited in USJ, BPI, UARK and M. Widespread in 

the Neotropics (see 10). 

 

Arcyria magna Rex, Proc. Acad. Nat. Sci. Philadelphia 45:364 (1893) 

Primarily found in PMF, on DBW. Reported in 3, 4 and 10. Vouchers deposited in USJ, 

BPI and UARK. Also reported from Mexico, Panama, Cuba, Dominica and Brazil. 

 

Arcyria minuta Buchet, in Patouillard, Mém. Acad. Malgache 6:42 (1927) 

Known only from Cocos Island (LWF) and Villa Mills (MRF). Found in DBW. Reported 

in 8 and 10. Vouchers deposited in UARK and M. Also reported from Mexico, Panama, 

Brazil and Argentina. 

 

Arcyria obvelata (Oeder) Onsberg, Mycologia 70(6):1286 (1979) 

= Arcyria nutans (Bull.) Grev., Fl. Edin. 455 (1824) 

Primarily found in PMFTL, on DBW. Reported in 4 and 10. Vouchers deposited in 

UARK. Widespread in the Neotropics (see 10). 

 

? Arcyria oerstedii Rostaf., Sluzowce Monogr. 278 (1875) 

Possibly found in LMF, on DBW. Reported in 4. No vouchers known (see comments of 

this species in 4). Also reported from Mexico, Panama, Cuba, Venezuela, Brazil, 

Paraguay and Argentina. 
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* Arcyria pomiformis (Leers) Rostaf., Sluzowce Monogr. 271 (1875) 

Primarily found in PMF, on DBW. First published report for Costa Rica. Vouchers 

deposited in UARK and M. Also reported from Mexico, Panama, Jamaica, Puerto Rico, 

Colombia, Venezuela, Brazil, Ecuador and Argentina. 

 

Badhamia cinerascens G.W.Martin, J. Wash. Acad. Sci. 22(5):88 (1932) 

Only one collection made in LMF, on DBW. Reported in 3 and 10. No vouchers known. 

Also reported from Colombia and Argentina. 

 

* Badhamia utricularis (Bull.) Berk., Trans. Linn. Soc. London 21:153 (1853) 

Primarily found in MRF, on DBW. First published report for Costa Rica. Vouchers 

deposited in M. Also reported from Mexico and Bolivia. 

 

* Barbeyella minutissima Meyl., Bull. Soc. Bot. Genève 6:89 (1914) 

Only found in MRF, on DBW. First published report for Costa Rica. Vouchers deposited 

in UARK. Also reported from Mexico. 

 

Ceratiomyxa fruticulosa (O.F.Müll.) T.Macbr., N. Amer. Slime-Moulds 18 (1899) 

Primarily found in PWFTL and PMFTL, on DBW. Reported in 2, 3, 4, 5, 7, 9 and 10. 

Vouchers deposited in USJ, BPI, UARK and M. Ubiquitous in the Neotropics. See Rojas 

et al. (2008) for a detailed discussion of the ecological requirements of the species of 

Ceratiomyxa. 
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Ceratiomyxa morchella A.L.Welden, Mycologia 46(1):94 (1954) 

Primarily found in PWFTL, PMFTL and PWF, on DBW. Reported in 3, 4, 9 and 10. 

Vouchers deposited in USJ, BPI, UARK and M. Also reported from Mexico, Honduras, 

Panama, Ecuador, Peru, Jamaica, Puerto Rico, Venezuela and Suriname.  

This appears to be a tropical lowland species.  

 

Ceratiomyxa sphaerosperma Boedijn, Misc. Zool. Sumatr. 24:1 (1927) 

This species has been found only in PWFTL, on DBW and GL. Reported in 2, 3, 4, 9 and 

10. Vouchers deposited in USJ and UARK. Widespread in the Neotropics (see 10). 

 

Clastoderma debaryanum A.Blytt, Bot. Zeitung (Berlin) 38:343 (1880) 

Found in LWF, LDF, PWF and MRF, on DBD, TW and AL. Reported in 3, 4, 5, 7, 8 and 

10. Vouchers deposited in USJ, BPI, UARK and M. Widespread in the Neotropics (see 

10).  

 

Clastoderma pachypus Nann.-Bremek., Proc. Kon. Ned. Akad. Wetensch., C. 71(1):44 

(1968) 

Primarily found in LDF and PRF, on AL. Reported in 8 and 10. Vouchers deposited in 

UARK and M. Also reported from Mexico and Brazil. 

 

Collaria arcyrionema (Rostaf.) Nann.-Bremek. ex Lado, Ruizia 9:26 (1991)  

≡ Lamproderma arcyrionema Rostaf., Sluzowce Monogr. 208 (1874) 
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Primarily found in LMF, LWF and PWF, on GL and AL. Reported in 3, 4, 5, 7 and 10. 

Vouchers deposited in USJ, BPI, UARK and M. Widespread in the Neotropics (see 10). 

 

Collaria lurida (Lister) Nann.-Bremek., Nederlandse Myxomyceten (Zutphen) 236 

(1975) 

≡ Comatricha lurida Lister, Monogr. Mycetozoa 119 (1894) 

Primarily found in LMF, LWF and PWF, on GL. Reported in 8 and 10. Vouchers 

deposited in UARK. Also reported from Mexico, Cuba, Puerto Rico and Colombia. 

 

Collaria rubens (Lister) Nann.-Bremek., Nederlandse Myxomyceten (Zutphen) 236 

(1975)  

≡ Comatricha rubens Lister, Monogr. Mycetozoa 123 (1894) 

Primarily found in LMF and PRF, on GL. Reported in 5 and 10. Vouchers deposited in 

UARK. Also reported from Mexico, Ecuador and Argentina. 

 

Comatricha elegans (Racib.) G.Lister, Guide Brit. Mycetozoa, ed. 3 31 (1909) 

Primarily found in LMWF and LMF, on DBW and AL. Reported in 3, 4, 8 and 10. 

Vouchers deposited in BPI and UARK. Also reported from Mexico, Cuba, Jamaica, 

Haiti, Puerto Rico, Colombia, Ecuador, Venezuela, Trinidad, Brazil, Chile and Argentina. 

 

Comatricha laxa Rostaf., Sluzowce Monogr. 201 (1874) 



304 
 

Primarily found in LMF and PRF, on GL and AL. Reported in 8 and 10. Vouchers 

deposited in UARK. Also reported from Mexico, Guatemala, Panama, Cuba, Puerto 

Rico, Venezuela, Brazil and Chile. 

 

** Comatricha laxifila R.K.Chopra & T.N.Lakh., in Chopra, Nannenga-Bremekamp & 

Lakhanpal, Proc. Kon. Ned. Akad. Wetensch. 95(1):44 (1992) 

This species has been found only in LDF, on DBW. First published report for Costa Rica. 

Vouchers deposited in UARK. Not yet reported for the Neotropical region (see 10).  

 

Comatricha nigra (Pers. ex J.F.Gmel.) J.Schröt., Krypt.-Fl. Schlesien Pilze Schles. 

3(1):118 (1885) 

Primarily found in LWF, PRF and MRF, on DBW, TW, GL and AL. Reported in 8 and 

10. Vouchers deposited in UARK and M. Widespread in the Neotropics (see 10). 

 

Comatricha pulchella (C.Bab.) Rostaf., Sluzowce Monogr. Suppl. 27 (1876) 

Primarily found in LWF, PRF and MRF, on DBW, AL and LC. Reported in 7, 8 and 10. 

Vouchers deposited in USJ, UARK and M. Also reported from Mexico, Panama, Puerto 

Rico, Venezuela, Brazil, Ecuador, Bolivia, Uruguay and Argentina. 

 

Comatricha tenerrima (M.A.Curtis) G.Lister, Guide Brit. Mycetozoa, ed. 4 39 (1919) 

Primarily found in LWF, PRF and MRF, on TW, GL, AL, LC and FI. Reported in 3, 4, 7, 

8 and 10. Vouchers deposited in USJ, BPI and UARK. Also reported from Mexico, 

Belize, Cuba, Jamaica, Puerto Rico, Venezuela, Brazil, Ecuador, Peru and Argentina. 
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Craterium aureum Morgan, J. Cincinnati Soc. Nat.Hist. 16:27 (1893) 

Primarily found in LWF and PMF, on AL and LP. Reported in 8 and 10. Vouchers 

deposited in USJ and UARK. Also reported from Mexico, Jamaica, Puerto Rico, 

Dominican Republic, Colombia, Venezuela, Brazil, Ecuador, Peru and Argentina. 

 

Craterium concinnum Rex, Proc. Acad. Nat. Sci. Philadelphia 45:370 (1893) 

Primarily found in MRF and SRP, on GL, AL and FI. Reported in 5 and 10. Vouchers 

deposited in UARK and M. Also reported from Cuba, Jamaica, Colombia and Ecuador. 

 

Craterium leucocephalum (Pers. ex J.F.Gmel.) Ditmar, in Sturm, Deutschl. Fl. Pilze 

1(1):21 (1813) 

Primarily found in LMF, PMF and LMMF, on GL. Reported in 3, 4, 5 and 10. Vouchers 

deposited in USJ, BPI, UARK and M. Widespread in the Neotropics (see 10). 

 

* Craterium paraguayense (Speg.) G.Lister, in Lister, Monogr. Mycetozoa, ed. 2 95 

(1911) 

Primarily found in PWF, LMFTP and LMWF, on GL and LP. First published report for 

Costa Rica. Vouchers deposited in USJ, UARK and M. Also reported from Panama, 

Colombia, Venezuela, French Guiana, Brazil, Ecuador, Paraguay and Argentina.  

 

* Cribraria aurantiaca Schrad., Nov. Gen. Pl. 5 (1797) 
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These species has been found only in MRF, on GL. First published report for Costa Rica. 

Vouchers deposited in M. Also reported from Mexico, Panama, Venezuela, Jamaica, 

Brazil, Chile and Argentina. 

 

Cribraria cancellata (Batsch) Nann.-Bremek., Nederlandse Myxomyceten (Zutphen) 92 

(1975) 

≡ Dictydium cancellatum (Batsch) T.Macbr., N. Amer. Slime-Moulds 172 (1899) 

Primarily found in PWFTL, LDF, PRF and PMF, on DBW. Reported in 2, 3, 4 and 10. 

Vouchers deposited in USJ, BPI, UARK and M. Ubiquitous in the Neotropics (see 10). 

 

* Cribraria confusa Nann.-Bremek. & Y.Yamam., Proc. Kon. Ned. Akad. Wetensch., C. 

86(2):212 (1983) 

This species has been found only in LDF, on DBW. First published report for Costa Rica. 

Vouchers deposited in M. Also reported from Mexico, Belize and Ecuador. 

 

* Cribraria costata Dhillon & Nann.-Bremek., Proc. Kon. Ned. Akad. Wetensch., C. 

81(2):141 (1978) 

These species has been found only in MRF, on DBW, GL and DU. First published report 

for Costa Rica. Vouchers deposited in M. Also reported from French Guiana. 

 

Cribraria intricata Schrad., Nov. Gen. Pl. 7 (1797) 

Primarily found in PMFTL and MRF, on DBW. Reported in 3, 4, 7, 8 and 10. Vouchers 

deposited in USJ, BPI, UARK and M. Widespread in the Neotropics (see 10). 
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Cribraria languescens Rex, Proc. Acad. Nat. Sci. Philadelphia 43:394 (1891) 

Primarily found in PMFTL, LMF, LDF and MRFTLW, on DBW. Reported in 3, 4 and 

10. Vouchers deposited in USJ, BPI, UARK and M. Widespread in the Neotropics (see 

10). 

 

* Cribraria macrocarpa Schrad., Nov. Gen. Pl. 8 (1797) 

This species has been found only in MRF, on DBW. First published report for Costa 

Rica. Vouchers deposited in M. Also reported from Mexico, Colombia and Chile. 

 

Cribraria microcarpa (Schrad.) Pers., Syn. Meth. Fung. 190 (1801) 

Primarily found in LWF, PRF and PMF, on DBW, GL and AL. Reported in 3, 4, 5, 8 and 

10. Vouchers deposited in USJ, UARK and M. Widespread in the Neotropics (see 10). 

 

Cribraria minutissima Schwein., Trans. Amer. Philos. Soc. 4:260 (1832) 

Only one collection made in LMFTP, on DBW. Reported in 3 and 10. No vouchers 

known. Also reported from Mexico, Jamaica, Guadeloupe, Dominica, Trinidad, Brazil 

and Uruguay. 

 

Cribraria mirabilis (Rostaf.) Massee, Monogr. Myxogastr. 60 (1892) 

Primarily found in MRF, on DBW. Reported in 7 and 10. Vouchers deposited in USJ and 

UARK. Also reported from Mexico, Brazil and Chile. 
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Cribraria piriformis Schrad., Nov. Gen. Pl. 4 (1797) 

Primarily found in MRF, on DBW. Reported in 7 and 10. Vouchers deposited in USJ and 

UARK. Also reported from Mexico, Guatemala, Panama, Brazil and Chile.  

 

* Cribraria purpurea Schrad., Nov. Gen. Pl. 8 (1797) 

Primarily found in LMRF, on DBW. First published report for Costa Rica. Vouchers 

deposited in UARK. Also reported from Mexico and Venezuela.  

 

Cribraria splendens (Schrad.) Pers., Syn. Meth. Fung. 191 (1801) 

Primarily found in PWFTL, PMF and LMWF, on DBW. Reported in 3, 4 and 10. 

Vouchers deposited in USJ. Also reported from Mexico, Jamaica, Virgin Islands, 

Venezuela, Brazil and Chile.  

 

Cribraria tenella Schrad., Nov. Gen. Pl. 6 (1797) 

Primarily found in PWFTL, PMF and LMRF, on DBW. Reported in 3, 4 and 10. 

Vouchers deposited in USJ, UARK and M. Widespread in the Neotropics (see 10).  

 

Cribraria violacea Rex, Proc. Acad. Nat. Sci. Philadelphia 43:393 (1891) 

Primarily found in LDF and LMF, on DBW and GL. Reported in 3, 5, 8 and 10. 

Vouchers deposited in USJ, UARK and M. Widespread in the Neotropics (see 10). 

