

Supplement of

Microbial biobanking – cyanobacteria-rich topsoil facilitates mine rehabilitation

Wendy Williams et al.

Correspondence to: Wendy Williams (wendy.williams@uq.edu.au)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supplementary Tables

Table S1: Descriptions of sources for intact biocrusts used to characterise the cyanobacterial communities: Site vegetation associations: SMU 1 – Red Mallee: *Eucalyptus oleosa* ssp. *oleosa* = open Mallee/Myall woodland; SMU 2 – Chenopod Shrubland: *Maireana sedifolia* and *Atriplex vesicaria*; SMU 3 – Western Myall: *Acacia papyrocarpa Maireana sedifolia* = open Myall woodland Site 1 occurs in a transition between SMU 2 and SMU 3 but was treated as most like SMU 2; Site 6 originated from SMU 3 – *2YO stockpile crust type determined *in situ* also with mosses present; TSF = Tailings storage facility.

Site no.	Primary Vegetation	SMU	Biocrust types	Site identifier and description
1	Western Myall	2	Types 2-5	Edge year 3 clearance
2	Western Myall	3	Types 2-5	Dust mon track
3	Western Myall	3	Types 2-5	Drill track
4	Red Mallee	1	Types 1-3	Drill track - dune
5	Red Mallee	2	Types 2-5	Drill track - gilgai
6	Western Myall	NA	Type 1*	Topsoil stockpile
7	Western Myall	3	Types 2-5	West side TSF
8	Chenopod	2	Types 2-5	Power Station site
9	Red Mallee	1	Types 1-2	Canberra - dune
10	Red Mallee	1	Types 1-3	Nth of pit - slight dune

Table S2: Descriptions of biocrust morphotypes (see Büdel et al., 2009; Doudle et al., 2011)

No.	Crust Type	Identification		
1	Light (pale coloured) thin cyanobacterial crust in early stages of development: early-successional	Patchy, brittle, bare patches visible, slight discolouration		
2	Cyanobacterial crust, well established, intermediate stages of development	Larger pieces can be easily removed intact, darked discolouration		
3	Biocrust, well established, with cyanolichens: late- successional	Larger pieces can be easily removed intact, cyanolichens easily seen with hand lens (10x)		
4	Biocrust, well established, with cyanolichens and/or green algal lichens: late-successional	Larger pieces can be easily removed intact, liche easily seen with hand lens (10x)		
5	Biocrust (see Type 4) with mosses: late- successional	Larger pieces can be easily removed intact, moss easily seen with hand lens (10x)		

Stockpile	Date of topsoil	Stockpile	Latitude	Longitude	Adjacent	Latitude	Longitude	Soil sample depths (cm)	Date
number	stockpiling	Replicate			replicate				sampled
10	31/10/2009	1	0234527	6578956	1	0234433	6578944	0-2, 2-4, 4-6, 10, 25, 50, 50 (sterilised control)	8/3/12
10	31/10/2009	2	0234542	6578921	2	0234422	6578933	0-2, 2-4, 4-6, 10, 25, 50, 50 (sterilised control)	8/3/12
10	31/10/2009	3	0234557	6578881	3	0234436	6578913	0-2, 2-4, 4-6, 10, 25, 50, 50 (sterilised control)	8/3/12
12	6/11/2009	1	0233396	2578200	1	0233414	6578180	0-2, 2-4, 4-6, 10, 25, 50, 50 (sterilised control)	8/3/12
12	6/11/2009	2	0233377	6578206	2	0233437	6578227	0-2, 2-4, 4-6, 10, 25, 50, 50 (sterilised control)	8/3/12
12	6/11/2009	3	0233362	6578218	3	0233431	6578263	0-2, 2-4, 4-6, 10, 25, 50, 50 (sterilised control)	8/3/12
18	13/07/2010	1	0234870	6578033	1	0234878	6577787	0-2, 2-4, 4-6, 10, 25, 50, 50 (sterilised control)	9/3/12
18	13/07/2010	2	0234852	6578023	2	0234873	6577776	0-2, 2-4, 4-6, 10, 25, 50, 50 (sterilised control)	9/3/12
18	13/07/2010	3	0234860	6578007	3	0234853	6577782	0-2, 2-4, 4-6, 10, 25, 50, 50 (sterilised control)	9/3/12
19	29/06/2010	1	0234999	6578800	1	0234922	6578851	0-2, 2-4, 4-6, 10, 25, 50, 50 (sterilised control)	9/3/12
19	29/06/2010	2	0235000	6578820	2	0234918	6578856	0-2, 2-4, 4-6, 10, 25, 50, 50 (sterilised control)	9/3/12
19	29/06/2010	3	0235003	6578834	3	0234913	6578849	0-2, 2-4, 4-6, 10, 25, 50, 50 (sterilised control)	9/3/12
20	2011	1	023457	6577150	1	0234938	6577286	0-2, 2-4, 4-6, 10, 25, 50, 50 (sterilised control)	8/3/12

Table S3: Topsoil stockpile ages, locations and sampling depths

Supplementary Figures

Figure S1: Mean monthly maximum temperature and rainfall data from nearby Tarcoola aerodrome for the past 20 years (source: bom.gov.au)

Location: 016098 TARCOOLA AERO

Figure S2: (**a-f**) The predominant *Symploca* species found across all sites; (**b**) illustrates distinctive colour found in those with UV pigmentation; (**c**) thin outer sheath; (**d**) masses of filaments that form mats; (**e**) desiccated cells inside sheath following period of time without moisture (arrow) and other cells already rehydrated; (**f**) filament with typical elongated sock-like sheath; (Scale bars 20 μ m).