 

Cribraria vulgaris Schrad., Nov. Gen. Pl. 6 (1797) 



309 
 

Primarily found in MRF, on DBA and LC. Reported in 4, 5, 7 and 10. Vouchers 

deposited in USJ, BPI and UARK. Also reported from Argentina.  

 

Diachea bulbillosa (Berk. & Broome) Lister, in Penzig, Myxomyc. Fl. Buitenzorg 45 

(1898) 

Primarily found in LDF and LMRF, on GL and LP. Reported in 3, 4 and 10. Vouchers 

deposited in USJ, UARK and M. Also reported from Panama, Cuba, Jamaica, Puerto 

Rico, Dominica, Grenada, Colombia, Venezuela and Ecuador.  

 

Diachea leucopodia (Bull.) Rostaf., Sluzowce Monogr. 190 (1874) 

Primarily found in LWF, LWFTP and LMMF, on GL. Reported in 1, 3, 4, 5, 8 and 10. 

Vouchers deposited in USJ, BPI, UARK and M. Cosmopolitan. 

 

Diacheopsis sp. Meyl., Bull. Soc. Vaud. Sci. Nat. 57:149 (1930) 

This genus is reported from one collection found in MRF, on DBW. Reported in 7. 

Vouchers deposited in UARK. In the Neotropics the genus is only reported from Mexico 

and Costa Rica. 

 

Dictydiaethalium plumbeum (Schumach.) Rostaf., in Lister, Monogr. Mycetozoa 157 

(1894) 

Primarily found in PWFTL and MRF, on LP. Reported in 3, 4 and 10. Vouchers 

deposited in USJ. Also reported from Mexico, Nicaragua, Panama, Dominican Republic, 

Puerto Rico, Colombia, Venezuela, Brazil, Chile and Argentina. 
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Diderma chondrioderma (de Bary & Rostaf.) G.Lister, in Lister, Monogr. Mycetozoa, ed. 

3 258 (1925) 

Primarily found in PWF and MRF, on DBW and LC. Reported in 2, 3, 7 and 10. 

Vouchers deposited in USJ, BPI and UARK. Also reported from Mexico, Belize, 

Jamaica, Puerto Rico, Dominica, Brazil and Ecuador. 

 

Diderma corrugatum T.E.Brooks & H.W.Keller, in Brooks, Keller & Chassain, 

Mycologia 69(1):180 (1977) 

Primarily found in LDF and PMFTL, on DBW and LI. Reported in 5 and 10. Vouchers 

deposited in UARK and M. Also reported from Cuba, Brazil and Ecuador. 

 

Diderma deplanatum Fr., Syst. Mycol. 3:110 (1829) 

Primarily found in LDF, on DBW. Reported in 5 and 10. Vouchers deposited in UARK 

and M. Also reported from Mexico and Brazil. 

 

Diderma effusum (Schwein.) Morgan, J. Cincinnati Soc. Nat.Hist. 16:155 (1894) 

Primarily found in LMF, LDF, PMF, LMRF, on TW, GL, LC and FI. Reported in 3, 4, 5, 

8 and 10. Vouchers deposited in USJ, BPI, UARK and M. Widespread in the Neotropics 

(see 10). 

 

* Diderma globosum Pers., Neues Mag. Bot. 1:89 (1794) 
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This species has been found only in PWFTp, on DBW. First published report for Costa 

Rica. Vouchers deposited in M. Also reported from Venezuela, Ecuador, Peru and 

Argentina. 

 

Diderma hemisphaericum (Bull.) Hornem., Fl. Dan. 33:13 (1829) 

Primarily found in LWF, LDF, PWF and LMRF, on GL and AL. Reported in 3, 4, 5, 8 

and 10. Vouchers deposited in USJ, BPI, UARK and M. Widespread in the Neotropics 

(see 10).  

 

** Diderma indicum K.S.Thind & H.S.Sehgal, Mycologia 56(4):564 (1964) 

Primarily found in PMF, on LP. First published report for Costa Rica. Vouchers 

deposited in USJ. Apparently not yet reported for the Neotropical region (see 10). 

 

* Diderma montanum (Meyl.) Meyl., Annuaire Conserv. Jard. Bot. Genève 15-16:311 

(1913) 

This species has been found only in MRF, on GL. First published report for Costa Rica. 

Vouchers deposited in M. Also reported from Venezuela. 

 

Diderma niveum (Rostaf.) T.Macbr., N. Amer. Slime-Moulds 100 (1899) 

Possibly found in MRF, on TW. Reported in 4 and 10. No vouchers reported (see 

information on this species in 4). Also reported from Mexico, Colombia, Chile and 

Argentina. 
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* Diderma ochraceum Hoffm., Deutschl. Fl. 2:pl. 9, fig. 2b (1795) 

This species has been found only in MRF, on LC. First published report for Costa Rica. 

Vouchers deposited in UARK. Also reported from Mexico. 

 

Diderma rugosum (Rex) T.Macbr., N. Amer. Slime-Moulds 105 (1899) 

This species has been found only in LWF, on GL. First published report for Costa Rica. 

Vouchers deposited in UARK. Also reported from Mexico, Panama, Jamaica, Antigua 

and Trinidad. 

 

* Diderma saundersii (Berk. & Broome ex Massee) Lado, Cuad. Trab. Fl. Micol. Iber. 35 

(2001) 

This species has been found only in PWFTL, on GL. First published report for Costa 

Rica. Vouchers deposited in UARK. Also reported from Mexico and Ecuador. 

 

Diderma sauteri (Rostaf.) T.Macbr., N. Amer. Slime-Moulds 103 (1899) 

This species has been found only in PMF, on GL. Reported in 3 and 10. Vouchers 

deposited in UARK. Also reported from Mexico and Venezuela. 

 

* Diderma subdictyospermum (Rostaf.) G.Lister, in Lister, Monogr. Mycetozoa, ed. 2 

101 (1911) 

This species has been found only in PWF, on GL. First published report for Costa Rica. 

Vouchers deposited in UARK. Also reported from Mexico and Venezuela. 
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* Diderma subincarnatum Kowalski, Mycologia 59(1):169 (1967) 

This species has been found only in PWFTL, apparently on GL. First published report for 

Costa Rica. Vouchers deposited at BPI. Also reported from Mexico and Chile. 

 

Diderma testaceum (Schrad.) Pers., Syn. Meth. Fung. 167 (1801) 

Primarily found in LWF, PRF and MRF, on GL, AL and FI. Reported in 3, 4, 5 and 10. 

Vouchers deposited in USJ, BPI, UARK and M. Also reported from Mxico, Cuba, 

Jamaica, Dominican Republic, Guadeloupe, Brazil and Chile. 

 

* Didymium anellus Morgan, J. Cincinnati Soc. Nat.Hist. 16:148 (1894) 

Primarily found in LMF and PWF, on AL. First published report for Costa Rica. 

Vouchers deposited in UARK. Also reported from Mexico, Jamaica, Puerto Rico, 

Trinidad, Colombia and Brazil, Ecuador, Chile and Argentina. 

 

* Didymium bahiense Gottsb., Nova Hedwigia 15:365 (1968) 

Primarily found in PWF, LMRF and MRF, on GL and AL. First published report for 

Costa Rica. Vouchers deposited in UARK and M. Also reported from Mexico, Colombia, 

Venezuela, Ecuador and Brazil.  

 

Didymium clavus (Alb. & Schwein.) Rabenh., Deutschl. Krypt.-Fl. 1:280 (1844) 

Primarily found in PWF, LMRF and MRF, on GL, AL and FI. Reported in 2, 3, 4, 5 and 

10. Vouchers deposited in USJ, BPI, UARK and M. Widespread in the Neotropics (see 

10.) 
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* Didymium comatum (Lister) Nann.-Bremek., Proc. Kon. Ned. Akad. Wetensch., C. 

69(3):361 (1966) 

Primarily found in PWF and LMRF, on GL. First published report for Costa Rica. 

Vouchers deposited in UARK and M. Also reported from the Antillean Windward 

Islands. 

 

Didymium crustaceum Fr., Syst. Mycol. 3:124 (1829) 

Primarily found in PMF, on DBW. Reported in 3, 4 and 10. Vouchers deposited in USJ. 

Also reported from Mexico, Cuba, Dominica and Bolivia. 

 

Didymium difforme (Pers.) Gray, Nat. Arr. Brit. Pl. 1:571 (1821) 

Primarily found in LMF, LWFTP, PRF and SRP, on GL and AL. Reported in 3, 4, 5 and 

10. Vouchers deposited in USJ, BPI, UARK and M. Widespread in the Neotropics (see 

10). 

 

Didymium dubium Rostaf., Sluzowce Monogr. 152 (1874) 

Primarily found in LMWF and MRF, on DBA, FR and GL. Reported in 7 and 10. 

Vouchers deposited in USJ and M. Also reported from Mexico, Colombia, Venezuela 

and Argentina. 

 

* Didymium floccosum G.W.Martin, K.S.Thind & Rehill, Mycologia 51(2):160 (1959) 
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Primarily found in LDF, on GL. First published report for Costa Rica. Vouchers 

deposited in UARK. Also reported from Venezuela, Ecuador and Argentina. 

 

Didymium iridis (Ditmar) Fr., Syst. Mycol. 3:120 (1829) 

Primarily found in LWF, LMF, PWF, PWFTp and LMRF, on GL, AL, LC, FR and FI. 

Reported in 3, 4, 5, 8 and 10. Vouchers deposited in USJ, BPI, UARK and M. Probably 

ubiquitous in the Neotropics.  

 

* Didymium laxifilum G.Lister & J.Ross, in G.Lister, Essex Naturalist 27(10):264 (1945) 

Primarily found in PMF, substrate not reported. First published report for Costa Rica. 

Vouchers deposited at USJ. Also reported from Mexico.  

 

* Didymium listeri Massee, Monogr. Myxogastr. 244 (1892) 

Primarily found in PWF and LMRF, on GL. First published report for Costa Rica. 

Vouchers deposited at UARK. Also reported from from Mexico and Ecuador. 

 

Didymium minus (Lister) Morgan, J. Cincinnati Soc. Nat.Hist. 16:145 (1894) 

Primarily found in LWF, LDF, PMF and SRP, on DBW,  GL, AL and LC. Reported in 3, 

4, 8 and 10. Vouchers deposited at USJ, BPI, UARK and M. Also reported from Mexico, 

Jamaica, Antigua, Dominica, Ecuador, Colombia, Brazil, Uruguay, Chile and Argentina. 

 

Didymium nigripes (Link) Fr., Syst. Mycol. 3:119 (1829) 
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Primarily found in LWF, LDF, PMF, LMRF, MRF and SRP, on DBW, GL, AL, LP and 

FI. Reported in 3, 4 and 10. Vouchers deposited at USJ, BPI, UARK and M. Widespread 

in the Neotropics (see 10). 

 

Didymium ochroideum G.Lister, J. Bot. 69:297 (1931) 

Primarily found in LMF, LDF, PRF and LMRF, on GL, AL and FR. Reported in 5 and 

10. Vouchers deposited at UARK and M. Also reported from Mexico, Brazil and 

Ecuador. 

 

Didymium ovoideum Nann.-Bremek., Acta Bot. Neerl. 7:780 (1958) 

Primarily found in LDF and PWF, on GL. Reported in 5. No vouchers known (see 

information on this species in 5). Also reported from Mexico. 

 

Didymium squamulosum (Alb. & Schwein.) Fr., Symb. Gasteromyc. 19 (1818) 

Present in almost all ecosystems, more common in LWF, PWF and LMRF, primarily on 

GL, AL, LC, FI and DBW. Reported in 2, 3, 4, 5, 7, 8 and 10. Vouchers deposited at 

USJ, BPI, UARK and M. Ubiquitous in the Neotropics. 

 

* Didymium sturgisii Hagelst., Mycologia 29(4):397 (1937) 

This species has been found only in LMF, on GL. First published report for Costa Rica. 

Vouchers deposited at M. Also reported from Mexico. 

 

* ? Echinostelium apitectum K.D.Whitney, Mycologia 72(5):954 (1980) 
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This species has been found only in LDF, on DBW. First published report for Costa Rica. 

No vouchers known, but the species seems to have been observed in the country. Also 

reported from Mexico and Ecuador. 

 

Echinostelium bisporum (L.S.Olive & Stoian.) K.D.Whitney & L.S.Olive, in Whitney, 

Bennett & Olive, Mycologia 74(4):680 (1982) 

This species has been found only in LWF, on GL. Reported in 6 and 10. No vouchers 

known but observed in cultures prepared for the isolation of protosteloid amoebae. Also 

reported from Cuba. 

 

Echinostelium minutum de Bary, in Rostafinski, Sluzowce Monogr. 215 (1874) 

Primarily found in LDF, LMF, PWF and PRF, on DBW and AL. Reported in 5, 8 and 10. 

Vouchers deposited at UARK and M. Widespread in the Neotropics (see 10).  

 

* Enerthenema papillatum (Pers.) Rostaf., Sluzowce Monogr. Suppl. 28 (1876) 

This species has been found only in MRF, on TW. First published report for Costa Rica. 

Vouchers deposited at UARK. Also reported from Mexico, Brazil, Ecuador, Chile and 

Argentina. 

 

Fuligo cinerea (Schwein.) Morgan, J. Cincinnati Soc. Nat.Hist. 19:33 (1896) 

This species has been found only in LDF, on DBW. Reported in 5 and 10. No vouchers 

known (see information on this species in 5). Also reported from Mexico, Cuba, Jamaica, 

Dominica, Barbados, Brazil and Argentina. 
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* Fuligo intermedia T.Macbr., N. Amer. Slime-Moulds, ed.2 30 (1922) 

This species has been found only in PMF, on DBW. First published report for Costa Rica. 

Vouchers deposited at BPI. Also reported from Mexico. 

 

Fuligo megaspora Sturgis, Colorado Coll. Stud. Sci. Ser. 12:443 (1913) 

Primarily found in LMFTP and PWFTL, on LP. Reported in 3, 4 and 10. Vouchers 

deposited at USJ, BPI and UARK. Also reported from Mexico, Guatemala, Brazil and 

Argentina. 

 

Fuligo septica (L.) F.H.Wigg., Prim. Fl.Holsat. 112 (1780) 

Primarily found in PMF, PWF and LMF, on GL and DBW. Reported in 2, 3, 4 and 10. 

Vouchers deposited at USJ, CR, BPI, UARK and M. Widespread in the Neotropics. 

 

Hemitrichia calyculata (Speg.) M.L.Farr, Mycologia 66(5):887 (1974)  

= Hemiarcyria stipitata Massee, J. Roy. Microscop. Soc. London 1889(1):354 (1889)  

= Arcyria stipitata (Massee) Massee, Monogr. Myxogastr. 163 (1892) 

Present in almost all ecosystems, more common in LMF, PWFTL, PWF and MRF, 

primarily on DBW, GL and LP. Reported in 2, 3, 4, 7 and 10. Vouchers deposited at USJ, 

BPI, UARK and M. Apparently ubiquitous in the Neotropics (see 10). 

 

Hemitrichia leiocarpa (Cooke) Lister, Monogr. Mycetozoa 177 (1894) 

≡ Arcyria leiocarpa (Cooke) Massee, Monogr. Myxogastr. 167 (1892) 
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Primarily found in LWF and MRF, on DBW and TW. Reported in 3, 7 and 10. Vouchers 

deposited at USJ and M. Also reported from Mexico, Belize, Panama, Cuba, Colombia, 

Grenada and Brazil. 

 

Hemitrichia minor G.Lister, J. Bot. 49:62 (1911) 

= Perichaena minor (G.Lister) Hagelst., Mycologia 35(2):130 (1943) 

Primarily found in LDF, LMF, PWF, PRF, PMF and LMRF, on DBW, GL and AL. 

Reported in 5, 8 and 10. Vouchers deposited at UARK. Also reported from Mexico, 

Belize, Panama, Dominica, Brazil and Chile. 

 

Hemitrichia pardina (Minakata) Ing, Myxomycetes Britain and Ireland 132 (1999) 

≡ Perichaena minor var. pardina (Minakata) Hagelst., Mycologia 35(1):131 (1943) 

Primarily found in LMF and PMF, on GL, AL and LP. Reported in 10. Vouchers 

deposited at UARK and M. Also reported from Mexico, Cuba, Puerto Rico, Brazil and 

Ecuador. 

 

Hemitrichia serpula (Scop.) Rostaf. ex Lister, Monogr. Mycetozoa 179 (1894) 

Present in almost all ecosystems, more common in LDF and MRF, primarily DBW, GL 

and LP. Reported in 3, 4, 7, 8 and 10. Vouchers deposited at USJ, BPI, UARK and M. 

Widespread in the Neotropics (see 10). 

 

* Lamproderma arcyrioides (Sommerf.) Rostaf., Sluzowce Monogr. 206 (1874) 
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Primarily found in MRF, on GL. First published report for Costa Rica. Vouchers 

deposited at BPI and M. Also reported from Mexico, Jamaica, Dominican Republic, 

Puerto Rico, Brazil and Argentina. 

 

Lamproderma columbinum (Pers.) Rostaf., in Fuckel, Jahrb. Nassauischen Vereins 

Naturk. 27-28:69 (1873) 

Primarily found in MRF, on DBW and LC. Reported in 7 and 10. Vouchers deposited at 

USJ and UARK. Also reported from Mexico. 

 

** Lamproderma cribrarioides (Fr.) R.E.Fr., Svensk Bot. Tidskr. 4:259 (1911) 

Primarily found in MRF, on DBW. Reported in 7 and 10. Vouchers deposited at UARK. 

Not reported from other country in the Neotropics. 

 

Lamproderma echinulatum (Berk.) Rostaf., Sluzowce Monogr. Suppl. 25 (1876) 

Primarily found in MRF, on DBW and LC. Reported in 7 and 10. Vouchers deposited at 

USJ. Also reported from Mexico. 

 

** Lamproderma magniretispora G. Moreno, C. Rojas, S.L. Stephenson & H. Singer 

Mycological Progress 8(3):215 (2009) 

This species has been found only in MRF, on DBW. Reported in 11. Vouchers deposited 

at UARK. Not reported from other country in the Neotropics. 

 

Lamproderma muscorum (Lév.) Hagelst., Mycologia 27(1):88 (1935) 
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Primarily found in LMRF, on DBW. Reported in 3 and 10. Vouchers deposited at BPI. 

Also reported from Mexico, Colombia, Venezuela and Brazil. 

 

** Lamproderma sauteri Rostaf., Sluzowce Monogr. 205 (1874) 

Primarily found in MRF, on DBW. Reported in 7 and 10. Vouchers deposited at UARK. 

Not reported from other country in the Neotropics. 

 

Lamproderma scintillans (Berk. & Broome) Morgan, J. Cincinnati Soc. Nat.Hist. 16:131 

(1894) 

Primarily found in LMF, LDF, PWF and LMRF, on GL, AL and LC. Reported in 3, 4, 5, 

8 and 10. Vouchers deposited at USJ, BPI, UARK and M. Also reported from Mexico, 

Panama, Cuba, Jamaica, Haiti, Puerto Rico, Antigua, Dominica, Colombia, Venezuela, 

Brazil, Ecuador and Bolivia. 

 

Leocarpus fragilis (Dicks.) Rostaf., Sluzowce Monogr. 132 (1874) 

Primarily found in MRF and SRP, on DBW and TW. Reported in 7 and 10. Vouchers 

deposited at USJ, UARK and M. Also reported from Mexico, Colombia, Brazil, Chile 

and Argentina. 

 

* Lepidoderma trevelyanii (Grev.) Poulain & Mar.Mey., in Poulain, Meyer & Bozonnet, 

Bull. Mycol. Bot. Dauphiné-Savoie 165:10 (2002)  

This species has been found only in PWF, on DBW. First published report for the Costa 

Rica. Vouchers deposited at UARK. Also reported from Chile and Argentina. 
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Licea biforis Morgan, J. Cincinnati Soc. Nat.Hist. 15:131 (1893) 

This species has been found only in PMF, on GL. Reported in 5. No vouchers known. 

Also reported from Mexico, Belize, Cuba, Jamaica, Colombia, Brazil, Ecuador and Chile. 

 

* Licea denudescens H.W.Keller & T.E.Brooks, Mycologia 69(5):668 (1977)  

This species has been found only only in PWF, on DBW. First published report for the 

Costa Rica. Vouchers deposited at M. Also reported from Mexico, Belize and Brazil. 

 

* Licea erecta K.S.Thind & Dhillon, Mycologia 59(3):463 (1967) 

This species has been found only in LMRF, on DBW. First published report for the Costa 

Rica. Vouchers deposited at UARK. Also reported from Belize, Cuba and Brazil. 

 

* Licea minima Fr., Syst. Mycol. 3:199 (1829) 

Primarily found in MRF and SRP, on DBW, GL and FI. First published report for the 

Costa Rica. Vouchers deposited at UARK and M. Also reported from Mexico, Panama 

and Uruguay. 

 

Licea operculata (Wingate) G.W.Martin, Mycologia 34(6):702 (1942) 

Primarily found in LDF, LMF and PWF, on DBW and AL. Reported in 5 and 10. 

Vouchers deposited at UARK. Also reported from Mexico, Panama, Puerto Rico, 

Dominica, Venezuela, Brazil, Ecuador, Peru and Uruguay. 
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* Licea pedicellata (H.C.Gilbert) H.C.Gilbert, in Martin, Mycologia 34(6):702 (1942) 

This species has been found only in LDF, on DBW. First published report for the Costa 

Rica. Vouchers deposited at UARK. Also reported from Mexico, Panama, Puerto Rico, 

Grenada, Brazil and Ecuador. 

 

Licea perexigua T.E.Brooks & H.W.Keller, in Keller & Brooks, Mycologia 69(4):674 

(1977)  

This species has been found only in LDF, on DBW. Reported in 5 and 10. Vouchers 

deposited at UARK. Also reported from Mexico, Belize and Ecuador. 

 

* Licea pusilla Schrad., Nov. Gen. Pl. 19 (1797) 

This species has been found only in SRP, on DBW. First published report for Costa Rica. 

Vouchers deposited at UARK. Also reported from Mexico, Panama and Jamaica. 

 

** Licea testudinacea Nann.-Bremek., Acta Bot. Neerl. 14:141 (1965) 

Primarily found in MRF and SRP, on DBW. First published report for Costa Rica 

Vouchers deposited at UARK. Not reported from other country in the Neotropics. 

 

* Lycogala conicum Pers., Syn. Meth. Fung. 159 (1801) 

Primarily found in PWFTL, PMFTL and PMF, on DBW. First published report for the 

Costa Rica. Vouchers deposited at USJ and UARK. Also reported from Mexico, 

Nicaragua, Panama, Cuba, Jamaica, Guadeloupe and Brazil. 
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Lycogala epidendrum (L.) Fr., Syst. Mycol. 4:80 (1829) 

Present in almost all ecosystems, more common in MRF, LMWF and PWFTL, on DBW, 

GL and LC. Reported in 3, 4, 5, 7 and 10. Vouchers deposited at USJ, CR, BPI, UARK, 

M. Widespread in the Neotropics (see 10).  

 

Lycogala exiguum Morgan, J. Cincinnati Soc. Nat.Hist. 15:134 (1893) 

Primarily found in PMFTL, LDF and PWF, on DBW and GL. Reported in 3 and 10. 

Vouchers deposited at USJ, BPI, UARK and M. Also reported from Mexico, Panama, 

Cuba, Jamaica, Puerto Rico, Guadeloupe, Martinique, Dominica, Colombia, Venezuela, 

Guyana, French Guiana, Brazil and Ecuador. 

 

Macbrideola cornea (G.Lister & Cran) Alexop., Mycologia 59(1):112 (1967) 

Primarily found in LDF, on DBW. Reported in 5 and 10. Vouchers deposited at UARK. 

Also reported from Mexico and Ecuador. 

 

Macbrideola decapillata H.C.Gilbert, Stud. Nat.Hist. Iowa Univ. 16:158 (1934) 

This species apparently has been found only in lowlands (unknown forest type) on DBW. 

Reported in 4 and 10. No vouchers known. Also reported from Mexico and Ecuador. 

 

Macbrideola martinii (Alexop. & Beneke) Alexop., Mycologia 59(1):114 (1967) 

Primarily found in LDF, LMRF and LMWF, on DBW, LI and GL. Reported in 5 and 10. 

Vouchers deposited at UARK. Also reported from Mexico, Belize, Jamaica, Dominica, 

Brazil and Ecuador. 
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Macbrideola scintillans H.C.Gilbert, Stud. Nat.Hist. Iowa Univ. 16:156 (1934) 

Primarily found in LDF and LMRF, on DBW. Reported in 5 and 10. Vouchers deposited 

at UARK and M. Also reported from Mexico and Belize. 

 

Metatrichia floriformis (Schwein.) Nann.-Bremek., Proc. Kon. Ned. Akad. Wetensch., C. 

88(1):127 (1985) 

≡ Trichia floriformis (Schwein.) G.Lister, J. Bot. 57:110 (1919) 

Primarily found in MRF, LMRF, PMF, PWF, LDF and LMF, on DBW, LI, LC and DU. 

Reported in 3, 4, 7 and 10. Vouchers deposited at USJ, BPI, UARK and M. Also reported 

from Mexico, Jamaica, Puerto Rico, Venezuela, Brazil, Ecuador, Chile and Argentina. 

 

Metatrichia vesparia (Batsch) Nann.-Bremek. ex G.W.Martin & Alexop., Myxomycetes 

143 (1969) 

Primarily found in LDF, LMF, PWF, and PMF, on DBW, GL and LP. Reported in 3, 4, 5 

and 10. Vouchers deposited at USJ, BPI, UARK and M. Widespread in the Neotropics 

(see 10). 

 

* Paradiacheopsis acanthodes (Alexop.) Nann.-Bremek., in Nannenga-Bremekamp & 

Yamamoto, Proc. Kon. Ned. Akad. Wetensch., C. 89(2):236 (1986) 

This species has only been found only in LDF, on DBW. Reported in 5 as 

Paradiacheopsis cf. acanthodes. Vouchers deposited at UARK. Not reported from any 

other country in the Neotropics. 
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Paradiacheopsis longipes Hoof & Nann.-Bremek., Proc. Kon. Ned. Akad. Wetensch. 

99(1-2):51 (1996) 

Primarily found in PMF, on GL. Reported in 5 and 10. No vouchers known. Not reported 

from any other country in the Neotropics. 

 

Paradiacheopsis rigida (Brândza) Nann.-Bremek., in Martin & Alexopoulos, 

Myxomycetes 231 (1969) 

This species has been found only in MRF, on DBW. First published report for Costa 

Rica. Vouchers deposited at UARK. Also reported from Belize. 

 

Perichaena chrysosperma (Curr.) Lister, Monogr. Mycetozoa 196 (1894) 

Primarily found in LWF, LMF, PMF and LMRF, on DBW, TW, GL and AL. Reported in 

3, 4, 5, 8 and 10. Vouchers deposited at USJ, UARK and M. Widespread in the 

Neotropics (see 10).  

 

Perichaena corticalis (Batsch) Rostaf., Sluzowce Monogr. 293 (1875) 

Primarily found in LDF and LMF, on AL. Reported in 5 and 10. Vouchers deposited at 

UARK. Also reported from Mexico, Panama, Cuba, Dominican Republic, Ecuador, 

Brazil, Chile and Argentina. 

 

Perichaena depressa Lib., Pl. Crypt. Arduenna 378 (1837) 
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Primarily found in LMF, LDF, LWF and MRF, on DBW, TW and AL. Reported in 3, 5, 

7, 8 and 10. Vouchers deposited at USJ, UARK and M. Widespread in the Neotropics 

(see 10). 

 

* Perichaena dictyonema Rammeloo, Bull. Jard. Bot. Belg. 51(1/2):230 (1981) 

Primarily found in LWF, LDF and PWFTL, on GL and FI. First published report for 

Costa Rica. Vouchers deposited at UARK and M. Also reported from Puerto Rico and 

Ecuador. 

 

* Perichaena microspora Penz. & Lister, in Penzig, Myxomyc. Fl. Buitenzorg 76 (1898) 

This species has been found only in LDF, on GL. First published report for Costa Rica. 

Vouchers deposited at UARK and M. Also reported from Cuba and Brazil. 