Figure S3: (a-b) *Microcoleus paludosus* with multiple bright trichomes encased in a common clear gelatinous sheath; (c-f) *Schizothrix*; three species were observed with varying morphological structure that included long entangled filaments with enclosed ends; *Schizothrix* was a subsurface species but was often found on the surface during a growth phase; (d) *Schizothrix* had thick, sticky, gelatinous sheaths (arrow), often with fine, almost invisible trichomes (arrow), and was hard to separate from the soil particles; (e-f) typically one or two trichomes encased in gelatinous sheaths clumped together to form rope-like filaments; (scale bars 20 µm).

Figure S4: *Scytonema* species (**a-f**) Illustrations of three (of four) apparently different species of *Scytonema* that were identified; morphological attributes that differ between species included cell size and shape, size of heterocysts (straight arrows) and type of branching (curvy arrows); *Scytonema* sp. 2 (**c-d**) is heavily granulated, golden coloured and larger than the others, most common at Lake Ifould but also found elsewhere; *Scytonema* formed tufted or prostrate colonies on the surface and were rarely seen without UV pigmentation; note (b, e-f) are cultured specimens (scale bars 20 μm).

Figure S5: *Brasilonema – Scytonema* complex: (**a-d**) In these studies this species was identified as most like *Brasilonema* however it contained variable morphology, yet its identity was supported by molecular analysis. *Brasilonema* was almost twice the size of most of the *Scytonema* species in 4.2, contained occasional to numerous heterocytes, a range of cell shapes, false branching; (**e-f**) *Scytonema* species; (**e**) with longer cells than wide, similar to 4.2a and; (**f**) with squarish cells and heavy granulation similar to 4.2d; (scale bars 20 µm).

Figure S6: (a) *Schizothrix* species; (b) *Leptolyngbya*-like species (arrow) with *Microcoleus* (curvy arrow) and *Schizothrix* (background) intermingled with other cyanobacteria illustrating complex diversity within the microscale; (c-d) *Porphyrosiphon* species (1) that was most commonly found that when mature had a crinkled outer sheath (c); and was in very long filaments with an unusual pointed terminal cell; (e) *Gloeocapsa* sp. (unicellular) cyanobacterium encased in thick lamellated EPS layered envelopes; (f) unidentified unicellular Chroococcales; (scale bars 20 µm).

Figure S7: (**a-f**) Early stages and different morphs of *Nostoc* life cycle (cultured); (**a-b**) illustrating long *Nostoc* cf. commune chains (arrows) and sacks containing chains of *Nostoc* cells, about the third phase of its life cycle; (**c-d**) pigmentation of these cell sacks provides UV protection; (**d-e**) changing morphs with (**e**) most likely *Nostoc flagelliforme* (see Aboal et al., 2014); (scale bars 20 μm).

Figure S8: *Nostoc* species (cultured); (**a-b**) illustrating elongated parallel filaments of *Nostoc flagelliforme* possibly about the third phase of its life cycle; (**c-d**) long chains *Nostoc* cf. *pruniforme* with linking akinetes (arrow); (**e-f**) Nostoc changing morphs with (**e**) most likely tightly packed colonies of *Nostoc commune* in a thick, highly pigmented EPS envelope (arrow); (scale bars 20 µm).

Figure S9: (**a-c**) *Symplocastrum* sp. (from Lake Ifould perimeter) with heavily granulated cells and golden to rust coloured sheaths shown forming a tuft-like peak (**b**) and; (**c**) in a partially desiccated state; (**d**) tightly entwined bundles of *Leptolyngbya* like filaments; (**e-f**) *Chroococcus* sp. from Lake Ifould perimeter in golden pigmented spherical colony (**f**); (scale bars 20 µm).

Figure S10: Cyanobacterial species richness in SMU 1 shows *Symploca* is dominant while sub-surface cyanobacterium *Schizothrix* is important for binding soil together with EPS. *Symploca*, *Scytonema*, *Porphyrosiphon* and *Brasilonema* contribute to N-fixation.

Figure S11: Cyanobacterial species richness in SMU 2 shows *Schizothrix, Porphyrosiphon, Scytonema and Symploca* share dominance.

Figure S12: Cyanobacterial species richness in SMU 3 shows *Symploca* is clearly dominant with *Porphyrosiphon* and *Scytonema* abundant.

Figure S13: Cyanobacterial species richness in Site 6, the 2YO topsoil stockpile (T2) had originated from SMU 3 and mostly reflects the same dominant genera as SMU 3 (*Symploca*) however; *Symploca* and *Symplocastrum* are co-dominant and *Porphyrosiphon* abundant. N-fixing species were *Symploca, Porphyrosiphon, Scytonema* and *Brasilonema*.