 

Perichaena pedata (Lister & G.Lister) Lister ex E.Jahn, Ber. Deutsch. Bot. Ges. 36:667 

(1919) 

Primarily found in LMF, PRF and SRP, on DBW and GL. Reported in 5, 8 and 10. 

Vouchers deposited at UARK and M. Also reported from Mexico and Ecuador. 

 

Perichaena vermicularis (Schwein.) Rostaf., Sluzowce Monogr. Suppl. 34 (1876) 

Primarily found in LMF, LWF and LDF, on DBW, GL, AL and LP. Reported in 5 and 

10. Vouchers deposited at USJ, UARK and M. Also reported from Mexico, Panama, 

Cuba, Brazil, Brazil, Ecuador, Peru, Bolivia, Chile and Argentina. 
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Physarella oblonga (Berk. & M.A.Curtis) Morgan, J. Cincinnati Soc. Nat.Hist. 19:7 

(1896) 

Primarily found in PWFTL and PMF, on DBW and GL. Reported in 3, 4 and 10. 

Vouchers deposited at USJ, BPI, UARK and M. Widespread in the Neotropics (see 10). 

 

Physarum album (Bull.) Chevall., Fl. Gén. Env. Paris 1:336 (1826) 

= Physarum nutans Pers., Ann. Bot.(Usteri) 15:6 (1795) 

Primarily found in PMFTL, LMF, LMMF and MRF, on dead DBW and GL. Reported in 

3, 4 and 10. Vouchers deposited at USJ, BPI, UARK and M. Widespread in the 

Neotropics (see 10). 

 

* Physarum auriscalpium Cooke, Ann. Lyceum Nat.Hist. New York 11:384 (1877) 

= Physarum limonium Nann.-Bremek., Proc. Kon. Ned. Akad. Wetensch., C. 69(3):357 

(1966) 

This species has been found only in PWFTL, on FI. First published report for Costa Rica. 

Vouchers deposited at UARK. Also reported from Mexico, Belize, Panama, Puerto Rico, 

Guadeloupe, Dominica, Venezuela and Brazil. 

 

Physarum bitectum G.Lister, in Lister, Monogr. Mycetozoa, ed. 2 78 (1911) 

Primarily found in PWF and MRF, on DBW. Reported in 3, 4 and 10. Vouchers 

deposited at USJ, BPI and UARK. Also reported from Mexico, Jamaica, Puerto Rico, 

Colombia and Venezuela. 
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Physarum bivalve Pers., Ann. Bot. (Usteri) 15:5 (1795) 

Primarily found in MRF, SRP and LMF, on DBW and GL. Reported in 3, 4 and 10. 

Vouchers deposited at USJ, BPI, UARK and M. Also reported from Mexico, Panama, 

Cuba, Haiti, Antigua, Colombia, Venezuela, French Guiana, Peru, Ecuador, Brazil, Chile 

and Argentina. 

 

Physarum bogoriense Racib., Hedwigia 37:52 (1898) 

Primarily found in LMF, PWF, PMF and LMRF, on GL, LP and DBW. Reported in 3, 4 

and 10. Vouchers deposited at USJ, BPI and UARK. Widespread in the Neotropics (see 

10). 

 

Physarum brunneolum (W.Phillips) Massee, Monogr. Myxogastr. 280 (1892) 

This species has been found only in MRF, on DBW. Reported in 7 and 10. Vouchers 

deposited at USJ. Also reported from Mexico, Colombia and Chile. 

 

Physarum cinereum (W.Phillips) Massee, Monogr. Myxogastr. 280 (1892) 

Primarily found in LMF, PWF, MRF and SRP, on GL, LP and DBW. Reported in 3, 4, 5 

and 10. Vouchers deposited at USJ, BPI, UARK and M. Widespread in the Neotropics 

(see 10). 

 

Physarum citrinum Schumach., Enum. Pl. 2:201 (1803) 
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Primarily found in PWFTL, LMF and PWF, on LC. Reported in 3, 4 and 10. Vouchers 

deposited at USJ and UARK. Also reported from Mexico, Colombia, Venezuela, 

Guadeloupe, Chile and Argentina. 

 

Physarum compressum Alb. & Schwein., Consp. Fung. Lusat. 97 (1805) 

Present in almost all ecosystems, more common in LWF, LMF and PWF, on FI, GL and 

AL. Reported in 3, 4, 5, 8 and 10. Vouchers deposited at USJ, CR, BPI, UARK and M. 

Widespread in the Neotropics. 

 

Physarum contextum (Pers.) Pers., Syn. Meth. Fung. 168 (1801) 

This species has been found only in MRF, on LC. Reported in 7 and 10. Vouchers 

deposited at USJ. Also reported from Mexico, Nicaragua and Argentina. 

 

Physarum crateriforme Petch, Ann. Roy. Bot Gard. (Peradeniya) 4:304 (1909)  

Primarily found in LDF, on DBW. Reported in 5 and 10. Vouchers deposited at UARK. 

Also reported from Mexico, Belize, Cuba, Puerto Rico, Antigua, Saint Lucia, Brazil and 

Ecuador. 

 

Physarum decipiens M.A.Curtis, Amer. J. Sci. Arts 6:352 (1848) 

Primarily found in LMF and PMF, on DBW and LP. Reported in 2, 3 and 10. Vouchers 

deposited at USJ, and BPI. Also reported from Mexico, Brazil, Peru and Bolivia. 

 

Physarum dictyosporum G.W.Martin, Brittonia 14:183 (1962) 
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This species has een found only in LDF, on GL. Reported in 3 and 4. Vouchers deposited 

at BPI. Also reported from Mexico and Colombia. 

 

Physarum didermoides (Pers.) Rostaf., Sluzowce Monogr. 97 (1874) 

Primarily found in LWF and LMF, on FI and GL. Reported in 2, 3, 4, 5 and 10. Vouchers 

deposited at USJ, BPI, UARK and M. Widespread in the Neotropics (see 10). 

 

* Physarum echinosporum Lister, J. Bot. 37:147 (1899) 

Primarily found in LMF and MRF, on TW. First published report for Costa Rica. 

Vouchers deposited at USJ. Also reported from Panama, Jamaica, Antigua, Dominica, 

Brazil, Ecuador, Uruguay and Chile. 

 

* Physarum flavicomum Berk., London J. Bot. 4:66 (1845) 

Primarily found in LDF, PWF and LMMF, on DBW and GL. First published report for 

Costa Rica. Vouchers deposited at BPI, UARK and M. Also reported from Mexico, 

Belize, Antigua, Trinidad, Colombia, Brazil and Chile. 

 

Physarum flavidum (Peck) Peck, Annual Rep. New York State Mus. 31:55 (1879) 

This species has been found only in MRF, on LC. Reported in 3, 4 and 10. Vouchers 

deposited at BPI. Not reported from any other country in the Neotropics. 

 

Physarum globuliferum (Bull.) Pers., Syn. Meth. Fung. 175 (1801) 
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Primarily found in LMF, LDF, PMF and MRF, on DBW and GL. Reported in 3, 4, 5 and 

10. Vouchers deposited at USJ, BPI, UARK and M. Widespread in the Neotropics (see 

10). 

 

* Physarum gyrosum Rostaf., Sluzowce Monogr. 111 (1874) 

Primarily found in LDF and PMFTL, on LP. First published report for Costa Rica. 

Vouchers deposited at USJ and UARK. Also reported from Mexico, Colombia, Brazil 

and Uruguay. 

 

Physarum javanicum Racib., Hedwigia 37:53 (1898) 

Primarily found in LWF, LMF and LMRF, on DBW, GL and AL. Reported in 3, 4, 8 and 

10. Vouchers deposited at BPI, UARK and M. Also reported from Mexico, Cuba, 

Jamaica, Puerto Rico, Colombia, Venezuela, Trinidad, French Guiana, Brazil and 

Ecuador. 

 

* Physarum leucophaeum Fr., Symb. Gasteromyc. 24 (1818)  

This species has been found only in PWFTL, on GL. First published report for Costa 

Rica. Vouchers deposited at BPI and UARK. Also reported from Mexico, Cuba, Jamaica, 

Dominican Republic, Antigua, Guadeloupe, Dominica, Ecuador, Brazil, Chile and 

Argentina. 

 

Physarum leucopus Link, Ges. Naturf. Freunde Berlin Mag. Neuesten Entdeck. 

Gesammten Naturk. 3:27 (1809) 
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Primarily found in PMF and MRF, on DBW. Reported in 3, 7 and 10. Vouchers 

deposited at USJ and BPI. Also reported from Mexico, Guatemala, Panama, Jamaica, 

Colombia, Brazil, Paraguay and Argentina. 

 

Physarum melleum (Berk. & Broome) Massee, Monogr. Myxogastr. 278 (1892) 

Primarily found in LWF and LMF, on GL, LP and DBW. Reported in 3, 4, 5, 7, 8 and 10. 

Vouchers deposited at USJ, BPI, UARK and M. Widespread in the Neotropics. 

 

Physarum murinum Lister, Monogr. Mycetozoa 41 (1894) 

This species has been found only in LWF, on DBW. Reported in 3, 4 and 10. Vouchers 

deposited at BPI. Also reported from Mexico. 

 

* Physarum mutabile (Rostaf.) G.Lister, in Lister, Monogr. Mycetozoa, ed. 2 53 (1911) 

This species has been found only in PMF, on DBW. First published report for Costa Rica. 

Vouchers deposited at USJ. Also reported from Mexico, Venezuela, Brazil and 

Argentina. 

 

Physarum nicaraguense T.Macbr., Bull. Iowa Univ. Lab. Nat.Hist. 2:382 (1893) 

Primarily found in LMF and PMF, on LP. Reported in 3, 4 and 10. Vouchers deposited at 

USJ and BPI. Also reported from Mexico, Belize, Nicaragua, Jamaica, Haiti, Puerto 

Rico, Trinidad and Brazil. 

 

Physarum notabile T.Macbr., N. Amer. Slime-Moulds, ed.2 80 (1922) 
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Primarily found in LWF, LMF, PWF and LMMF, on FI, GL and AL. Reported in 3, 4, 5 

and 10. Vouchers deposited at USJ, BPI and UARK. Also reported from Mexico, 

Jamaica, Dominica, Brazil, Bolivia and Argentina. 

 

Physarum nucleatum Rex, Proc. Acad. Nat. Sci. Philadelphia 43:389 (1891) 

Primarily found in LMF and PMFTL, on DBW and AL. Reported in 3, 4 and 10. 

Vouchers deposited at USJ, BPI, UARK and M. Also reported from Mexico, Nicaragua, 

Cuba, Jamaica, Puerto Rico, Dominica, Trinidad, Venezuela, French Guiana, Brazil, 

Ecuador and Argentina. 

 

* Physarum oblatum T.Macbr., Bull. Iowa Univ. Lab. Nat.Hist. 2:384 (1893) 

Primarily found in LMF and LMRF, on FI. First published report for Costa Rica. 

Vouchers deposited at BPI and UARK. Also reported from Mexico, Belize, Panama, 

Jamaica, Dominica, Colombia, Venezuela, Brazil and Ecuador. 

 

* Physarum penetrale Rex, Proc. Acad. Nat. Sci. Philadelphia 43:389 (1891) 

Primarily found in PWF, PRF and LMRF, on DBW and TW. First published report for 

Costa Rica. Vouchers deposited at UARK and M. Also reported from Mexico, Panama, 

Jamaica, Dominica, Venezuela, French Guiana, Brazil and Chile. 

 

* Physarum pezizoideum (Jungh.) Pavill. & Lagarde, Bull. Soc. Mycol. France 19:87 

(1903) 
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Primarily found in PWFTL, on DBW. First published report for Costa Rica. Vouchers 

deposited at UARK. Also reported from Mexico, Cuba, Brazil and Argentina. 

 

Physarum polycephalum Schwein., Schriften Naturf. Ges. Leipzig 1:63 (1822) 

Primarily found in LWF, PWF and PMF, on TW and GL. Reported in 3, 4 and 10. 

Vouchers deposited at USJ, BPI and UARK. Widespread in the Neotropics (see 10). 

 

Physarum pulcherripes Peck, Bull. Buffalo Soc. Nat. Sci. 1:64 (1873) 

Primarily found in LWF and LMF, on GL. Reported in 3, 4 and 10. Vouchers deposited 

at USJ, BPI and UARK. Also reported from Mexico, Panama, Jamaica, Dominica, 

Trinidad and Venezuela. 

 

Physarum pusillum (Berk. & M.A.Curtis) G.Lister, in Lister, Monogr. Mycetozoa, ed. 2 

64 (1911) 

Present in almost all ecosystems, more common in LWF, PWFTL and MRF, on GL, AL, 

DBW, LP and FI. Reported in 5, 8 and 10. Vouchers deposited at USJ, UARK and M. 

Widespread in the Neotropics (see 10). 

 

Physarum rigidum (G.Lister) G.Lister, in Lister, Monogr. Mycetozoa, ed. 3 36 (1925)  

Primarily found in PWF and PMF, on DBW. Reported in 3, 4 and 10. Vouchers 

deposited at USJ and BPI. Also reported from Jamaica, Puerto Rico, Trinidad, Brazil, 

Uruguay and Argentina. 
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* Physarum robustum (Lister) Nann.-Bremek., Proc. Kon. Ned. Akad. Wetensch., C. 

76(5):484 (1973)  

This species has been found only in MRF, on DBW. First published report for Costa 

Rica. Vouchers deposited at UARK. Also reported from Mexico. 

 

* Physarum roseum Berk. & Broome, J. Linn. Soc., Bot. 14:84 (1873) 

Primarily found in LDF and PMFTL, on DBW. Reported in 5 as doubtful. Vouchers 

deposited at USJ and UARK. Also reported from Mexico, Jamaica, Dominica, Brazil and 

Paraguay. 

 

Physarum serpula Morgan, J. Cincinnati Soc. Nat.Hist. 19:29 (1896) 

Primarily found in LMF and LWF, on TW, GL and LP. Reported in 8 and 10. Vouchers 

deposited at USJ, UARK and M. Also reported from Mexico, Panama, Cuba, Jamaica, 

Trinidad, Brazil, Ecuador and Argentina. 

 

Physarum stellatum (Massee) G.W.Martin, Mycologia 39(4):461 (1947) 

Primarily found in LMF, LDF, PWF, PRF, LMWF and MRF, on DBW and TW. 

Reported in 3, 4, 5 and 10. Vouchers deposited at USJ, BPI, UARK and M. Widespread 

in the Neotropics (see 10). 

 

* Physarum straminipes Lister, J. Bot. 36:163 (1898) 

This species has been found only in PMF, on GL and LP. Reported in 5 as doubtful. 

Vouchers deposited at UARK. Also reported from Mexico and Chile. 
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Physarum superbum Hagelst., Mycologia 32(3):385 (1940) 

Primarily found in LMF and LWF, on GL and FI. Reported in 8 and 10. Vouchers 

deposited at USJ, UARK and M. Also reported from Mexico, Haiti, Puerto Rico, 

Venezuela, Ecuador and Peru. 

 

Physarum tenerum Rex, Proc. Acad. Nat. Sci. Philadelphia 42:192 (1890) 

Primarily found in LMF, PWF, LMWF, on DBW. Reported in 2, 3, 4 and 10. Vouchers 

deposited at USJ, UARK and M. Widespread in the Neotropics (see 10). 

 

Physarum viride (Bull.) Pers., Ann. Bot. (Usteri) 15:6 (1795) 

Primarily found in PWFTL, PWF and LMWF, on DBW and GL. Reported in 1, 3, 4 and 

10. Vouchers deposited at USJ, BPI, UARK and M. Cosmopolitan. 

 

* Reticularia jurana Meyl., Bull. Soc. Vaud. Sci. Nat. 44:297 (1908) 

This species has been found only in PWFTp, on GL. First published report for Costa 

Rica. Vouchers deposited at M. Also reported from Mexico, Panama, Dominican 

Republic, Jamaica, Puerto Rico, Brazil, Ecuador, Uruguay, Chile and Argentina. 

 

* ? Reticularia splendens Morgan, J. Cincinnati Soc. Nat.Hist. 15:137 (1893) 

This species has been found only in PWF, on DBW. First published report for the 

country. No vouchers reported, but the species seems to have been observed in the 

country. Also reported from Mexico, Panama and Chile. 
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* Stemonaria gracilis Nann.-Bremek. & Y.Yamam., in Nannenga-Bremekamp, 

Yamamoto & Sharma, Proc. Kon. Ned. Akad. Wetensch., C. 87(4):461 (1984) 

This species has been found only in LMF, on GL. First published report for the country. 

Vouchers deposited at M. Also reported from Peru. 

 

Stemonaria longa (Peck) Nann.-Bremek., R.Sharma & Y.Yamam., in Nannenga-

Bremekamp, Yamamoto & Sharma, Proc. Kon. Ned. Akad. Wetensch., C. 87(4):453 

(1984) 

Primarily found in LWF, LMF, PWF and PMF, on DBW and LP. First published report 

for Costa Rica. Vouchers deposited at USJ, UARK and M. Widespread in the Neotropics 

(see 10). 

 

Stemonitis axifera (Bull.) T.Macbr., N. Amer. Slime-Moulds 120 (1899) 

= Stemonitis ferruginea Ehrenb., Sylv. Myc. Berol. 25 (1818) 

Primarily found in PMFTL, LDF, PWF, LMWF and MRF, on DBW and GL. Reported in 

1, 3, 4 and 10. Vouchers deposited at USJ, UARK and M. Probably ubiquitous in the 

Neotropics. 

 

Stemonitis flavogenita E.Jahn, Verh. Bot. Vereins Prov. Branderburg 45:165 (1904) 

Primarily found in LWF and MRF, on TW and AL. Reported in 3, 4, 8 and 10. Vouchers 

deposited at BPI and UARK. Also reported from Mexico, Guatemala, Panama, Cuba, 

Jamaica, Puerto Rico, Venezuela, Trinidad, Ecuador, Brazil and Argentina. 
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* Stemonitis foliicola Ing, Trans. Brit. Mycol. Soc. 50(4):555 (1967) 

This species has been found only in PWFTL, on GL. First published report for Costa 

Rica. Vouchers deposited at UARK. Also reported from Peru. 

 

Stemonitis fusca Roth, Bot. Mag.(Römer & Usteri) 1(2):26 (1787) 

Present in almost all ecosystems, more common in LWF, PMF and MRF, on DBW, TW, 

GL and AL. Reported in 3, 4, 5, 7, 8 and 10. Vouchers deposited at USJ, BPI, UARK and 

M. Widespread in the Neotropics (see 10). 

 

Stemonitis herbatica Peck, Annual Rep. New York State Mus. 26:75 (1874) 

Primarily found in LWF, LMF, PWF and PMF, on DBW and LP. Reported in 3 and 10. 

Vouchers deposited at BPI and UARK. Also reported from Mexico, Belize, Guatemala, 

Bahamas, Cuba, Jamaica, Dominican Republic, Puerto Rico, Antigua, Guadeloupe, 

Martinique, Dominica, Venezuela, Brazil, Ecuador and Argentina. 

 

* Stemonitis pallida Wingate, in Macbride, N. Amer. Slime-Moulds 123 (1899) 

This species has been found only in PRF, on DBW. First published report for Costa Rica. 

Vouchers deposited at UARK. Also reported from Mexico, Panama, Cuba, Jamaica, 

Puerto Rico, Trinidad, Venezuela, French Guiana, Brazil, Ecuador and Argentina. 

 

Stemonitis smithii T.Macbr., Bull. Iowa Univ. Lab. Nat.Hist. 2:381 (1893) 
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Primarily found in PMFTL, PMF and MRF, on DBW and LC. Reported in 7. Vouchers 

deposited at USJ and UARK. Also reported from Mexico, Nicaragua, Panama, Jamaica, 

Puerto Rico, Antigua, Dominica, Venezuela, Trinidad, Peru, Brazil, Chile and Argentina. 

 

Stemonitis splendens Rostaf., Sluzowce Monogr. 195 (1874) 

Primarily found in PMFTL, PWF, PMF and MRF, on DBW, GL and AL. Reported in 3, 

4 and 10. Vouchers deposited at USJ, BPI, UARK and M. Widespread in the Neotropics 

(see 10). 

 

Stemonitopsis aequalis (Peck) Y.Yamam., Myxomycete Biota Japan 625 (1998) 

This species has been found only in LWF, on GL. Reported in 3 and 10. Vouchers 

deposited at BPI. Also reported from Panama, Jamaica, Dominica and Brazil. 

 

** Stemonitopsis amoena (Nann.-Bremek.) Nann.-Bremek., Nederlandse Myxomyceten 

(Zutphen) 205 (1975) 

Primarily found in LMF, on LP and FI. First published report for Costa Rica. Vouchers 

deposited at USJ and M. Not reported from other country in the Neotropics. 

 

* Stemonitopsis gracilis (G.Lister) Nann.-Bremek., Nederlandse Myxomyceten 

(Zutphen) 210 (1975) 

Primarily found in PRF, on DBW. First published report for Costa Rica. Vouchers 

deposited at UARK. Also reported from Mexico, Cuba and Brazil. 
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Stemonitopsis hyperopta (Meyl.) Nann.-Bremek., Nederlandse Myxomyceten (Zutphen) 

206 (1975)  

Primarily found in LWF, PMFTL and PRF, on TW. Reported in 6 and 10. Vouchers 

deposited at USJ, UARK and M. Also reported from Mexico, Guatemala, Panama, 

Jamaica, Puerto Rico, Dominica, Brazil, Chile and Argentina. 

 

Stemonitopsis subcaespitosa (Peck) Nann.-Bremek., Nederlandse Myxomyceten 

(Zutphen) 211 (1975) 

Primarily found in PWFTL and PMFTL, on DBW. Reported in 3, 4 and 10. Vouchers 

deposited at USJ, BPI and UARK. Also reported from Mexico, Dominica, Venezuela, 

Brazil and Argentina. 

 

Stemonitopsis typhina (F.H.Wigg.) Nann.-Bremek., Nederlandse Myxomyceten 

(Zutphen) 209 (1975) 

≡ Comatricha typhoides (Bull.) Rostaf., in Lister, Monogr. Mycetozoa 120 (1894) 

Primarily found in LMF, PMFTL, PRF, PMF and MRF, on DBW and GL. Reported in 3, 

4, 5 and 10. Vouchers deposited at BPI, UARK and M. Widespread in the Neotropics 

(see 10). 

 

Symphytocarpus herbaticus Ing, in Ing & Nannenga-Bremekamp, Proc. Kon. Ned. Akad. 

Wetensch., C. 70(2):229 (1967) 

Primarily found in PWFTL, PWF and LMFTP, on DBW and GL. Reported in 3 and 4. 

Vouchers deposited at USJ and UARK. Also reported from Mexico, Guatemala, Jamaica, 
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Dominican Republic, Puerto Rico, Antigua, Guadeloupe, Martinique, Dominica, 

Venezuela and Argentina. 

 

* Trichia affinis de Bary, in Fuckel, Jahrb. Nassauischen Vereins Naturk. 23-24:336 

(1870) 

Primarily found in PMFTL and PWF, on DBW. First published report for Costa Rica. 

Vouchers deposited at UARK. Also reported from Mexico, Panama, Cuba, Trinidad, 

Ecuador and Chile. 

 

Trichia botrytis (J.F.Gmel.) Pers., Neues Mag. Bot. 1:89 (1794) 

Primarily found in PWFTL and MRF, on DBW, TW and LC. Reported in 7 and 10. 

Vouchers deposited at USJ and UARK. Also reported from Mexico, Jamaica, Dominican 

Republic, Brazil, Chile, and Argentina. 

 

* Trichia contorta (Ditmar) Rostaf., Sluzowce Monogr. 259 (1875) 

Primarily found in LMRF and SRP, on DBW. First published report for Costa Rica. 

Vouchers deposited at M. Also reported from Mexico, Brazil and Chile. 

 

Trichia decipiens (Pers.) T.Macbr., N. Amer. Slime-Moulds 218 (1899) 

Primarily found in LMWF and MRF, on DBW, GL and AL. Reported in 3, 4, 7 and 10. 

Vouchers deposited at USJ, BPI, UARK and M. Also reported from Mexico, Guatemala, 

Cuba, Jamaica, Puerto Rico, Venezuela, Brazil, Ecuador, Chile and Argentina. 
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Trichia favoginea (Batsch) Pers., Neues Mag. Bot. 1:90 (1794) 

Primarily found in LMWF and MRF, on DBW, GL and AL. Reported in 3, 4 7 and 10. 

Vouchers deposited at USJ, BPI, UARK and M. Widespread in the Neotropics (see 10). 

 

* ? Trichia flavicoma (Lister) Ing, Trans. Brit. Mycol. Soc. 50(4):558 (1967) 

This species has been found only in LDF, on DBW. First published report for Costa Rica. 

No vouchers known, but the species seems to have been observed in the country. Also 

reported from Mexico and Dominican Republic. 

 

Trichia persimilis P.Karst., Not. Sällsk. Fauna Fl. Fenn. Förh 9:353 (1868)  

Primarily found in LMWF and MRF, on DBW, GL and DU. First published report for 

Costa Rica. Vouchers deposited at M. Also reported from Mexico, Panama, Peru and 

Chile. 

 

Trichia scabra Rostaf., Sluzowce Monogr. 258 (1875) 

Primarily found in MRF, on DBW and GL. Reported in 3, 4 and 10. Vouchers deposited 

at BPI, UARK and M. Also reported from Mexico, Jamaica, Colombia, Venezuela, 

Brazil, Ecuador and Argentina. 

 

Trichia varia (Pers. ex J.F.Gmel.) Pers., Neues Mag. Bot. 1:90 (1794) 

Primarily found in PWFTL, on DBW. Reported in 3, 4 and 10. Vouchers deposited at 

USJ, BPI and UARK. Also reported from Mexico, Cuba, Jamaica, Venezuela, Ecuador, 

Chile, Paraguay and Argentina. 
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Trichia verrucosa Berk., in Hooker, Fl. Tasman. 2(9):269 (1859) 

This species has been found only in MRF, on DBW and GL. Reported in 3, 4, 7 and 10. 

Vouchers deposited at USJ, UARK and M. Also reported from Mexico, Cuba, Jamaica, 

Dominica, Colombia, Brazil, Chile and Argentina. 

 

Tubifera bombarda (Berk. & Broome) G.W.Martin, Brittonia 13:110 (1961) 

Primarily found in LWF and PWF, on GL. Reported in 3, 4, 8 and 10. Vouchers 

deposited at USJ, BPI and M. Also reported from Jamaica, Puerto Rico, Venezuela, 

French Guiana and Brazil. Several of the specimens collected in Costa Rica lack any 

evidence of the bristle-like pseudocapillitium so characteristic of this species and may 

represent a distinct taxon. 

 

* Tubifera casparyi (Rostaf.) T.Macbr., N. Amer. Slime-Moulds 157 (1899) 

This species has been found only in PWFTL, on LC. First published report for Costa 

Rica. Vouchers deposited at UARK. Also reported from Mexico and Argentina. 

 

Tubifera ferruginosa (Batsch) J.F.Gmel., Syst. Nat. 2:1472 (1792) 

Primarily found in MRF, PRF and PMF, on DBW. Reported in 3, 4 and 10. Vouchers 

deposited at USJ, BPI, UARK and M. Also reported from Mexico, Panama, Jamaica, 

Dominican Republic, Puerto Rico, Guadeloupe, Dominica, French Guiana, Brazil, 

Ecuador, Chile and Argentina. 
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Tubifera microsperma (Berk. & M.A.Curtis) G.W.Martin, Mycologia 39(4):461 (1947) 

Primarily found in PWFTp, LMF, LMFTP and LMRF, on DBW. Reported in 3, 4 and 10. 

Vouchers deposited at USJ, BPI, UARK and M. Widespread in the Neotropics (see 10). 

 

Wilkomlangea reticulata (Alb. & Schwein.) Kuntze, Revis. Gen. Pl. 2:875 (1891) 

≡ Cienkowskia reticulata (Alb. & Schwein.) Rostaf., Sluzowce Monogr. 91 (1874) 

Primarily found in MRF, on DBW. Reported in 3, 4 and 10. No vouchers known. Also 

reported from Mexico, Belize, Panama, Venezuela, Brazil, Peru, Uruguay and Argentina. 

 

Discussion 

The comprehensive database of myxomycete collections compiled for this paper 

is largely the product of field studies carried out in Costa Rica during the past decade (see 

Rojas et al. 2009). It is not surprising that a high percentage of the species reported herein 

have not been included in recent publications. For example, about ten years ago 

Schnittler and Stephenson (2000) increased the number of species known for this country 

to 126, and just recently Lado and Wrigley de Basanta (2008) reported a total of 143 

species in their recent literature review. However, field surveys carried out during the 

past decade in areas of the country traditionally understudied have yielded a number of 

species not previously known for these areas. In fact, if the four doubtful species are 

considered, the total number of myxomycetes for Costa Rica would increase to 212 

species.  

This number should be higher if the diversity prediction using ACE values is 

correct. The completeness of the survey is calculated as more than 80% using this 
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indicator. However, it is important to remember that variations in the calculation of the 

maximum number of species occur when different algorithms are used (see Magurran 

2004). As such, the estimation provided herein is not intended as an “exact” calculation. 

For comparison, Schnittler and Stephenson (2000) calculated that between 70-80% of the 

myxomycetes on bark and litter in different forest types in Costa Rica were recovered in 

their study by using a different estimator. Similarly, Schnittler et al. (2002) calculated the 

completeness of a rapid assessment project in a cloud forest in Ecuador of about 92%. 

However, the values from those projects may reflect the limitations of the research 

carried out. With only a limited number of populations of amoebae forming 

fructifications at a given time, and the well-known fact that many species, especially 

those forming large fructifications, rarely occur in moist chamber cultures, these surveys 

represent only “snapshots” of biological systems and do not necessarily reflect the total 

species assemblage of a particular area. Almost always such rapid assessments 

underestimate the species richness of an area as a product of their temporally limited 

research effort. Given this situation, it is still difficult to determine if the completeness of 

myxomycete surveys accurately reflect a biological pattern. However, it is very likely 

that the number of species of myxomycetes reported for Costa Rica in this paper reflects 

the majority of the taxa actually present in the country. 

In any case, one aspect that should be taken in consideration is the taxonomic 

treatment that authors have used to report myxomycetes from Costa Rica. Until recently, 

most taxonomic treatments primarily followed Martin and Alexopoulos (1969). However, 

in recent years the treatments of Lado (2001, 2005-2010) have been incorporated into the 

publications related to Costa Rican myxomycetes. Due this discrepancy, the synonymies 
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of the names reported herein have been included. In any case, species such as Stemonitis 

smithii T. Macbr. and Cribraria oregana H.C. Gilbert have been treated separately. In the 

first instance, this species is not reported in Lado and Wrigley de Basanta (2008) since, 

according to the treatment of Lado (2005-2010), the taxon in question should be included 

in Stemonitis axifera (Bull.) T.Macbr. For the purpose of the present paper, S. smithii has 

been considered a separate taxon. In the case of C. oregana, this species was reported in 

Lado and Wrigley de Basanta (2008); however, no vouchers or reports of this species 

were found during the course of this investigation. For that reason, this taxon was not 

included in the current list. 

One aspect of interest is the high value for the taxonomic diversity index. For 

comparison, the value obtained by Stephenson et al. (1993) from an analysis of the data 

given by Alexopoulos and Sáenz (1976), also in Costa Rica, was only 3.93. This type of 

data shows the importance of nearly exhaustive surveys, since it is obvious that this 

aspect can invariably modify the value of taxonomic diversity depending upon how 

exhaustive an area has been examined. The high value of intrageneric diversity obtained 

herein can also be used to infer ecological aspects of the community under study. Given 

the high taxonomic diversity value obtained in this study, it is not surprising that 

Physarum and Didymium, the two genera with the highest numbers of species were the 

ones with a higher presence across substrates and forest types (not previously shown). 

This might indicate these genera utilize a wide range of resources, which is possible 

when species use different resources in different ways. 

In this sense, the differences in species richness and species assemblages (see 

Rojas et al. 2009) noted for different forest types and substrates might reflect a 
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contrasting pattern of specialization in resource use. This seems to be a common 

phenomenon in tropical myxomycetes, for which evidence has been provided recently by 

several authors (e.g., Schnittler 2001, Schnittler and Stephenson 2002; Rojas et al. 2008; 

Wrigley de Basanta et al. 2008; Estrada-Torres et al. 2009). These data suggest that the 

complex mosaic of microenvironments found in tropical forests provides myxomycetes 

with a number of exploitable niches that seem to have driven particular species to a 

degree of specialization that is not found in other types of ecosystems. In spite of this 

apparent pattern, the data provided in this paper are not conclusive for the majority of the 

species due the low number of records for an accurate ecological analysis. 

It is clear however, that some of the most common species of myxomycetes in 

Costa Rica are present in a large number of forest types and substrates. In almost every 

survey carried out in this country, species such as Arcyria cinerea, Hemitrichia 

calyculata, Didymium squamulosum and Physarum compressum were reported. This 

contrasts with the situation that exists for species that belong to such genera as 

Lamproderma and Trichia, for which high-elevation forests and dead bark and wood 

seem to be the preferred combination of forest type and substrate for example. Of course, 

this is definitely an artifact of the sampling techniques and effort used by different 

collectors in different forest types as well as of the combination of different 

environmental characteristics influencing fructification patterns in the field and in 

laboratory conditions. However, it is an observation that might indicate that there are 

genera more specialized for colder, more temperate-like environments such as the oak-

dominated high-elevation forests of Costa Rica. 
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In summary, myxomycetes are more common in Costa Rica than previously 

realized. The high diversity of species reported certainly suggests that patterns of species 

distribution should be analyzed in the context of research carried out in other areas of the 

world. Even in well studied areas, patterns of species distribution need to be reconsidered 

in the context of forest structure (e.g., Keller et al. 2004; Schnittler et al. 2006). In most 

tropical countries, the prerequisite baseline data are not yet available to encourage 

researchers to conduct such type of studies. For that reason, basic information about 

myxomycete assemblages from different parts of the world is still required. 
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Chapter 9 

New records of myxomycetes from high-elevation areas of Mexico and Guatemala 

 

Abstract: Surveys of four high-elevation study areas in central Mexico and northwestern 

Guatemala were carried out to obtain baseline information on the species of 

myxomycetes present. All study areas were sampled in 2006 and 2007. Both specimens 

that had fruited in the field and those obtained from moist chamber cultures in the 

laboratory were considered. The myxomycetes recorded included seven species that 

represented new records for Mexico and 35 that were new for Guatemala. Five of these 

were new records for the Neotropics. A list of these species and information on the 

microhabitats in which they occurred is provided. This relatively limited study clearly 

demonstrates that high-elevation areas in the Neotropics are still under sampled for 

myxomycetes. For most countries in the region, there are still information gaps relating to 

distribution patterns of myxomycetes. In the context of biodiversity conservation, it is 

important to continue studying groups of organisms such as myxomycetes in the rapidly 

changing Neotropical ecosystems. 

 

Keywords: Cuchumatanes, Cofre de Perote, La Malinche, myxogastria, species 

distribution 

 

Introduction 

The myxomycetes or myxogastrids are a group of ameboid protists (Adl et al. 

2005) with the particular ability to produce fruiting bodies that resemble microscopic 
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fungi (Stephenson et al. 2008a). These organisms are known to occur in virtually all 

terrestrial ecosystems (Stephenson 2003). However, most studies have been directed 

towards temperate forests of the Northern Hemisphere (Stephenson et al. 2004). 

In spite of this situation, tropical areas of the world have received a moderate 

level of study. For example, the Neotropical region has been the subject of more than 550 

scientific articles on myxomycetes (see Lado and Wrigley de Basanta 2008). As 

expected, as new studies occur in the region, more and more species of myxomycetes 

continue to be added to the known myxobiota (e.g., Rojas and Stephenson 2007; Estrada-

Torres et al. 2009). In fact, several new species have been recently described from 

understudied ecosystems in the region (e.g., Moreno et al. 2009; Wrigley de Basanta et 

al. 2009), and it is very likely that this trend will continue for some time. 

One of the reasons why new species continue to be discovered is the nature of the 

Neotropical region, in which the ecological complexity of regional ecosystems provides a 

large number of microenvironments and high species diversity (see Kricher 1999). 

However, niche differentiation in myxomycetes also seems to play a role in explaining 

this pattern (see Rojas et al. 2009). In this way, the wide variety of conditions that allow 

for the existence of multiple microenvironments and the capacity of myxomycetes to use 

a number of different resources would favour the occurrence of different species in this 

type of situation. As with other groups, this pattern seems to be determined by a 

combination of global and local factors (Stephenson et al. 2008a). 

In the ecosystems that occur at high elevations in the Neotropical region, 

myxomycetes have not been studied extensively. This is still true in spite of the baseline 

information that has been obtained for the myxomycete assemblages present in some of 
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these areas, especially in countries such as Mexico, Costa Rica and Ecuador (e.g., 

Schnittler et al. 2002; Rodríguez-Palma et al. 2005; Rojas and Stephenson 2007). As a 

result of this, most high-elevation Neotropical ecosystems continue to be understudied for 

myxomycetes. 

The lack of information on the biota of high-elevation ecosystems is an important 

aspect of the conservation that needs to be addressed. High-elevation ecosystems in the 

Neotropics are extremely important as water reservoirs and natural erosion controllers 

(Brown and Kappelle 2001). Moreover, these ecosystems represent biodiversity treasures 

and the landscapes associated with them are visually appealing (Aldrich et al. 2000). The 

study of microscopic organisms such as myxomycetes is important for understanding the 

dynamics of these forests. 

However, major differences in what is known exist from place to place within the 

Neotropical region. In Mexico, for example, researchers have generated more than 130 

publications and have used this to advance the argument that this country has the richest 

myxobiota in the entire Neotropics (see Lado and Wrigley de Basanta 2008). In 

Guatemala, on the other hand, few studies of myxomycetes have been carried out, and 

only two publications (Farr 1976; Estrada-Torres et al. 2000) have reported these 

organisms for the entire territory. 

In spite of this situation, it is very likely that additional study of some of the 

poorly known ecosystems in both countries would continue to provide important 

ecological information about the assemblages present. For that reason, the present study 

was designed to generate baseline information on the myxomycetes of high-elevation 

areas of Mexico and Guatemala. In both cases, these data are important for setting the 



357 
 

stage for future studies of myxomycetes, especially with respect to monitoring changes in 

the community dynamics of microorganisms in relation to predicted global climate 

change. 

 

Methods 

This study was carried out between the years 2006 and 2007. All species names 

follow the nomeclatural treatment of Lado (2005-2010) except for Perichaena liceoides, 

for which the original protologue is provided. The morphological concept of species was 

used in all cases.  

Study areas 

Four study areas in the northern section of the Neotropics were used in the 

surveys carried out (Fig 1). In each of the study areas, two study sites corresponding to 

forested and non-forested conditions were selected. In each of these study sites, two 

collecting plots were established. Collectively, this effort produced a total of 16 plots 

arranged in 8 different study sites. All sampling was confined to high-elevation areas, 

defined in this study as those areas occurring at elevations >3000 m. 

 In Mexico, the two study areas correspond to (A) the Matlalcueyetl (=La 

Malinche) Volcano (hereafter abbreviated as Malinche, collecting plots located between 

19˚14'–19˚16' N and 97˚59'–98˚02' W, 3100–4050 m), which is located between the 

states of Puebla and Tlaxcala and (B) the Cofre de Perote Volcano (Perote, collecting 

plots located between 19˚29'–19˚31' N and 97˚09'–97˚10' W, 3400–4200 m) in the state 

of Veracruz. In these two cases, the forests surveyed are located below the treeline (Fig 

2) and are dominated by Pinus hartwegii Lindl. and Abies religiosa (Kunth.) Schltdl. & 
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Cham, whereas non-forested areas at the highest elevations are dominated by the tussock 

grasses Festuca tolucensis Kunth and Calamagrostis tolucensis (Kunth) Trin. ex Steud. 

In Guatemala, the two study areas were located on the Cuchumatanes Plateau and 

correspond to (C) Llanos de San Miguel (Llanos, collecting plots located at 15˚30' N and 

91˚29' W, 3400–3500 m) and (D) La Ventoza (Ventoza, collecting plots located at 15˚27' 

N and 91˚32' W, 3400–3600 m). In these areas, the forests surveyed are dominated by 

Juniperus standleyi Steyerm. or Pinus hartwegii Lindl. and non-forested sites are 

dominated by the tussock grass Agrostis tolucensis Kunth or Agave hurteri Trel. 

 

Sampling method 

 All the study areas were sampled within two consecutive periods between June 

and July of 2006 and 2007. Both specimens that had fruited in the field and those 

obtained from moist chamber cultures in the laboratory were considered. 

In the latter case, a series of samples of dead plant material corresponding to 

ground litter, aerial litter, bark and twigs was collected from each of the plots. These 

samples were taken to the laboratory, where they were used to prepare moist chamber 

cultures using the protocol described by Stephenson and Stempen (1994). 

With this method, each sample was placed in a Petri dish previously lined with 

filter paper and pH-neutral water was added the dish until it covered all the sample 

material. After approximately 24 h, the pH of the substrate was measured using a pH 

meter and then the excess water was poured off. The reason for measuring this parameter 

is that a number of previous studies have determined pH to be an important factor in 

determining microenvironmental preferences in myxomycetes. 
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After this process, all moist chamber cultures were kept at room conditions for 

approximately 10 weeks. During this period, they were examined for the presence of 

myxomycete fruiting bodies every week. Extra water was added to the culture as 

necessary in order to maintain a humid microenvironment. When fruiting bodies were 

detected, these were extracted from the moist chamber culture and placed in a pasteboard 

box for identification and storage. All collections made in this manner were deposited in 

the mycological herbarium of the University of Arkansas (UARKM). 

In addition to the specimens obtained from moist chamber cultures, collections 

were obtained in the field using the opportunistic protocol described by Cannon and 

Sutton (2004). With this method, myxomycetes were searched for in the areas 

corresponding to the collecting plots. When fruiting bodies were found, pH was measured 

in the area surrounding the fruiting body with a portable pH meter. After this, the fruiting 

bodies were collected, returned to the laboratory and processed in the same manner as 

described previously for identification and storage of specimens from moist chamber 

cultures.The information represented by all of the specimens collected was used to 

construct a database, and this was used for the annotations of individual species. 

 

Species list and annotations 

 The list of species provided in this paper includes only those taxa for which no 

previous records were known for the areas surveyed. As such, this list does not reflect the 

actual species diversity found in each study area and each country. The latter data have 

been summarized in a separate manuscript (Rojas et al. unpublished data). 
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 The starting point used to compile the list was the recent review of myxomycetes 

for the Neotropics (Lado and Wrigley de Basanta 2008). The list of new records for the 

study areas considered in the present study is presented in alphabetical order by genus 

and then species. In all cases, the species name is followed by the authors. After this, an 

indication of the origin of the particular record (FC for field collections and MC for moist 

chamber cultures) is given, along with the number of collections and the year in which 

these were obtained. The country and study area (in parenthesis), forest type, substrate 

types and range of pH values recorded for all specimens of the species in question are 

provided as well. Those species that represent new records for the Neotropical region are 

indicated. 

 For the annotations, forest types were coded as following: (A) non-forested areas 

dominated by Agrostis tolucencis, (B) non-forested areas dominated by Festuca 

tolucensis, (C) Abies religiosa-dominated forest, (D) Pinus hartwegii-dominated forest 

and (E) Juniperus standleyi-dominated forest. In a similar manner, substrate types were 

abbreviated as following: ground litter (GL), aerial litter (AL), twigs (TW), bark (BA) 

and decaying wood (DW). When a particular species was associated with more than one 

forest and/or substrate type, the abbreviations for the latter are listed in order of their 

frequency for that particular species. 

In countries where the species was previously observed, study areas where 

specimens were collected are only mentioned and no detailed data are provided. The 

number of specimens recorded and the other data given in each instance corresponds only 

to the country for which the species is a new record. All new records from Mexico are 
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denoted with one asterisk before the name, two asterisks are used for new records for 

Guatemala, and new records for the two countries by three asterisks. 

 

Results 

 A total of 82 species were recorded from the various study areas. Seven of these 

represented new records for Mexico and 35 were new records for Guatemala. In addition, 

five new records for the Neotropical region were found. For Mexico, one specimen that 

could only be identified to the genus level also represented a new record. 

 Approximately 55% of the records of species new to the areas studied were 

collected in forested plots, whereas the remaining 45% were collected in non-forested 

plots. About 27% of the total number of collections was recorded from the Pinus 

hartwegii-dominated forests, whereas about 24% and 5% were from the Juniperus 

standleyi and the Abies religiosa-dominated forests, respectively. When the substrates of 

the new records were evaluated, approximately 48% were associated with aerial litter, 

21% with twigs, 17% with ground litter and 14% with bark. 

The annotated list of all new species documented from the study areas is provided 

below. 

 

List of new myxomycetes for Mexico and Guatemala 

 

* Amaurochaete Rostaf. (a specimen that could be identified only to genus) 

MC, 1 collection, 2007. Mexico (Malinche), in C, on TW, pH = 4.6. 
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Fig 1 – Map of central-southern Mexico and the northern section of Central America 

showing the geographic location of the four study areas considered in the present study. 

For complete names see the “study areas” section in Methods. 
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Fig 2 – Some of the study areas surveyed in the investigation: (a) non-forested area 

dominated by Festuca tolucensis close to the summit in the La Malinche Volcano; (b) 

Abies religiosa-dominated forest in the Cofre de Perote volcano; (c) Juniperus standleyi-

dominated forest in the Ventoza study area; (d) detail of the tussock grass Agrostis 

tolucencis dominating the landscape in the Llanos de San Miguel 
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** Arcyria afroalpina Rammeloo 

MC, 3 collections, 2006. Guatemala (Llanos), in D, on AL and BA, pH range = 5.8–6.2. 

 

* Arcyria occidentalis (T.Macbr.) G.Lister 

FC, 1 collection, 2007. Mexico (Malinche), in C, on DW, pH = 4.6. New record for the 

Neotropics. 

 

** Badhamia melanospora Speg. 

MC, 1 collection, 2006. Mexico (Malinche and Perote) and Guatemala (Ventoza), in E, 

on AL, pH = 5.7. 

 

** Ceratiomyxa fruticulosa (O.F.Müll.) T.Macbr. 

FC, 11 collections, 2007. Guatemala (Llanos and Ventoza), in D, E and A, on DW, pH 

range = 3.2–8.1. 

 

** Comatricha nigra (Pers. ex J.F.Gmel.) J.Schröt. 

MC, 10 collections, 2006 and 2007. Mexico (Malinche and Perote) and Guatemala 

(Llanos and Ventoza), in E, D and A, on TW and BA, pH range = 4.0–5.2. 

 

* Comatricha rigidireta Nann.-Bremek. 

MC, 1 collection, 2006. Mexico (Perote), in D, on BA, pH = 4.8. New record for the 

Neotropics. 
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** Cribraria languescens Rex 

FC, 1 collection, 2007. Guatemala (Llanos), in D, on DW, pH = 3.7. 

 

** Cribraria minutissima Schwein. 

FC, 1 collection, 2007. Guatemala (Llanos), D, on DW, pH = 3.7. 

 

** Cribraria oregana H.C.Gilbert 

FC, 6 collections, 2007. Guatemala (Llanos and Ventoza), in D, on DW, pH range = 3.9–

4.5. 

 

** Cribraria vulgaris Schrad. 

FC, 2 collections, 2007. Guatemala (Llanos), in D, on DW, pH range = 3.7–3.8. 

 

** Diachea leucopodia (Alb. & Schwein.) Fr. 

MC, 1 collection, 2006. Mexico (Perote) and Guatemala (Llanos), in A, on AL, pH = 5.0. 

 

** Didymium anellus Morgan 

MC, 21 collections, 2006 and 2007. Mexico (Malinche and Perote) and Guatemala 

(Llanos and Ventoza), in E, D and A, on AL and GL, pH range = 4.1–6.2. 

 

** Didymium bahiense Gottsb. 

MC, 18 collections, 2006 and 2007. Mexico (Malinche and Perote) and Guatemala 

(Llanos and Ventoza), in E, D and A, on AL, GL and TW, pH range = 3.9–6.8.  
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** Didymium clavus (Alb. & Schwein.) Rabenh. 

MC, 5 collections, 2006. Mexico (Malinche and Perote) and Guatemala (Llanos and 

Ventoza), in E and A, on AL, pH range = 3.5–6.1. 

 

** Didymium difforme (Pers.) Gray 

MC, 28 collections, 2006 and 2007. Mexico (Malinche and Cofre) and Guatemala 

(Llanos and Ventoza), in E, D and A, on AL, GL and TW, pH range = 4.8–7.5 

 

** Didymium dubium Rostaf. 

MC, 5 collections, 2006 and 2007. Mexico (Perote) and Guatemala (Llanos and 

Ventoza), in A, on GL and AL, pH range = 5.2–5.8. 

 

** Didymium iridis (Ditmar) Fr. 

MC, 43 collections, 2006 and 2007. Mexico (Malinche and Cofre) and Guatemala 

(Llanos and Ventoza), in E, D and A, on AL, GL, TW and BA, pH range = 3.8–6.8. 

 

** Didymium minus (Lister) Morgan 

MC, 9 collections, 2006 and 2007. Mexico (Malinche and Perote) and Guatemala (Llanos 

and Ventoza), in E and A, on AL, pH range = 4.4–6.2. 

 

 

 



367 
 

** Didymium squamulosum (Alb. & Schwein.) Fr. 

MC, 29 collections, 2006 and 2007. Mexico (Malinche and Perote) and Guatemala 

(Llanos and Ventoza), in both E, D and A, on AL and GL, pH range = 4.5–6.6. 

 

** Echinostelium minutum de Bary 

MC, 6 collections, 2006 and 2007. Mexico (Malinche and Perote) and Guatemala (Llanos 

and Ventoza), in E and D, on BA and TW, pH range = 3.3–4.8. 

 

** Fuligo septica (L.) F.H.Wigg. 

FC, 4 collections, 2007. Guatemala (Llanos), in D and A, on DW, pH range = 3.5–6.6. 

 

** Lamproderma scintillans (Berk. & Broome) Morgan 

MC, 2 collections, 2006. Mexico (Perote) and Guatemala (Llanos and Ventoza), in A, on 

AL, pH range = 4.6–6.1. 

 

** Licea belmontiana Nann.-Bremek. 

MC, 5 collections, 2006. Guatemala (Llanos and Ventoza), in E, D and A, on TW and 

BA, pH range = 3.7–4.9. 

 

* Licea deplanata Kowalski 

MC, 2 collections, 2006. Mexico (Perote), in B, on TW, pH range = 4.5–5.8. New record 

for the Neotropics. 
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** Licea minima Fr. 

MC, 8 collections, 2006 and 2007. Mexico (Malinche) and Guatemala (Llanos and 

Ventoza), in E, D and A, on BA and TW, pH range = 3.6–4.7. 

 

** Licea pusilla Schrad. 

MC, 1 collection, 2007. Guatemala (Llanos), in D, on GL, pH = 4.8. 

 

*** Licea testudinacea Nann.-Bremek. 

MC, 6 collections, 2007. Mexico (Malinche) and Guatemala (Ventoza), in C, D and A, on 

BA and TW, pH range = 3.7–6.0. New record for the Neotropics. 

 

** Lycogala epidendrum (L.) Fr. 

FC, 4 collections, 2007. Guatemala (Llanos and Ventoza), in E and A, on DW, pH range 

= 4.7–7.0. 

 

* Paradiacheopsis solitaria (Nann.-Bremek.) Nann.-Bremek. 

MC, 1 collection, 2006. Mexico (Malinche), in D, on BA, pH = 4.9. New record for the 

Neotropics. 

 

** Perichaena chrysosperma (Curr.) Lister 

MC, 2 collections, 2006. Mexico (Malinche and Perote) and Guatemala (Llanos), in A, 

on GL, pH range = 4.5–5.6. 
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** Perichaena corticalis (Batsch) Rostaf. 

MC, 2 collections, 2006. Mexico (Malinche and Perote) and Guatemala (Llanos), in A, 

on GL, pH = 5.6. 

 

** Perichaena depressa Lib. 

MC, 21 collections, 2006 and 2007. Mexico (Malinche and Perote) and Guatemala 

(Llanos and Ventoza), in E, D and A, on AL, GL, TW and BA, pH range = 3.5–7.1. 

 

* Perichaena dictyonema Rammeloo 

MC, 2 collections, 2006. Mexico (Malinche), in C, on AL, pH range = 6.6–7.3. 

 

* Perichaena liceoides Rostaf., Sluzowce Monogr. 295 (1875) 

MC, 12 collections, 2006 and 2007. Mexico (Malinche and Perote), in C, D and B, on AL 

and GL, pH range = 4.8–7.9. 

 

** Physarum bivalve Pers. 

MC, 4 collections, 2007. Mexico (Malinche and Perote) and Guatemala (Llanos and 

Ventoza), in D and A, on AL and BA, pH range = 4.8–5.8. 

 

** Physarum echinosporum Lister 

MC, 5 collections, 2006 and 2007. Mexico (Malinche and Perote) and Guatemala 

(Llanos), in D and A, on AL, BA, TW and GL, pH range = 4.1–6.1. 
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** Physarum pusillum (Berk. & M.A.Curtis) G.Lister 

MC, 1 collection, 2006. Mexico (Malinche and Perote) and Guatemala (Ventoza), in D, 

on AL, pH  = 5.5. 

 

** Stemonitis fusca Roth 

MC, 94 collections, 2006 and 2007. Mexico (Malinche and Perote) and Guatemala 

(Llanos and Ventoza), in E, D and A, on TW, AL, BA and GL, pH range = 3.7–6.0. 

 

** Trichia botrytis (J.F.Gmel.) Pers. 

MC, 2 collections, 2006. Mexico (Malinche) and Guatemala (Llanos and Ventoza), in E 

and D, on GL, pH range = 4.9–5.3. 

 

** Trichia contorta (Ditmar) Rostaf. 

MC, 3 collections, 2006. Mexico (Malinche) and Guatemala (Llanos and Ventoza), in A, 

on GL and TW, pH range = 4.0–5.3. 

 

** Trichia subfusca Rex 

MC, 3 collections, 2006 and 2007. Mexico (Malinche) and Guatemala (Llanos and 

Ventoza), in E and D, on GL, pH range = 4.2–4.4. 

 

Discussion 

 The number of new records of myxomycetes obtained in the present study is 

probably not surprising. This is especially true when it is considered that the myxobiota 
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of Guatemala is very much understudied. However, even though there have been a 

number of investigations in Mexico, the present study reports eight new myxomycete 

species for that country.  

 The latter is not an unimportant result. As is true for many other countries, high-

elevation areas in Mexico have not received as much attention as lowland areas (see Lado 

and Wrigley de Basanta 2008). Both La Malinche and Cofre de Perote are exceptions to 

the latter and have been studied in the past (e.g., Guzmán and Villareal 1984; Rodríguez-

Palma et al. 2005). However, in both cases the effort was centered on forested areas, 

leaving the grass-dominated communities that occur beyond the treeline understudied. In 

the case of La Malinche, for example, most previous studies have been carried out in the 

Abies religiosa forest (Rodríguez-Palma et al. 2005). 

 For Guatemala, the situation is very different. It is clear that the 26 species of 

myxomycetes known for this country before the present study (see Lado and Wrigley de 

Basanta 2008) do not reflect the diversity of forms that would be expected to occur in this 

area. However, no studies have been carried out in most parts of this country. In this 

sense it is not surprising that the present study increased by 135% the number of known 

species for Guatemala. Both the investigation carried out by Estrada-Torres et al. (2000) 

and the present study were centered on the Cuchumatanes Plateau, the highest mountain 

range in the country. For this reason, it is very likely that future studies will increase the 

number of myxomycetes known for Guatemala, especially those directed towards areas 

that still remain unexplored. 

 In any case, about half of the collections that represent new records for both 

countries were obtained from the less studied non-forested areas. This result suggests that 
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such areas may provide a number of new records for other countries in the Neotropics. A 

comprehensive examination of the species present in high-elevation non-forested areas of 

Costa Rica (Rojas et al., unpublished data) provides evidence for such a hypothesis. In 

the present study, non-forested ecosystems had not been sampled in any of the study 

areas (see Guzmán and Villareal 1984; Estrada-Torres et al. 2000; Rodríguez-Palma et al. 

2005) 

The fact that the forest type accounting for the lowest number of new records is 

the Abies religiosa forest lends support for the hypothesis that most myxomycetes in 

understudied ecosystems have not yet been documented. This is due in part to the fact 

that most myxomycetes seem to display patterns of occurrence that can be related to 

macro- and microenvironmental characteristics of the habitat (see Stephenson et al. 

2008a), which accounts for the particular species assemblages associated with different 

types of forest. This phenomenon undoubtedly accounts for the fact that about half of the 

new records were recovered from the less studied Juniperus standleyi and Pinus 

hartwegii forests. 

 For the moist chamber culture component of the present study, most of the new 

records were associated with either aerial litter or woody twigs. The presence of certain 

myxomycetes for these substrates is not surprising, since both have been previously 

documented as supporting distinctive assemblages of species (see Stephenson et al. 2004, 

2008b). As such, it is remarkable to observe that such substrates yielded a large number 

of new records during the present study. At least for aerial litter, the results seem to 

support the hypothesis that this is an important substrate for myxomycetes in tropical 

forests (see Black et al. 2004). 
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 In the present study, aerial litter also yielded all of the species of Didymium. This 

is not surprising since this genus is frequently encountered in myxomycete surveys 

carried out in tropical areas (e.g., Schnittler and Stephenson 2000; Tran et al. 2006). In 

contrast, the presence of species of the genus Licea primarily on bark and twigs seems to 

indicate an apparent specificity of members of that genus for those substrates. This 

phenomenon has been reported previously (see Ing 1994). Evidently, both vegetative and 

reproductive structures in myxomycetes can reach and grow on virtually any surface in 

the forest. However, the presence of a number of species primarily associated with, or 

even restricted solely to particular substrates, seems to be an indication of the specificity 

that some myxomycetes apparently show for particular food resources and/or substrate 

features, as well as the importance of those factors on the dynamics of myxomycete 

communities. 

Even though the range of pH values recorded in the present was wide, most 

myxomycetes were recorded from substrates that are relatively acidic. One of the more 

unexpected results is that some of the species found to tolerate these acidic conditions 

(e.g., Badmahia melanospora, Perichaena corticalis, Physarum pusillum and Stemonitis 

fusca) have been associated with more basic pH values in other studies (e.g., Estrada-

Torres et al. 2009). However, this result is not totally surprising, since other studies have 

shown that particular species of myxomycetes in high elevations ecosystems tend to 

occur on substrates with lower pH values than is the case in lowlands (see Schnittler and 

Stephenson 2000; Rojas and Stephenson 2008). 

 In any case, most of the species reported herein are common and have broad 

distribution ranges within the Neotropical region (see Lado and Wrigley de Basanta 
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2008). However, some species such as Arcyria occidentalis, Comatricha rigidireta, Licea 

deplanata, L. testudinacea and Paradiacheopsis solitaria, all of which are new records 

for the Neotropics, are obviously still not yet documented for other countries in the 

region. It is perhaps noteworthy that all of these species produce small fruiting bodies and 

thus may have been overlooked in previous studies that did not use the moist chamber 

culture method. It is important to mention that the use of this technique usually yields 

species that are not found under natural conditions. Since most records of myxomycetes 

from Latin America have been obtained in the field, it is still impossible to say whether 

or not the new records truly represent rare taxa in the Neotropics or simply reflect the 

relatively few studies that have been carried out in suitable habitats, or that have used 

both collecting techniques. 

 One obvious result from the present study and other recent investigations carried 

out in the high-elevation areas of the Neotropics (e.g., Rojas and Stephenson 2007) is that 

myxomycetes do occur, sometimes in abundance, in these areas. Within the context of 

conservation, it is important to know the composition of species present in different areas 

of similar characteristics in order to assess the effect of possible changes in the dynamics 

of these assemblages. Rapid-assessment projects such as the one described herein are 

relevant in this sense, since they provide baseline information that can be used for the 

monitoring of species assemblages in threatened ecosystems.  
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Chapter 10 

Conclusions 

 

 The studies of myxomycete assemblages associated with high-elevation areas of 

the Neotropics included in this investigation generated important information regarding 

the ecology of this group of terrestrial protists. When the data from low elevations, 

oceanic islands or different biogeographical provinces were considered in the analysis, it 

seemed apparent that myxomycete assemblages at high elevations show similar responses 

to a number of macroenvironmental factors. These responses seem likely to influence the 

patterns of abundance of the group in the study areas that were considered. In contrast, 

the different composition of species assemblages at high elevations seemed to be the 

product of a multifactorial response exhibited by particular species to the factors that 

define the microenvironments in which they are found. 

 The results obtained in the analysis presented in Chapter 2 showed that by using a 

probabilistic approach, myxomycete assemblages in Costa Rica do not seem to be 

randomly distributed across the country. The abundant species in the study showed 

significant relationships with particular forest types and substrates. This observation can 

be interpreted as evidence of the habitat specialization exhibited by myxomycetes in 

tropical areas, which seems to show that species are not randomly distributed across 

different ecosystems within the same geographic area. In a similar way, the other results 

presented in this chapter supported the same argument. Some species were shown to have 

a clear elevational distribution in Costa Rican forests. This is not considered to be the 

product of elevation per se, but is rather more likely to be evidence that those species 
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were associated with different forest types and forest structures or plant species occurring 

at particular elevations. Overall, in spite of some constraints inherent to the analyses 

carried out for this chapter, the value of the data mining process in combination with data 

collected directly from the field, also showed that these complementary approaches are 

valuable to generate meaningful information for biological analysis. 

 In contrast to the latter, the analysis presented in Chapter 3 corresponds to a rapid 

assessment project carried out in only one of the study areas in Costa Rica. Both the 

spatial and temporal scales were highly reduced in this analysis, but the level of 

resolution was improved with the sampling effort. In this case, it was clear that a survey 

with increased effort in the high-elevation oak forests of Costa Rica was adequate to 

observe the presence of species that had not been reported for that country at the time of 

the study. In this manner, the similarity of the assemblage of species found in the study 

area when compared to previously observed myxomycete assemblages in temperate areas 

provided an indication of a biogeographical pattern associated with true temperate and 

temperate-like forests. Due to this apparent pattern, the analysis of spatial niches—

considered herein as the multidimensional set of parameters defining the 

microenvironment in which the different species occur—was very useful to characterize 

the microhabitats of particular species. For this reason, the results of this chapter 

supported the utilization of a similar methodology in subsequent analyses of myxomycete 

assemblages in other forest types. The relationship found to exist between precipitation 

levels and the abundance of myxomycetes in the forest evaluated also suggested that 

climatic factors are important for the natural history of the group in the areas area being 

considered.  
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 When the dynamics of myxomycete communities were evaluated in the context of 

isolation provided by the oceanic island evaluated in Chapter 4, it seemed that some of 

the macroecological patterns previously observed for high elevations were also supported 

by the results from this contrasting ecosystem. In this case, the effectiveness of rapid-

assessment projects to rapidly characterize the myxobiota of a particular area was 

observed again. In this case, data supporting the observation that myxomycete diversity 

and abundance decrease with increasing elevation in tropical areas was evident from the 

results presented in this chapter. In this case, even an indication of the importance of 

some characteristics of the microenvironment could be defined.  

One example was the higher occurrence of myxomycetes on aerial litter at lower 

elevations, which switched to more records on ground litter at the highest elevation. This 

observation provided an indication that apparent substrate specificity may be also 

associated with substrate availability and macroenvironmental factors. In addition, the 

species composition of the assemblages found on Cocos Island was very noteworthy from 

a biogeographical perspective, since the majority of the species have broad distribution 

ranges in the Neotropical region.  

This result suggested that frequently encountered myxomycetes in Neotropical 

areas may not show limitations in their dispersal capabilities and that immigration events 

in isolated territories may occur more frequently than in the case of macroscopic 

organisms. Moreover, it is likely that due the limited numbers of plant species, forest 

types and microhabitats in this island; myxomycetes coexist in the system by means of 

resource specialization. 
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 The data presented in Chapter 5 shows that such strategies are possible in 

mycetozoans and likely to occur in myxomycetes. In this chapter it seemed evident that 

the most cosmopolitan macroscopic species of the genus Ceratiomyxa shows a wider 

resource utilization pattern than the other two macroscopic species, which are more 

regionally distributed. The results presented in this chapter also suggested that in areas 

where all the three species occur sympatrically, the two species with the narrower 

distribution seemed to have different resource utilization patterns. The quick 

characterization of the microenvironment for each species also constituted important 

evidence for future studies of a similar nature in either the same Neotropical region or 

across biogeographical areas. In the present dissertation, the high-elevation areas of the 

Neotropics constituted the other reference point. 

The comprehensive analysis presented in Chapter 6 provides a summary of these 

results. The data obtained during this part of the project indicated that myxomycetes 

show a pattern of decreasing species richness with decreasing latitude, and this was 

apparently influenced by the structure of the forest in which the species occurred. 

Moreover, the highly variable similarity values among assemblages in the Neotropical 

areas and those from other biogeographical provinces suggest that the distribution of 

myxomycetes was not neutral at that spatial scale.  

The pattern of resemblance of Neotropical myxomycete assemblages with the 

assemblage studied in the temperate area seemed to indicate that temperate-related 

myxomycete species were more likely to be found in less tropical areas. This observation 

did not seem surprising during the general analysis. However due the lack of available 

information on the biogeography of myxomycetes in these areas before the present 
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dissertation, these data represented a good starting point to generate hypotheses about the 

global distribution of these organisms. 

 As a complementary approach, the results provided in Chapter 7 are potentially 

useful as well. For example, the indication that the myxomycete assemblage studied in 

Southeast Asia was different from those studied in the Americas represented a milestone 

in the context of limited research recently explained for tropical myxomycetes. In a 

similar way, the effective combination of in-situ measurements of microenvironmental 

parameters and multivariate analysis of similar factors to generate meaningful data, 

suggested that a potential characterization of the microenvironment in which 

myxomycetes occur is possible at that level of analysis.  

The evaluation of the structure of the myxomycete assemblages studied in relation 

with large-scale models of distribution suggested that this approach can be used with this 

group. However, it is likely that revised models centered on microorganisms will 

represent better tools to study the distribution of myxomycete in the future. In any case, 

the information presented in this chapter shows that most of the results obtained appeared 

not to support neutral models of species distribution and seemed, in contrast, to be better 

explained by niche-based models. These results were important for the integration of the 

knowledge on myxomycetes into ecosystem biology in the high-elevation areas 

considered in this dissertation. However, a good point of reference regarding the 

taxonomic identity of the myxomycetes present in those areas should have been 

established before a complete integration could be carried out. 

 For this reason, a complete review of the myxomycetes occurring in Costa Rica is 

provided in Chapter 8. In this analysis, the importance of the consideration of previous 
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research is evident. Before this dissertation project started, a total of 126 species of 

myxomycetes were known to occur in Costa Rica. With the field work carried out in the 

context of this project, the review of historical material and the collaboration of 

contemporaneous researchers, the catalog of myxomycetes known for Costa Rica 

increased to more than 200 species. The composition of species seemed to conform to 

previous studies, but the development of this review represents a point of reference for 

future studies in the region. In the same context, Chapter 9 provides valuable taxonomic 

information on the species present in Mexico and Guatemala. The report of a number of 

new species for both countries represents a valuable result of this dissertation. Overall, 

these recently mentioned reviews represent the quality of the effort carried out in the 

high-elevation areas of those countries and provide potentially useful information for the 

management of the surveyed areas. 

In spite of all the effort carried out during this project, it is clear that a number of 

other research questions could not be investigated in the framework of this dissertation. 

During this time, however, some questions and possible strategies to address future 

research have been identified with the objective of continuing this line of research. Even 

though the biogeographical and ecological studies presented contain a number of 

methodological limitations and possibly errors, this dissertation represents an exhaustive 

survey of high-elevation areas of the northern Neotropics.  

The high-elevation non-Neotropical or lowland Neotropical areas surveyed for 

comparison in most of the chapters also represent one component of the effort carried out 

during this study. As such, the value of the data generated during this investigation is 

valid not only in terms of the information provided for the study of myxomycete ecology 
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and global distribution of terrestrial protists but also in relation to the study of rapidly 

changing ecosystems. In the present case, the latter were represented by the lowland 

Neotropical forests and evidently, the high-elevation areas of the northern Neotropics and 

other areas of the world. For this reason, the empirical data generated also represents 

baseline information on the biogeography and ecology of a group of microorganisms that 

can potentially be used for the protection and management of the various study areas. 
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Appendix 1 

Complete list of species and numbers of records from all high-elevation study areas 

considered in this investigation 

 

 The main database created for an analysis of high-elevation assemblages of 

myxomycetes of this dissertation contains records obtained directly in the field and also 

those extracted from moist chamber cultures. For this reason, the different analyses used 

in the investigation were carried out with due consideration of the main objective of the 

particular chapter involved and the methods used to obtain the records. Due to this 

approach, the total list of actual species found in each study area is incomplete in the 

various chapters. A complete list of myxomycete species for future reference is provided 

in Table 1 of this appendix. 

 Except for two species (Perichaena liceoides and Stemonitis smithii), the 

taxonomic treatment used throughout this dissertation follows the reference given below. 

For these two species, the original protologues are provided.  

 

Lado C. 2005-2010. An on-line nomenclatural information system of Eumycetozoa. 

http://www.nomen.eumycetozoa.com (available through a link given on the 

Eumycetozoan Project web site (http://slimemold.uark.edu).  

Protologues: 
 
Perichaena liceoides Rostaf., Sluzowce Monogr. 295 (1875) 

Stemonitis smithii T.Macbr., Bull. Iowa Univ. Lab. Nat.Hist. 2:381 (1893) 
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Appendix 2 

Metadata of the study areas considered in this investigation 

 

 The complexity of the field work involved in this investigation does not permit a quick 

evaluation of the location and basic information relating to the different study areas. For this 

reason a metadata file was compiled. To access the file, please use the attached compact disk. 

You can easily open the file using the computer program Google Earth*. A series of images of 

the study areas and maps showing the relative abundance of the ten most common species for 

both forested and non-forested areas are also included in the same disk. 

 

* Google Earth is a registered name of Google Inc., Mountain View, California. 
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